Optimal control and design of composite laminated piezoelectric plates ALhadi E. ALamir* Department of Mathematics, Najran university, PO Box 1988, Najran, Kingdom of Saudi Arabia (Received May 10, 2013, Revised December 3, 2013, Accepted December 10, 2013) **Abstract.** The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process. **Keywords:** piezoelectric; actuators; minimizing the dynamic response; optimal design; composite laminated plates; plate theories ## 1. Introduction Active control of vibrations in flexible components of the smart structures is a developing area of research. It has numerous applications, especially, in the vibration control of structures (such as beams, plates and shells), in aerospace engineering, flexible robot manipulators, antennas, active noise control, shape control and in earthquake resistant structures. In aircraft structures, the wings and fuselage consist of a skin with an array of stiffening ribs. Such structures are subjected to dynamic loads, and their control is of paramount importance for safe and smooth functioning of the system. Piezoelectric materials are able to produce an electrical response when they are mechanically stressed (sensors). Also, a high precision motion may be obtained when they are subjected to an electrical field (actuators). The literature reviews (Frecker 2002, Kapuria *et al.* 2010, Vivek *et al.* 2011) show that many theoretical, experimental and computational studies have been carried out on the piezoelectric smart structures, particularly, on piezoelectric materials used as distributed sensors or active dampers of vibrations, i.e., for sensing and actuation. Presently one of the most widely used piezomaterials in active control is piezoceramics due to their large ISSN: 1738-1584 (Print), 1738-1991 (Online) ^{*}Corresponding author, Dr., E-mail: alhadialamir@hotmail.com bandwidth, their mechanical simplicity and their mechanical power to produce controlling forces. The books by Reece (2007) and Jianguo *et al.* (2007), provide an overview of these materials and the related control techniques. Modeling of the direct and the reverse effects of a distributed piezoelectric layer has been studied in (Qiu *et al.* 2007), Khdeir and Aldraihem (2013), Xu *et al.* (2013), Foda and Alsaif (2012)). Alexandre Molter *et al.* (2010) and Nanda and Nath (2012) discussed issues related to simultaneous sensing and actuation in structural control. Ji-Zeng Wang *et al.* (2012) proposed a hybrid active passive control strategy for suppressing vibrations of laminated rectangular plates bonded with distributed piezoelectric sensors and actuators. Kapuria and Yaqoob (2013) employed the linear quadratic Gaussian (LQG) control strategy and the optimal direction of fibers to achieve the minimum control voltage for skew plates. In the paper of Sadek *et al.* (2009), open-loop control results were obtained using a maximum principle for the optimal boundary of one-dimensional structures. The piezo-control problem is formulated as an optimal boundary-value problem using a control function including the applied voltage to damp out the vibrations of the micro-beam. The objective function is specified as a weighted functional of the dynamic responses of the micro-beam which is to be minimized at a specific terminal time using continuous piezoelectric actuators. Kapil Narwal and Deepak Chhabra (2012) applied a linear quadratic regulator (LQR) controller for attenuate the global structural vibration of simple supported plate with piezoelectric sensors and actuators. Nemanja *et al.* (2013) studied optimal vibration control of a thin-walled composite beam by using the fuzzy optimization strategy. Padula and Kincaid (1999) and Frecker (2002) presented a survey on optimization strategies for smart structures. In some structures, external static and dynamic excitations can cause large deformation or geometrical non-linearity due to small material damping or the lack of other forms of damping. In this case non-linear treatment is needed in order to accurately design and effectively control of structural systems. Behjat and Khoshravan (2012) used a nonlinear analysis to study the piezoelectric effect on functionally graded laminates. The current work deals with optimal design and control of the dynamic response of an anisotropic rectangular piezoelectric laminate for various cases of boundary conditions using higher-order plate theory. The objective of the present control problem is to minimize the dynamic response (vibrational total energy) with minimum expenditure of electric force. Furthermore, thickness of piezoelectric layers and orientation angle of the material fibers are taken as design variables. The energy of the structure is taken as a measure for the dynamic response of the laminate. A quadratic functional of the total energy is specified as the control performance index. The expenditure control energy is limited by attaching a functional of the electric force to the objective functional as a penalty term. The necessary and sufficient conditions for optimal stabilization in the Liapunov–Bellman sense (Gabralyan 1975) are used to determine the optimal control function and deflections. Numerical examples are given to assess the present design–control approach. ## 2. Geometry of the plate and basic equations Consider a smart rectangular laminate (as shown in Fig. 1) of length a, width b, total thickness b and composed of b anisotropic homogeneous layers. The material of each composite layer is assumed to possess one plane of elastic symmetry parallel to the mid-plane of the laminate. The coordinate system is taken such that the mid-plane coincides with xy plane and normal to z- axis. The top and bottom layers of the laminate are piezoelectric layers, and they completely covered with electrodes. The piezoelectric layer performs only the actuation job, and can be excited in extension mode. The laminate is not loaded by any external loads and assumed to be perfectly The present study accounts for a unified displacement field as $$u_1(x, y, z) = u(x, y) + z \left(\alpha \frac{\partial w}{\partial x} + \beta \psi(x, y)\right) + \gamma z^3 \left(\frac{\partial w}{\partial x} + \psi(x, y)\right)$$ (1a) $$u_{2}(x, y, z) = v(x, y) + z \left(\alpha \frac{\partial w}{\partial y} + \beta \phi(x, y)\right) + \gamma z^{3} \left(\frac{\partial w}{\partial y} + \phi(x, y)\right)$$ (1b) $$u_3(x, y, z) = w(x, y) \tag{1c}$$ where (u_1, u_2, u_3) are the displacements components along x, y and z directions, respectively, (u,v,w) are the displacements of a point on the mid-plane, and ϕ and ψ are the rotations about the x and y axes respectively. The above displacement field (1) contains the displacement field of the classical plate theory (CPT), the first-order shear deformation plate theory (FPT) and the higher-order shear deformation plate theory (HPT) which can be obtained as - 1. Classical plate theory (*CPT*): $\alpha = -1$, $\beta = 0$, $\gamma = 0$. 2. First order plate theory (*FPT*): $\beta = 1$, $\alpha = 0$, $\gamma = 0$, 3. Higher-order plate theory (*HPT*): $\alpha = 0$, $\beta = 1$, $\gamma = -4/(3h^2)$. $$\varepsilon_{i} = \varepsilon_{i}^{(0)} + z \varepsilon_{i}^{(1)} + z^{3} \varepsilon_{i}^{(3)}, \qquad \varepsilon_{j} = \varepsilon_{j}^{(0)} + z^{2} \varepsilon_{j}^{(2)}, \qquad (i = 1, 2, 6, j = 4, 5)$$ $$\varepsilon_{3} = 0, \qquad \varepsilon_{1}^{(0)} = \frac{\partial u}{\partial x}, \qquad \varepsilon_{2}^{(0)} = \frac{\partial v}{\partial y}, \qquad \varepsilon_{4}^{(0)} = (1 + \alpha) \frac{\partial w}{\partial y} + \beta \phi$$ $$\varepsilon_{5}^{(0)} = (1 + \alpha) \frac{\partial w}{\partial x} + \beta \psi, \qquad \varepsilon_{6}^{(0)} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}, \qquad \varepsilon_{1}^{(1)} = \alpha \frac{\partial^{2} w}{\partial x^{2}} + \beta \frac{\partial \psi}{\partial x}$$ $$\varepsilon_{2}^{(1)} = \alpha \frac{\partial^{2} w}{\partial y^{2}} + \beta \frac{\partial \phi}{\partial y}, \qquad \varepsilon_{6}^{(1)} = 2\alpha \frac{\partial^{2} w}{\partial x \partial y} + \beta \left(\frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y}\right)$$ $$\varepsilon_{1}^{(3)} = \frac{1}{3} \frac{\partial \varepsilon_{5}^{(2)}}{\partial x}, \qquad \varepsilon_{4}^{(2)} = 3\gamma \left(\frac{\partial w}{\partial y} + \phi\right), \qquad \varepsilon_{2}^{(3)} = \frac{1}{3} \frac{\partial \varepsilon_{4}^{(2)}}{\partial y}$$ $$\varepsilon_{5}^{(2)} = 3\gamma \left(\frac{\partial w}{\partial x} + \psi\right), \qquad \varepsilon_{6}^{(3)} = \gamma \left(2 \frac{\partial^{2} w}{\partial x \partial y} + \frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y}\right)$$ $\mathcal{E}_1 = \mathcal{E}_{11}, \quad \mathcal{E}_2 = \mathcal{E}_{22}, \quad \mathcal{E}_4 = \mathcal{E}_{23}, \quad \mathcal{E}_5 = \mathcal{E}_{13}, \quad \mathcal{E}_6 = \mathcal{E}_{12}.$ Piezoelectricity
couples the mechanical stress (σ) and strain fields (ε) with the electric field (E) and electric strains. The linear piezoelectric constitutive equations for a PZT may be given in the form Fig. 1 Geometry of the rectangular laminate $$\sigma_i = C_{ii} \left(\varepsilon_i - \varepsilon_i^p \right), \quad i, j = 1, 2, 6, \quad \sigma_i = C_{ii} \varepsilon_i, \quad i, j = 4, 5$$ (3) where σ_i (i=1,2,...,6) denote the stress components $\sigma_1 = \sigma_{11}$, $\sigma_2 = \sigma_{22}$, $\sigma_4 = \sigma_{23}$, $\sigma_5 = \sigma_{13}$, $\sigma_6 = \sigma_{12}$, C_{ij} are the material stiffnesses which depend on material properties and orientation angle of the material, ε_j^p are the piezoelectric strains defined as $$\varepsilon_1^p = \varepsilon_2^p = d_{31}E_3$$, $\varepsilon_3^p = 0$ where d_{31} is the piezoelectric extension coefficient, E_3 is the electric field applied across the thickness which may be taken as $E_3 = \frac{\overline{v}}{h_p}$, \overline{v} is the electric voltage applied across the surfaces of the piezoelectric layers, and h_p is the piezoelectric layer thickness. The governing equations of the laminate are determined using the dynamic version of the principle of virtual displacements in the form (Fares *et al.* 2002) $$\frac{\partial N_{1}}{\partial x} + \frac{\partial N_{6}}{\partial y} = I_{1}\ddot{u} + \hat{I}_{2}\ddot{\psi} + \bar{I}_{2}\frac{\partial \ddot{w}}{\partial x}, \qquad \frac{\partial N_{6}}{\partial x} + \frac{\partial N_{2}}{\partial y} = I_{1}\ddot{v} + \hat{I}_{2}\ddot{\phi} + \bar{I}_{2}\frac{\partial \ddot{w}}{\partial y}, \frac{\partial \overline{Q}_{5}}{\partial x} + \frac{\partial \overline{Q}_{4}}{\partial y} - \frac{\partial^{2}\overline{M}_{1}}{\partial x^{2}} - 2\frac{\partial^{2}\overline{M}_{6}}{\partial x\partial y} - \frac{\partial^{2}\overline{M}_{2}}{\partial y^{2}} = I_{1}\ddot{w} - \bar{I}_{2}\left(\frac{\partial \ddot{u}}{\partial x} + \frac{\partial \ddot{v}}{\partial y}\right) - \left(\alpha \bar{I}_{3} + \gamma \bar{I}_{5}\right)\left(\frac{\partial^{2}\ddot{w}}{\partial x^{2}} + \frac{\partial^{2}\ddot{w}}{\partial y^{2}}\right) - \left(\beta \bar{I}_{3} + \gamma \bar{I}_{5}\right)\left(\frac{\partial \ddot{w}}{\partial x} + \frac{\partial \phi}{\partial y}\right) - \frac{\partial \hat{M}_{1}}{\partial x} + \frac{\partial \hat{M}_{6}}{\partial y} = \hat{Q}_{5} + \hat{I}_{2}\ddot{u} + \left(\beta \hat{I}_{3} + \gamma \hat{I}_{5}\right)\ddot{\psi} + \left(\alpha \hat{I}_{3} + \gamma \hat{I}_{5}\right)\frac{\partial \ddot{w}}{\partial x},$$ (4) $$\frac{\partial \hat{M}_{6}}{\partial x} + \frac{\partial \hat{M}_{2}}{\partial y} = \hat{Q}_{4} + \hat{I}_{2} \ddot{v} + \left(\beta \, \hat{I}_{3} + \gamma \, \hat{I}_{5}\right) \ddot{\phi} + \left(\alpha \, \hat{I}_{3} + \gamma \, \hat{I}_{5}\right) \frac{\partial \ddot{w}}{\partial y} \,,$$ where $$\begin{split} \overline{Q}_j &= \left(1+\alpha\right)Q_j + 3\gamma\,R_j\,, & \hat{Q}_j &= \beta\,Q_j + 3\gamma\,R_j\,, \\ \overline{M}_j &= \alpha\,M_j + \gamma\,P_j\,, & \hat{M}_j &= \beta\,M_j + \gamma\,P_j\,, \\ \bar{I}_n &= \alpha\,I_n + \gamma\,I_{n+2}\,, & \hat{I}_n &= \beta\,I_n + \gamma\,I_{n+2}\,, & I_n &= \sum_{k=1}^N \int_{z_{k+1}}^{z_k} \rho^{(k)} z^{n-1} dz\,, \end{split}$$ Where z_{k-1} and z_k are the bottom and top z-coordinates of the kth layer. The stress resultants N_i , M_i ,...etc., can be expanded as $$(N_i, M_i, P_i) = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} (1, z, z^3) \, \sigma_i \, dz \,, \qquad (i = 1, 2, 6)$$ $$(Q_i, R_i) = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} (1, z^2) \, \sigma_i \, dz \qquad (i = 4, 5)$$ (5) and related to the strain components by the following relations $$N_{i} = A_{ij}\varepsilon_{j}^{(0)} + B_{ij}\varepsilon_{j}^{(1)} + E_{ij}\varepsilon_{j}^{(3)} - N_{i}^{p}, \qquad M_{i} = B_{ij}\varepsilon_{j}^{(0)} + D_{ij}\varepsilon_{j}^{(1)} + F_{ij}\varepsilon_{j}^{(3)} - M_{i}^{p}$$ $$P_{i} = E_{ij}\varepsilon_{j}^{(0)} + F_{ij}\varepsilon_{j}^{(1)} + H_{ij}\varepsilon_{j}^{(3)} - P_{i}^{p}, \qquad (i, j = 1, 2, 6)$$ $$Q_{i} = A_{ij}\varepsilon_{j}^{(0)} + D_{ij}\varepsilon_{j}^{(2)}, \qquad R_{i} = D_{ij}\varepsilon_{j}^{(0)} + F_{ij}\varepsilon_{j}^{(2)}, \qquad (i, j = 4, 5)$$ er the piezoelectric stress resultants are defined by Moreover, the piezoelectric stress resultants are defined by $$(N_i^p, M_i^p, P_i^p) = \sum_{k=1}^N \int_{z_{k+1}}^{z_k} C_{ij}^p \, \varepsilon_j^p (1, z, z^3) \, dz \,, \quad (i = 1, 2, 6), \quad j = 1, 2$$ (7) where the constants C_{ij}^p denotes stiffnesses of the piezoelectric layers. The homogeneous laminate stiffnesses A_{ij} , B_{ij} ,...etc., are given by $$\left(A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, H_{ij}\right) = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} C_{ij}^{(k)} \left(1, z, z^2, z^3, z^4, z^6\right) dz, \quad (i, j = 1, 2, 6)$$ (8 a) $$(A_{ij}, D_{ij}, F_{ij}) = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} C_{ij}^{(k)} (1, z^2, z^4) dz, \qquad (i, j = 4, 5)$$ (8 b) In the present study, various types of boundary conditions will consider, these boundary conditions on the edges perpendicular to x-axis may be described as for simply supported (S): $$u = w = \phi = N_6 = M_1 = 0$$, for clamped (C): $$u = v = w = \psi = \phi = 0,$$ (9) for free (F): $N_1 = M_1 = N_6 = M_6 = Q_4 = 0.$ ## 3. The optimal control problem The objective of the present control problem is to minimize the dynamic response of the laminate in a specified time $0 \le t \le \tau < \infty$. The dynamic response of the laminate is measured by a cost functional including the energy of the laminate which is a function of displacements, their spatial derivatives and the velocity. The control voltage function $\overline{v}(x,y,t)$ is introduced into the formulation by taking a performance index which compresses a weighted sum of the energy (cost functional) and a penalty functional involving the control energy. In addition to the active control function $\overline{v}(x,y,t)$, we compute the ratio of piezoelectric layer thickness to the total thickness r_k and the orientation angles θ_k (the optimization design variables) which make the dynamic response of the laminate extremly minimum. Then, the mathematical formulation of the multiobjective design-control problem can be reduced to determine the optimization variables, \overline{v}^c , r^{opt} and θ_k^{opt} that minimize the following control objective $$J = \overline{\mu}_1 J_1 + \overline{\mu}_2 J_2 + \overline{\mu}_3 J_3 \tag{10}$$ $$J_{1} = \frac{1}{2} \int_{0}^{\infty} \int_{0}^{a} \int_{0}^{b} \int_{-\frac{h}{2}}^{\frac{h}{2}} \left(\varepsilon_{1} \sigma_{1} + \varepsilon_{2} \sigma_{2} + \varepsilon_{4} \sigma_{4} + \varepsilon_{5} \sigma_{5} + \varepsilon_{6} \sigma_{6} \right) dz dy dx dt, \tag{11 a}$$ $$J_2 = \frac{1}{2} \int_0^\infty \int_0^a \int_0^b \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho\left(\dot{u}_1^2 + \dot{u}_2^2 + \dot{u}_3^2\right) dz \, dy \, dx \, dt, \tag{11 b}$$ $$J_3 = \frac{\epsilon}{h_p} \int_0^{\tau} \int_0^b \int_0^a \overline{v^2}(x, y, t) \, dx \, dy \, dt, \tag{11 c}$$ where $\overline{\mu}_i > 0$, $\sum_i \overline{\mu}_i = 1$, i = 1, 2, 3 are weighting factors summing the functionals J_1, J_2 and J_3 which represent the strain energy, the kinetic energy of the laminate and the electricity energy respectively, as the weighting factors are varied, the emphasis of the optimization problem is shifted among various objectives resulting in compromise solutions, the single objective designs can be obtained as special cases by setting $\overline{\mu}_i = 1$, i = 1, 2, 3. The constant \in is the permittivity of the piezoelectric layers. The functional J_3 is a penalty term involving the control function $\overline{\nu}$ belongs to L^2 , where L^2 denotes the set of all bounded square integrable functions on the domain of solution $\{0 \le x \le a, \quad 0 \le y \le b, \quad 0 \le t \le \tau < \infty\}$. ## 4. Solution procedure The solution of the system of partial differential Eq. (4) with the boundary conditions (9) may be expanded in the form of double series in terms of the free vibration eigenfunctions of the laminate. Then, for antisymmetric laminated plate the displacements functions u, v, w, ψ , ϕ and \overline{v} may be represented as $$u = \sum_{m,n} U_{mn}(t)XY_{y}, \qquad v = \sum_{m,n} V_{mn}(t)X_{x}Y, \qquad w = \sum_{m,n} W_{mn}(t)XY$$ $$\psi = \sum_{m,n} \Psi_{mn}(t)X_{x}Y, \qquad \phi = \sum_{m,n} \Phi_{mn}(t)XY_{y}, \quad \overline{v} = \sum_{m,n} \overline{V}_{mn}(t)XY$$ $$\varepsilon_{1}^{p} = \sum_{m,n} \overline{\varepsilon}_{1_{mm}}^{p}(t)X_{x}Y_{y}, \qquad \varepsilon_{2}^{p} = \sum_{m,n} \overline{\varepsilon}_{2_{mm}}^{p}(t)XY, \qquad \varepsilon_{6}^{p} = \sum_{m,n} \overline{\varepsilon}_{6_{mm}}^{p}(t)XY$$ $$(12)$$ where U_{mn} , V_{mn} , W_{mn} , Ψ_{mn} , Φ_{mn} , $\overline{\varepsilon_1}^p$, $\overline{\varepsilon_2}^p$, $\overline{\varepsilon_6}^p$ and \overline{V}_{mn} are unknown functions of time, m and n are the mode numbers. For symmetric laminated plate the displacements functions (w, ψ, ϕ) may be taken as (12) but $$u = \sum_{m,n} U_{mn}(t)X_{x}Y, \qquad v = \sum_{m,n} V_{mn}(t)XY_{y}$$ The functions X(x) and Y(y) are continuous orthonormed functions which satisfy at least the geometric boundary conditions given in (9), and represent approximate shapes of the deflected surface of the vibrating laminate. These shape functions, for different cases of boundary conditions, are given in Appendix A. Using Eqs. (2), (6) and (7), we can get the governing Eq. (4) in terms of the displacements only. For these equations, the in-plane inertia terms may be neglected. Substituting expressions (12) into the resulting equations and multiplying each equation by the corresponding eigenfunction, then integrating over the domain of solution, we obtain, after some mathematical manipulations, the following time equations
$$\begin{bmatrix} U_{1} & V_{1} & W_{1} & \Psi_{1} & \Phi_{1} \\ U_{2} & V_{2} & W_{2} & \Psi_{2} & \Phi_{2} \\ U_{3} & V_{3} & W_{3} & \Psi_{3} & \Phi_{3} \\ U_{4} & V_{4} & W_{4} & \Psi_{4} & \Phi_{4} \\ U_{5} & V_{5} & W_{5} & \Psi_{5} & \Phi_{5} \end{bmatrix} \begin{bmatrix} U_{mn} \\ V_{mn} \\ W_{mn} \\ \Psi_{mn} \\ \Phi_{mn} \end{bmatrix} = \begin{bmatrix} \overline{W_{1}} & \overline{W}_{mn} - S_{1}^{p} \\ \overline{W_{2}} & W_{mn} - S_{2}^{p} \\ \overline{W_{3}} & \overline{W}_{mn} - S_{3}^{p} \\ \overline{W_{4}} & W_{mn} - S_{4}^{p} \\ \overline{W_{5}} & W_{mn} - S_{5}^{p} S_{5}$$ the coefficients U_i , V_i , W_i , Φ_i , Ψ_i S_i^p and \overline{W}_i (i = 1, 2, ..., 5) are given in Appendix A. Solving the system (13), one gets an equation in the form $$\ddot{W}_{mn} + \omega_{mn}^2 W_{mn} = L_{3p_{mn}} \overline{V}_{mn}, \qquad \omega_{mn}^2 = \frac{\Delta_{mn}}{\Delta_{3mn}}, \qquad L_{3p_{mn}} = \frac{\Delta_{3mn}^p}{\Delta_{3mn}}$$ (14) where, Δ_{mn} , Δ_{3mn} and Δ_{3mn}^p are given in Appendix B. Following previous analogous steps, we can get the objective functional (10) in the final form $$J = \sum_{m} \int_{0}^{\infty} \overline{J}_{mn} dt$$ Where $$\bar{J}_{mn} = \frac{1}{2} (k_1 W_{mn}^2 + k_2 W_{mn} Q_{mn} + k_3 Q_{mn}^2 + k_4 \dot{W}_{mn}^2 + k_5 \dot{W}_{mn} \dot{Q}_{mn} + k_6 \dot{Q}_{mn}^2),$$ (15) where, the coefficients k_i , (i = 1,2,...6) are given in Appendix B. Since the system of Eq. (14) is separable, hence the functional (15) depends only on the variables found in (m,n)th equation of the system, which reduce the problem to a problem of analytical design of controllers (Gabralyan 1975) for every $m, n = 1,2,...\infty$. Now the optimal control-design problem is to find firstly, the optimal control function $\overline{v}_{mn}^{c}(t)$ that satisfies the conditions $$J(\overline{v_{mn}^c}) \leq J(\overline{v_{mn}})$$ for all $\overline{v_{mn}}$ $(t) \in L^2([0, \infty])$, that is $$\min_{\overline{v}_{mn}} J = \min \sum_{m,n} J_{mn} = \sum_{m,n} \min_{\overline{v}_{mn} \in L^2} J,$$ and, secondly, to find the optimum values of θ_k , r_k from the following minimization condition $$J(\bar{v}_{mn}^{c}, r_{k}^{opt}, \theta_{k}^{opt}) = \min_{\substack{r_{k}, \theta_{k}}} J(\bar{v}_{mn}^{c}, r_{k}, \theta_{k}), 0 \le \bar{r} \le 0.5$$, $0 \le \theta \le \pi/2$. For this problem, Liapunov-Bellman theory (Gabralyan (1975)) is used to determine the control function $\overline{v}(x, y, t)$. This theory gives the necessary and sufficient conditions for minimizing the functional (15) in the form $$\min_{\bar{v}} \left[\frac{\partial L_{mn}}{\partial W_{mn}} \dot{W}_{mn} + \frac{\partial L_{mn}}{\partial \dot{W}_{mn}} \ddot{W}_{mn} + \frac{-}{J_{mn}} \right] = 0, \tag{16}$$ provided that the Liapunov function $$L_{mn} = A_{mn}W_{mn}^2 + 2B_{mn}W_{mn}\dot{W}_{mn} + C_{mn}\dot{W}_{mn}^2,$$ (17) is positive definite, i.e $A_{mn} > 0$, $C_{mn} > 0$ and $A_{mn}C_{mn} > B^2_{mn}$. Using Eq. (17), we can obtain the optimal control function in the form $$\vec{V}_{mn}^{c} = \frac{-1}{2k_{3}} \left(2B_{mn} L_{3p_{mn}} + k_{2} \right) W_{mn} - \frac{C_{mn} L_{3p_{mn}}}{k_{3}} \dot{W}_{mn} , \qquad (18)$$ then, substituting Eq. (18) into (16) and equating the coefficients of W_{mn}^2 , \dot{W}_{mn}^2 and $W_{mn}\dot{W}_{mn}$ by zeroes, the following system of equations are obtained $$C_{mn}^{2}(a_{1}B_{mn}^{2} + a_{2}B_{mn} + a_{3}) + a_{4}B_{mn}^{2} + a_{5}B_{mn} + a_{6} = 0,$$ $$C_{mn}^{2}(a_{7}C_{mn}^{2} + a_{8}B_{mn} + a_{9}) + a_{10}B_{mn}^{2} + a_{11}B_{mn} + a_{12} = 0,$$ $$a_{13}A_{mn} + C_{mn}(a_{14}C_{mn}^{2} + a_{15}C_{mn}^{2}B_{mn} + a_{16}B_{mn}^{2} + a_{17}B_{mn} + a_{18}) = 0,$$ (19) where a_i , (i = 1,2,...,18) are given in Appendix B. Under the condition that the Liapunov function is a positive definite, the solution of the system of nonlinear algebraic Eq. (19) may be obtained, then, using this solution into Eq. (14), one gets $$\ddot{W}_{mn} + \alpha_{mn}\dot{W}_{mn} + \beta_{mn}^2W_{mn} = 0, \qquad \alpha_{mn} = \frac{C_{mn}L_{3p_{mn}}^2}{k_3}, \qquad \qquad \beta_{mn}^2 = \omega_{mn}^2 + \frac{L_{3p_{mn}}}{2k_3}(2B_{mn}L_{3p_{mn}} + k_2),$$ the solution of this equation when $2\beta_{mn} > \alpha_{mn}$ is given by $$W_{mn} = e^{\frac{-\alpha_{mn}t}{2}} \left[\delta_{mn} \cos(\omega_{mn}^* t) + \tau_{mn} \sin(\omega_{mn}^* t) \right],$$ $$\omega_{mn}^* = \sqrt{\beta_{mn}^2 - \frac{1}{4} \alpha_{mn}^2}$$ where δ_{mn} , τ_{mn} are unknown coefficients which may be obtained from the initial conditions by expanding it in a series. If the initial conditions have the form $$w(x, y, 0) = \overline{A}(x, y), \quad \dot{w}(x, y, 0) = 0,$$ then, the controlled deflection solution takes the form $$W_{mn} = \overline{A} e^{\frac{-\alpha_{mn}t}{2}} \left[\cos(\omega_{mn}^* t) + \frac{\alpha_{mn}}{2\omega_{mn}^*} \sin(\omega_{mn}^* t) \right]$$ (20) Insert expressions (20) into (13), (15) and (18), we can get the controlled displacements, the total energy and the optimal control function. Then, we complete the minimization process for the dynamic response of the laminate by determining the optimal design of the laminate using the design variables r_k , θ_k . ### 5. Numerical results and discussion Numerical results of the fundamental modes for optimal control function \overline{v}^c , central controlled deflection w and total energy J are presented for symmetric (or antisymmetric) laminate with various cases of the boundary conditions (9). All layers of the composite laminate are assumed to be of the same orthotropic materials. A shear correction factor for FPT is taken to be 5/6. The plane reduced stress material stiffnesses C_{ij} are given by: $$C_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}}, \qquad C_{12} = \frac{\nu_{12}E_2}{1 - \nu_{12}\nu_{21}}, \qquad C_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}}, \\ C_{44} = G_{23}, \quad C_{55} = G_{13}, \qquad C_{66} = G_{12}, \qquad \nu_{ij}E_j = \nu_{ji}E_i, (i, j = 1, 2).$$ where E_i are Young's moduli; V_{ij} are Poisson's ratios and G_{ij} are shear moduli. In all calculations, unless otherwise stated, the following parameters are used: $$\begin{split} a &= b = 20 \ in., \quad h = 2 \ in., \quad \rho = 0.00012 \ \text{Ib.} - s^2/in.^4, \quad \varepsilon \, d_{31} = -274(10^{-24}) \, Farad \, / Volt \, , \\ \overline{A} &= 10^6 \, L_{3p} \omega^{-2}, v_{12} = 0.24 \, , \quad E_2 = 10.8 \times 10^6 \, \, psi., \quad E_1 = 123 \times 10^6 \, \, psi, \quad G_{23} = 3.38 \times 10^6 \, \, psi. \\ G_{12} &= G_{13} = 5.65 \times 10^6 \, \, psi., \qquad \overline{\mu}_1 = 0.3 \quad , \qquad \overline{\mu}_2 = 0.4 \quad , \qquad \overline{\mu}_3 = 0.3 \end{split}$$ Also, in all calculations, unless otherwise stated, the following parameters are used for piezoelectric layers $$\rho = 0.00023 \text{ Ib.} - s^2/in.^4, \qquad C_{11} = 61.08 \times 10^6 \text{ psi.}, \qquad C_{22} = 76.63 \times 10^6 \text{ psi.},$$ $$C_{12} = 31.29 \times 10^6 \text{ psi.}, \qquad C_{44} = 23.5 \times 10^6 \text{ psi.}, \qquad C_{55} = C_{66} = 23 \times 10^6 \text{ psi.}$$ For the optimal design, we consider $(P, \theta, 0, \theta, P)$ laminate with outer layers having the same thickness rh as shown in Fig. 2, where r represents the ratio of the outer layer thickness to the total laminate thickness. All calculations in tables and figures are carried out for maximum amplitude of w and \overline{v}^c . The effectiveness of the control process can be studied by defining an efficiency index which gives the percent of decrease in the uncontrolled total energy, viz. $$I_f = \frac{J^{unc} - J^c}{J^{unc}} \times 100 \%.$$ where J^{c} and J^{unc} denote controlled and uncontrolled energy. Fig. 2 Orientations of the piezoelectric laminate Tables 1 and 2 contain results for control function \overline{v}^c , controlled energy J and maximum deflection max/w/ for antisymmetric and symmetric laminates against a/h due to various plate theories. Notice that, the classical and first order theories under-predict the values of \overline{v}^c while, they over-predicts the values of max/w/ when comparing the results with the counterparts due to the higher order theory. This is due to that, the description of the deformation process occurring in the plate makes the structure more flexible. Table 1 The effect of a/h on \overline{v}^c , J and max/W/ for four, six and twelve-layer antisymmetric SSSS equithickness laminate according to CPT, FPT and HPT, a = b = 20, $E_1/E_2 = 11.389$ | - | Th. | (| (P, 45,-45, | P) | (P | , (45,-45) ₂ | , P) | (P, | (45,-45) ₅ , | P) | |-----|-----|------------------|-------------|---------|------------------|-------------------------|---------|------------------|-------------------------|---------| | a/h | | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | | | CPT | 144225 | 0.09123 | 0.00445 | 136156 | 0.12195 | 0.00500 | 112558 | 0.18612 | 0.00556 | | 5 | FPT | 127792 | 0.08876 | 0.00445 | 116482 | 0.11852 | 0.00499 | 90219 | 0.18081 | 0.00556 | | - | HPT | 116088 | 0.08886 | 0.00445 | 105626 | 0.12329 | 0.00520 | 87926 | 0.20108 | 0.00618 | | | | | | | | | | | | | | | CPT | 144566 | 0.79530 | 0.04005 | 136548 | 1.06297 | 0.04496 | 112845 | 1.62411 | 0.05005 | | 15 | FPT | 142444 | 0.79330 | 0.04005 | 133874 | 1.06032 | 0.04495 | 109529 | 1.62029 | 0.05004 | | 13 | HPT | 140355 | 0.79370 | 0.04006 | 131385 | 1.06553 | 0.04516 | 108199 | 1.64120 | 0.05068 | | | | | | | | | | | | | | | CPT | 144596 | 2.20334 | 0.11126 | 136581 | 2.94489 | 0.12488 | 112870 | 4.49989 | 0.13902 | | 25 | FPT | 143822 | 2.20140 | 0.11126 | 135602 | 2.94235 | 0.12488 | 111643 | 4.49632 | 0.13902 | | | HPT | 143036 | 2.20186 | 0.11126 | 134641 | 2.94768 | 0.12509 | 111099 | 4.51743 | 0.13965 | Table 2 The effect of a/h on \overline{v}^c , J and max/W/ for five, seven and thirteen-layer symmetric SSSS equithickness laminate according to CPT,
FPT and HPT, a = b = 20, $E_1/E_2 = 11.389$ | | Tr. | (P, 45, 0, 45, P) | | | (P, 45, | (P, 45, -45, 0, -45, 45, P) | | | (P,45,-45,, 0,,45,45,P) ₁₃ | | | |-----|-----|-------------------|---------|---------|--------------------|-----------------------------|---------|------------------|---------------------------------------|---------|--| | a/h | Th. | \overline{v}^c | J | max/W/ | \overline{v}^{c} | J | max/W/ | \overline{v}^c | J | max/W/ | | | | CPT | 138907 | 0.10501 | 0.00466 | 130034 | 0.13183 | 0.00504 | 108677 | 0.19236 | 0.00554 | | | 5 | FPT | 120399 | 0.10207 | 0.00466 | 109310 | 0.12807 | 0.00504 | 86309 | 0.18682 | 0.00553 | | | 3 | HPT | 108359 | 0.10436 | 0.00476 | 99998 | 0.13563 | 0.00534 | 84869 | 0.20888 | 0.00619 | | | | | | | | | | | | | | | | | CPT | 139330 | 0.91555 | 0.04194 | 130444 | 1.14962 | 0.04539 | 108956 | 1.67900 | 0.04983 | | | 15 | FPT | 136859 | 0.91322 | 0.04193 | 127557 | 1.14674 | 0.04539 | 105594 | 1.67502 | 0.04982 | | | 13 | HPT | 134351 | 0.91583 | 0.04204 | 125129 | 1.15473 | 0.04569 | 104419 | 1.69769 | 0.05049 | | | | | | | | | | | | | | | | | CPT | 139366 | 2.53650 | 0.11649 | 130480 | 3.18505 | 0.12610 | 108980 | 4.65210 | 0.13842 | | | 25 | FPT | 138462 | 2.53426 | 0.11649 | 129419 | 3.18230 | 0.12609 | 107734 | 4.64838 | 0.13841 | | | | HPT | 137503 | 2.53697 | 0.11659 | 128470 | 3.19043 | 0.12640 | 107249 | 4.67125 | 0.13907 | | Tables 3 and 4 contain results for control function \overline{v}^c , controlled energy J and maximum deflection $\max/w/$ for antisymmetric and symmetric laminates against the number of layers N due to various plate theories, for various boundary conditions, the deviations in results due to various theories are increasing with decreasing of the number of layers, especially for the control voltage function \overline{v}^c Generally, these deviations are not less than 10% in all cases. This confirm that, the higher order shear deformation theory is needed for describing the deformation more accurately, especially for thick or moderate thickness laminates. Table 3 The effect of the number of layers N on \overline{v}^c , J and max/W/ for antisymmetric equithickness laminates (P, $(45, -45)_{N/2-1}$, P) according to CPT, FPT and HPT, with various boundary conditions a = b = 20, $E_1/E_2 = 11.389$, a/h = 5 | | Th. | | CCSS | | | CCCC | | | CFSS | | |----|-----|------------------|---------|---------|------------------|---------|---------|------------------|---------|---------| | N | | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | | | CPT | 230794 | 0.08636 | 0.00408 | 405250 | 0.10030 | 0.00459 | 655047 | 0.58286 | 0.02617 | | 4 | FPT | 195943 | 0.08829 | 0.00431 | 309534 | 0.09664 | 0.00459 | 676202 | 0.69074 | 0.03009 | | 4 | HPT | 176132 | 0.09111 | 0.00444 | 264132 | 0.09648 | 0.00458 | 626262 | 0.65136 | 0.02892 | | | CPT | 219564 | 0.11745 | 0.00466 | 388509 | 0.13862 | 0.00532 | 657712 | 0.88131 | 0.03253 | | 6 | FPT | 179130 | 0.12099 | 0.00496 | 281016 | 0.13337 | 0.00532 | 671628 | 1.04277 | 0.03752 | | O | HPT | 163857 | 0.13285 | 0.00545 | 248102 | 0.14435 | 0.00576 | 613359 | 0.97888 | 0.03621 | | | CPT | 184070 | 0.18478 | 0.00535 | 330706 | 0.22452 | 0.00629 | 625190 | 1.73364 | 0.04449 | | 12 | FPT | 139979 | 0.19252 | 0.00576 | 218796 | 0.21595 | 0.00628 | 626907 | 2.03043 | 0.05138 | | | HPT | 141770 | 0.22968 | 0.00687 | 225108 | 0.26562 | 0.00772 | 581628 | 1.91208 | 0.05006 | Table 4 The effect of the number of layers N on \overline{v}^c , J and max/W/ for $(P,(45,-45)_{\frac{N-3}{2}},0/_{sym})$, laminates according to CPT, FPT and HPT, with various boundary conditions a=b=20, $E_1/E_2=11.389$, a/h=5 | | Th. | | CCSS | | | CCCC | | | CFSS | | |----|-----|------------------|---------|---------|------------------|---------|---------|------------------|---------|---------| | N | | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | | | CPT | 222720 | 0.09989 | 0.00429 | 393238 | 0.11745 | 0.00488 | 656861 | 0.72584 | 0.02928 | | 5 | FPT | 184311 | 0.10253 | 0.00455 | 289918 | 0.11305 | 0.00488 | 673824 | 0.86203 | 0.03380 | | 3 | HPT | 165230 | 0.10853 | 0.00482 | 250129 | 0.11849 | 0.00512 | 614781 | 0.81367 | 0.03261 | | | CPT | 210210 | 0.12773 | 0.00473 | 373402 | 0.15200 | 0.00545 | 653063 | 1.02259 | 0.03482 | | 7 | FPT | 168114 | 0.13173 | 0.00504 | 263332 | 0.14620 | 0.00545 | 663782 | 1.21039 | 0.04026 | | , | HPT | 155639 | 0.14649 | 0.00561 | 239972 | 0.16446 | 0.00613 | 604213 | 1.14159 | 0.03905 | | | CPT | 169738 | 0.20891 | 0.00544 | 306173 | 0.25575 | 0.00645 | 605676 | 2.11849 | 0.04819 | | 15 | FPT | 126089 | 0.21784 | 0.00586 | 197008 | 0.24596 | 0.00644 | 603303 | 2.46992 | 0.05564 | | | HPT | 131519 | 0.26212 | 0.00705 | 212558 | 0.31102 | 0.00814 | 564749 | 2.34522 | 0.05452 | Tables 5 and 6 show the effect of the aspect ratio a/b on the \overline{v}^c , J and $\max|w|$ for antisymmetric and symmetric laminates due to various plate theories, for some boundary conditions. Table 5 The effect of the aspect ratio a/b on \overline{v}^c , J and max/W/ for antisymmetric (P , 45 , -45 , P) equithickness laminate according to *CPT*, *FPT* and *HPT*, with *CCSS*, *CCCC*, and *CFSS* boundary conditions, E_1/E_2 =11.389, a/h = 15 | | | CCSS | | | CO | CCCC | | | CFSS | | | |-----|-----|------------------|---------|---------|------------------|---------|---------|------------------|---------|---------|--| | a/b | Th. | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | | | | CPT | 231296 | 0.33528 | 0.01632 | 406196 | 0.38824 | 0.01834 | 654227 | 2.29636 | 0.10467 | | | 1 | FPT | 220296 | 0.33843 | 0.01659 | 374038 | 0.38532 | 0.01834 | 706132 | 2.78143 | 0.12072 | | | 1 | HPT | 211247 | 0.34285 | 0.01679 | 349874 | 0.38532 | 0.01834 | 681151 | 2.65024 | 0.11668 | | | | CPT | 311237 | 0.15128 | 0.01344 | 471010 | 0.11954 | 0.01031 | 733690 | 0.51896 | 0.04749 | | | 1.5 | FPT | 293194 | 0.15162 | 0.01362 | 411820 | 0.11912 | 0.01041 | 721424 | 0.53236 | 0.04873 | | | 1.5 | HPT | 278408 | 0.15318 | 0.01375 | 373743 | 0.11965 | 0.01045 | 696890 | 0.52677 | 0.04837 | | | | CPT | 371678 | 0.07471 | 0.01013 | 514167 | 0.04634 | 0.00609 | 798977 | 0.18233 | 0.02648 | | | 2 | FPT | 343274 | 0.07410 | 0.01022 | 419400 | 0.04630 | 0.00622 | 759975 | 0.18151 | 0.02668 | | | | HPT | 320945 | 0.07456 | 0.01028 | 368858 | 0.04666 | 0.00627 | 722246 | 0.18051 | 0.02658 | | | | CPT | 557375 | 0.00470 | 0.00231 | 695881 | 0.00210 | 0.00098 | 1070500 | 0.00757 | 0.00416 | | | 5 | FPT | 428134 | 0.00427 | 0.00231 | 359437 | 0.00192 | 0.00102 | 843611 | 0.00689 | 0.00416 | | | | HPT | 363474 | 0.00423 | 0.00229 | 283046 | 0.00187 | 0.00099 | 723733 | 0.00682 | 0.00412 | | Table 6 The effect of the aspect ratio a/b on \overline{v}^c , J and max/W/for symmetric (P, 45, 0, 45, P) equithickness laminate according to *CPT*, *FPT* and *HPT*, with *CCSS*, *CCCC*, and *CFSS* boundary conditions, $E_1/E_2 = 11.389$, a/h = 15 | _ | Th. | | CCSS | | C | CCC | | | CFSS | | |-----|-----|------------------|---------|---------|------------------|---------|---------|------------------|---------|---------| | a/b | | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | \overline{v}^c | J | max/W/ | | | CPT | 223350 | 0.38790 | 0.01718 | 394443 | 0.45471 | 0.01954 | 656175 | 2.85975 | 0.11712 | | 1 | FPT | 210805 | 0.39217 | 0.01748 | 358332 | 0.45117 | 0.01954 | 708859 | 3.48667 | 0.13581 | | 1 | HPT | 200726 | 0.40020 | 0.01783 | 332065 | 0.45677 | 0.01977 | 679950 | 3.31677 | 0.13125 | | | CPT | 301278 | 0.17557 | 0.01419 | 459665 | 0.14158 | 0.01110 | 730316 | 0.63734 | 0.05274 | | 1.5 | FPT | 280797 | 0.17636 | 0.01441 | 393783 | 0.14103 | 0.01121 | 714740 | 0.65373 | 0.05416 | | 1.3 | HPT | 263958 | 0.17983 | 0.01469 | 354045 | 0.14516 | 0.01154 | 684194 | 0.64853 | 0.05395 | | | CPT | 361213 | 0.08735 | 0.01078 | 503278 | 0.05527 | 0.00661 | 793067 | 0.22270 | 0.02932 | | 2 | FPT | 329201 | 0.08684 | 0.01090 | 399313 | 0.05520 | 0.00675 | 748142 | 0.22153 | 0.02955 | | | HPT | 303984 | 0.08848 | 0.01111 | 349868 | 0.05784 | 0.00707 | 702003 | 0.22164 | 0.02964 | | | CPT | 547246 | 0.00562 | 0.00252 | 683235 | 0.00252 | 0.00108 | 1059100 | 0.00918 | 0.00459 | | 5 | FPT | 407189 | 0.00512 | 0.00252 | 334358 | 0.00230 | 0.00111 | 811016 | 0.00835 | 0.00459 | | | HPT | 346439 | 0.00534 | 0.00264 | 295967 | 0.00267 | 0.00129 | 693263 | 0.00864 | 0.00476 | Table 7 Values of θ^{opt} by degrees and J respectively for (P, θ , 0, θ , P) laminate against a/h and a/b with HPT for various boundary conditions, $E_1/E_2=11.389$ | | <i>a/b</i> = 1 | | | | | | a/h = 10 | | | | | |----------|----------------|-------------------|-------------------|----------------------|----------------------|-------------------|-------------------|-------------------|-------------------|--|--| | ВС | Th. | | C | ı/h | | | a | Ъ | | | | | | | 5 | 10 | 20 | 50 | 1.25 | 1.5 | 1.75 | 2 | | | | | r=0.5 | Undefined 0.04310 | Undefined 0.17242 | Undefined 0.68908 | Undefined 4.30534 | Undefined 0.09597 | Undefined 0.05763 | Undefined 0.03669 | Undefined 0.02447 | | | | SSSS | r=0.2 | 45.1°
0.10436 | 45°
0.40900 | 45°
1.62512 | 45°
10.13528 | 53.5°
0.22921 | 65.8°
0.13779 | 90°
0.08684 | 90°
0.05710 | | | | | r=0.1 | 43.3°
0.17557 | 44.5°
0.65727 | 44.9°
2.57964 | 45°
16.03072 | 52.5°
0.37264 | 62.2°
0.22500 | 75.7°
0.14181 | 90°
0.09258 | | | | | r=0.5 | Undefined 0.05501 | Undefined 0.21962 | Undefined 0.87703 | Undefined 5.47817 | Undefined 0.13233 | Undefined 0.08369 | Undefined 0.05512 | Undefined 0.03760 | | | | CSSS | r=0.2 | 30.4°
0.13488 | 32.2°
0.52165 | 32.3°
2.06358 | 32.3°
12.85162 | 46.3°
0.31850 | 59°
0.20220 | 86.7°
0.13253 | 90°
0.08890 | | | | | r=0.1 | 32.9°
0.23122 | 33°
0.84072 |
32.5°
3.26599 | 32.4°
20.22789 | 45.9°
0.52299 | 56.8°
0.33428 | 69.5°
0.21877 | 90°
0.14657 | | | | | r=0.5 | Undefined 0.04169 | Undefined 0.16269 | Undefined 0.64505 | Undefined
4.02049 | Undefined 0.10758 | Undefined 0.07277 | Undefined 0.05019 | Undefined 0.03533 | | | | CCS
S | r=0.2 | 0°
0.10809 | 0°
0.38423 | 0°
1.46151 | 0°
8.98095 | 31.9°
0.26370 | 53.6°
0.17962 | 90°
0.12274 | 90°
0.08455 | | | | | r=0.1 | 23.1°
0.19288 | 0°
0.62379 | 0°
2.21192 | 0°
13.24791 | 35.6°
0.43964 | 52.9°
0.30176 | 70.2°
0.20538 | 90°
0.14028 | | | | | r=0.5 | Undefined 0.30728 | Undefined 1.23619 | Undefined
4.95113 | Undefined 30.95528 | Undefined 0.49915 | Undefined 0.24694 | Undefined 0.13851 | Undefined 0.08468 | | | | CFS
S | r=0.2 | 90°
0.56776 | 90°
2.23792 | 90°
8.91462 | 90°
55.64824 | 90°
0.95563 | 90°
0.48792 | 90°
0.27956 | 90°
0.17371 | | | | | r=0.1 | 90°
0.71659 | 90°
2.70669 | 90°
10.66162 | 90°
66.34105 | 90°
1.21703 | 90°
0.64204 | 90°
0.37717 | 90°
0.23949 | | | Table 7 include optimum values of fiber orientation angle θ^{opt} and corresponding controlled energy J for five-layer symmetric laminates $(P, \theta, 0, \theta, P)$ for different values of r, a/b and a/h in some cases of boundary conditions. Note that, for all cases of boundary conditions and $r^{opt} = 0.5$ the optimization by the angle θ is not significant. This is because the whole material of the laminate becomes piezoelectric, while this design procedure is needed and active when r = 0.2 and r = 0.1 for different values of a/h and a/b in all cases of boundary conditions. Tables 8-9 give the numerical results of efficiency index I_f for four-layer antisymmetric laminates (P, θ, θ, P) and five-layer symmetric laminates (P, θ, θ, P) which show the remarkable effectiveness of the present control procedure in minimizing the dynamic response of the laminates, especially after 0.1 sec. Figs. 3-5 display J- curves against t, a/h and a/b for five-layer symmetric laminates (P, θ , θ , θ , P) due to HPT theory, with SSSS boundary condition. The behavior of the energy J with time t is displayed in Fig. 3 for four cases of design and control optimization: the first case is for uncontrolled laminate, the second is for controlled laminate without optimal design, the third is for controlled laminate optimally designed only by fiber orientation angle θ , and the fourth is for controlled laminate optimally designed by the thickness ratio r only. These cases generally, show that the optimal design procedure reduces significantly the level of the energy, but the optimal design over r is most efficient. In addition, the simultaneous design and control optimization is very active for reducing and damping the energy in least possible period of time. The effect of a/h and a/b ratios on the energy J is presented in Figs 4-5. The figures confirm the efficiency of the present optimal design over r, particularly for thin laminate (a/h > 10) which need more expenditure of energy to control its dynamic response, these figures reveal that the laminate may be tailored using a/h and a/b to improve its performance, where J is rapidly decreasing with decreasing in a/h and rapidly decreasing with increasing in a/b. Thus the present optimization control may be extended to include four or more design variables. Table 8 The percent I_f for (P, θ , θ , P) laminate with using SSSS, HPT, a/h = 20, a = b = 20, $E_1/E_2=11.389$ for some r and t values | | t = 0.005 | t = 0.01 | t = 0.1 | |-----------|-----------|----------|---------| | r = 0.125 | 79.18% | 89.50% | 98.95% | | r = 0.25 | 68.97% | 83.78% | 98.38% | | r = 0.375 | 61.99% | 79.27% | 97.95% | | r = 0.500 | 58.08% | 76.44% | 97.61% | Table 9 The percent I_f for (P , θ , 0 , θ , P) laminate with using SSSS, HPT, a/h = 20, a = b = 20, $E_1/E_2 = 11.389$ for some values of r and t | | t = 0.005 | t = 0.01 | t = 0.1 | |-----------|-----------|----------|---------| | r = 0.125 | 69.42% | 84.04% | 98.40% | | r = 0.25 | 72.47% | 85.84% | 98.58% | | r = 0.375 | 71.47% | 85.27% | 98.52% | | r = 0.500 | 67.91% | 83.12% | 98.31% | Figs 6-8, Figs 9-11 and Figs. 12-14 give the same results for CSSS, CCSS and CFSS boundary conditions respectively. Fig. 3 Values of *J* against *t* for (P, θ , 0, θ , P) plate with *SSSS* using some values of *r* and θ , a/b = 1, a/b = 20 Fig. 4 Values of *J* against a/h for different values of *r* using SSSS, a/b = 1 (P, θ , 0, θ , P) Fig. 5 Values of J against a/b for different values of r using SSSS, a/h = 10 Fig. 6 Values of J against t for (P, θ , 0, θ , P) plate with CSSS using some values of r and θ , a/b = 1, a/h = 20 Fig. 7 Values of J against a/h for different values of r using CSSS, a/b = 1 Fig. 8 Values of J against a/b for different values of r using CSSS, a/h = 10 Fig. 9 Values of J against t for (P, θ , 0, θ , P) plate with CCSS using some values of r and θ , a/b = 1, a/h = 20 Fig. 10 Values of J against a/h for different values of r using CCSS, a/b = 1 Fig. 11 Values of J against a/b for different values of r using CCSS, a/h = 10 Fig. 12 Values of *J* against *t* for (P, θ , 0, θ , P) plate with *CFSS* using some values of *r* and θ , a/b = 1, a/h = 20 Fig. 13 Values of J against a/h for different values of r using CFSS, a/b = 1 Fig. 14 Values of J against a/b for different values of r using CFSS, a/h = 10 #### 6. Conclusions A structural and control optimization technique for minimizing the dynamic response of composite piezoelectric laminate is presented. A higher-order plate theory is used to formulate the control objective for various cases of boundary conditions. Optimal levels of ply thickness, fiber orientation angle and closed-loop control voltage function are determined for various cases of boundary conditions. The discrepancy between the CPT, FPT and HPT results is investigated by numerical examples. It is found that the optimal design procedure reduces significantly the level of the energy, but the optimal design over r ($r^{opt} = 0.5$) is the most efficient. In addition, the simultaneous design and control optimization is very active in reducing and damping the energy in least possible period of time. For each case of boundary conditions, a/h and a/b can play a significant role to enhance the design process so, the laminate may be tailored using a/h and a/b to improve its performance. There is a suitable optimal design for every laminate to improve its performance. The present optimal control approach is believed to be more efficient. ## **Acknowledgments** The author thanks the scientific research center of Najran university, Prof. M.E. Fares and Dr. M.A. Hafiz for their powerful aid during preparing this article. ## References - Behjat, B. and Khoshravan, M.R. (2012), "Nonlinear analysis of functionally graded laminates considering piezoelectric effect", *J. Mech. Sci. Technol.*, **26**(8), 2581-2588. - Fares, M.E., Youssif, Y.G. and Alamir, A.E. (2002), "Optimal design and control of composite laminated plates with various boundary conditions using various plate theories", *Compos. Struct.*, **56**(1), 1-12. - Foda, M.A. and Alsaif, K.A. (2012), "Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches", *Smart Struct. Syst.*, **10**(2), 111-130. - Frecker M.I. (2002), "A review of current research activities in optimization of smart structures and actuators", *Smart Struct. Mater.*, **4693**, 112-123. - Gabralyan, M.S. (1975), "About stabilization of mechanical systems under continuous forces", *YGU Yervan*, **2**, 47-56. - Gupta, V., Sharma, M. and Thakur, N. (2011), "Mathematical modeling of actively controlled piezo smart structures: a review", *Smart Struct. Syst.*, **8**(3), 275-302. - Kapuria, S., Kumari, P. and Nath, J.K. (2010), "Efficient modeling of smart piezoelectric composite laminates: a review", *Acta. Mech.*, **214**, 31-48. - Kapuria, S. and Yaqoob, M. (2013), "Active vibration control of smart plates using directional actuation and sensing capability of piezoelectric composites", *Acta. Mech.*, **224**(6), 1185-1199. - Khdeir, A.A. and Aldraihem, O.J. (2013), "Analytical investigation of laminated arches with extension and shear piezoelectric actuators", *Eur. J. Mech. A Solids*, **37**, 185-192. - Molter, A., da Silveira, O.A.A., Fonseca, J.S.O. and Bottega, V. (2010), "Simultaneous piezoelectric actuator and sensor placement optimization and control design of manipulators with flexible links using SDRE method", *Math. Probl. Eng.*, **2010**, 1-23. - Nanda, N. and Nath, Y. (2012), "Active control of delaminated composite shells with piezoelectric sensor/actuator patches", *Struct. Eng. Mech.*, **42**(2), 211-228. - Narwal, K. and Chhabra, D. (2012), "Analysis of simple supported plate for active vibration control with - piezoelectric sensors and actuators", J. Mech. Civil. Eng., 1(1), 26-39. - Padula, S.L. and Kincaid, R.K. (1999), *Optimization strategies for sensor and actuator placement*, *NASA/TM-1999-209126*, *NASA*, Langley Research Center. - Qiu, Z.C., Zhang, X.M., Wu, H.X. and Zhang, HH. (2007), "Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate", *J. Sound Vib.*, **301**, 521-543. - Reece, P.L. (2007), Smart Materials And Structures: new research, Nova Science Publishers, New York, USA - Sadek, I., Kucuk, I., Zeini, E. and Adali, S. (2009), "Optimal boundary control of dynamics responses of piezo actuating micro-beams", *Appl. Math. Model.*, **33**, 3343-3353. - Wang, J., Ding, G. and Qin, Y. (2007), *Optimal Shape Control of Multilayered Piezoelectric Smart Plate Structure*, Springer, Berlin, Germany. - Wang, J.Z., Wang,
X.M. and Zhou, Y.H. (2012), "A wavelet approach for active-passive vibration control of laminated plates", *Acta Mech Sinica*, **28**(2), 520-531. - Xu, B., Ou, J.P. and Jiang, J.S. (2013), "Integrated optimization of structural topology and control for piezoelectric smart plate based on genetic algorithm", *Finite Elem. Anal. Des.*, **64**, 1-12. - Zorić, N.D., Simonović, A.M., Mitrović, Z.S. and Stupar, S.N. (2013), "Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation", *J. Intel. Mat. Syst. Str.*, **24** (4), 499-526. # Appendix A $$SS: X(x) = \sin \mu_m x, \qquad \mu_m = m\pi/a.$$ $$CC: X(x) = \sin \mu_m x - \sinh \mu_m x - \eta_m (\cos \mu_m x - \cosh \mu_m x),$$ $$\eta_m = (\sin \mu_m a - \sinh \mu_m a) (\cos \mu_m a - \cosh \mu_m a)^{-1}, \quad \mu_m = (m+0.5) \pi/a$$ $$CS: X(x) = \sin \mu_m x - \sinh \mu_m x - \eta_m (\cos \mu_m x - \cosh \mu_m x),$$ $$\eta_m = (\sin \mu_m a + \sinh \mu_m a) (\cos \mu_m a - \cosh \mu_m a)^{-1}, \quad \mu_m = (m+0.25) \pi/a,$$ $$CF: X(x) = \sin \mu_m x - \sinh \mu_m x - \eta_m (\cos \mu_m x - \cosh \mu_m x),$$ $$\eta_m = (\sin \mu_m a + \sinh \mu_m a) (\cos \mu_m a + \cosh \mu_m a)^{-1}, \quad \mu_1 = 1.875/a,$$ $$\mu_2 = 4.694/a, \quad \mu_3 = 7.855/a, \quad \mu_4 = 10.996/a,$$ and $$\mu_m = (m-0.25) \pi/a \quad \text{for} \quad m \geq 5$$ $$\text{The coefficients} \quad U_i, \quad V_i, \quad W_i, \quad \Phi_i, \quad \Psi_i \quad S_i^p \text{ and } \overline{W}_i \quad (i=1,2,\dots,5) \quad \text{for symmetric plate are given as:}$$ $$U_1 = A_{b_0} e_b + A_1 e_b, \quad V_1 = (A_{b_0} + A_{12}) e_b, \quad V_1 = (A_{b_0} + A_{12}) e_b,$$ $$\overline{V}_1 = (S_{12} + 2S_{60}) e_{10} + S_{11} e_{11} + S_{21} e_b, \quad \Phi_1 = (\overline{S}_{12} + \overline{S}_{60}) e_{10} + \overline{S}_{20} e_b + \overline{S}_{10} e_b,$$ $$\overline{V}_1 = -\overline{I}_2 e_b, \quad V_2 = A_{22} e_2 + A_{60} e_4, \quad A_{12} e_b, \quad V_2 = A_{22} e_2 + A_{60} e_4,$$ $$\overline{W}_2 = -\overline{I}_2 e_b, \quad V_2 = A_{22} e_2 + A_{60} e_4, \quad A_{10} e_{11} - 3S_{10} e_{14} - S_{20} e_{17},$$ $$\overline{W}_2 = -\overline{I}_2 e_b, \quad V_3 = -(S_{12} + 2S_{60}) e_1 - S_{10} e_{14} - S_{10} e_{14}, \quad A_{20} e_{17}, \quad A_{10} A_$$ $$\begin{split} W_5 &= \overline{\eta}_{22} e_8 + (\overline{\eta}_{12} + 2\overline{\eta}_{66}) e_9 - \overline{\zeta}_{44} e_{12} \\ \psi_5 &= (\mathring{\eta}_{12}^* + \mathring{\eta}_{66}^*) e_9 \quad , \qquad \phi_5 = \mathring{\eta}_{22}^* e_8 + \mathring{\eta}_{66}^* e_9 - \zeta_{44}^* e_{12} \quad , \qquad \overline{S}_5^P = -(s_{16}^P + s_{26}^P) e_9 - (s_{12}^P + s_{22}^P) e_{10} \quad , \\ \overline{W}_5 &= -(\alpha \hat{I}_3 + \gamma \hat{I}_5) e_{12} \\ &(e_1, e_2, e_3, e_4, e_5, e_6) = \int_0^a \int_0^b (XY_{,yyy}, X_{,x}Y_{,yy}, X_{,xx}Y_{,y}, X_{,xxx}Y_{,xy}, X_{,xx}Y_{,xy}, X_{,xx}Y_{,xy}, X_{,xx}Y_{,xy}, X_{,xx}Y_{,yy}, X_{,xx}Y_{,yy}, X_{,xxx}Y_{,xy}, X_{,xx}Y_{,yy}, X_{,xxx}Y_{,xy}, X_{,xx}Y_{,yy}, X_{,xxx}Y_{,yy}, X_{,xxx}Y_{,xy}, X_{,xxx}Y_{,x$$ ## Appendix B $$\Delta_{1mn} = \frac{\left| \overline{W_{1mn}} \quad V_{1mn} \quad W_{1mn} \quad \Psi_{1mn} \quad \Phi_{1mn} \right|}{\overline{W_{2mn}} \quad V_{2mn} \quad W_{2mn} \quad \Psi_{2mn} \quad \Phi_{2mn}} \\ \overline{W_{3mn}} \quad V_{3mn} \quad W_{3mn} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ \overline{W_{4mn}} \quad V_{4mn} \quad W_{4mn} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ \overline{W_{5mn}} \quad V_{5mn} \quad W_{5mn} \quad \Psi_{5mn} \quad \Phi_{5mn} \right|} \\ \Delta_{1p_{mn}} = \frac{d_{31}}{h_p} \left| \begin{array}{c} S_{1p} \quad V_{1mn} \quad W_{1mn} \quad \Psi_{1mn} \quad \Phi_{1mn} \\ S_{2p} \quad V_{2mn} \quad W_{2mn} \quad \Psi_{2mn} \quad \Phi_{2mn} \\ S_{3p} \quad V_{3mn} \quad W_{3mn} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ S_{4p} \quad V_{4mn} \quad W_{4mn} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ S_{5p} \quad V_{5mn} \quad W_{5mn} \quad \Psi_{5mn} \quad \Phi_{5mn} \\ \end{array} \right| \\ \Delta_{2mn} = \frac{d_{31}}{h_p} \left| \begin{array}{c} U_{1mn} \quad \overline{W_{1mn}} \quad W_{1mn} \quad \Psi_{1mn} \quad \Phi_{1mn} \\ W_{2mn} \quad \overline{W_{2mn}} \quad W_{2mn} \quad \Psi_{2mn} \quad \Phi_{2mn} \\ W_{2mn} \quad \overline{W_{2mn}} \quad W_{3mn} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ W_{4mn} \quad W_{4mn} \quad W_{4mn} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{5mn} \quad W_{5mn} \quad W_{5mn} \quad \Psi_{5mn} \quad \Phi_{5mn} \\ \end{array} \right| \\ \Delta_{2p_{mn}} = \frac{d_{31}}{h_p} \left| \begin{array}{c} U_{1mn} \quad S_{1p} \quad W_{1mn} \quad \Psi_{1mn} \quad \Phi_{1mn} \\ W_{2mn} \quad S_{2p} \quad W_{2mn} \quad \Psi_{2mn} \quad \Phi_{2mn} \\ W_{2mn} \quad S_{3p} \quad W_{3mn} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ W_{4mn} \quad S_{4p} \quad W_{4mn} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{5mn} \quad V_{5mn} \quad \overline{W_{5mn}} \quad \Psi_{5mn} \quad \Phi_{5mn} \\ \end{array} \right| \\ \Delta_{3mn} = \frac{d_{31}}{h_p} \left| \begin{array}{c} U_{1mn} \quad V_{1mn} \quad \overline{W_{1mn}} \quad \Psi_{1mn} \quad \Phi_{1mn} \\ W_{2mn} \quad V_{2mn} \quad \overline{W_{2mn}} \quad \Psi_{2mn} \quad \Phi_{2mn} \\ W_{2mn} \quad V_{2mn} \quad \overline{W_{2mn}} \quad \Psi_{2mn} \quad \Phi_{2mn} \\ W_{2mn} \quad V_{2mn} \quad \overline{W_{2mn}} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ W_{4mn} \quad V_{4mn} \quad \overline{W_{4mn}} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{5mn} \quad V_{5mn} \quad \overline{W_{5mn}} \quad \Psi_{5mn} \quad \Phi_{5mn} \\ \end{array} \right| \\ \Delta_{3p_{mn}} = \frac{d_{31}}{h_p} \left| \begin{array}{c} U_{1mn} \quad V_{1mn} \quad \overline{W_{1mn}} \quad \Psi_{1mn} \quad \Phi_{1mn} \\ W_{2mn} \quad V_{2mn} \quad \overline{W_{2mn}} \quad \Psi_{2mn} \quad \Phi_{2mn} \\ W_{2mn} \quad V_{2mn} \quad \overline{W_{2mn}} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ W_{3mn} \quad V_{3mn} \quad \overline{W_{3mn}} \quad \Psi_{3mn} \quad \Phi_{3mn} \\ W_{4mn} \quad V_{4mn} \quad \overline{W_{4mn}} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{4mn} \quad V_{4mn} \quad V_{4mn} \quad \overline{W_{4mn}} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{4mn} \quad V_{4mn} \quad V_{4mn} \quad \overline{W_{4mn}} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{4mn} \quad W_{4mn} \quad W_{4mn} \quad \Psi_{4mn} \quad \Phi_{4mn} \\ W_{4mn} \quad W_{4mn} \quad W_{4mn} \quad \Psi_{4mn} \quad$$ $$\Delta_{4mn} = \begin{vmatrix} U_{1mn} & V_{1mn} & W_{1mn} & W_{1mn} & W_{1mn} & W_{2mn} W_$$ $$\begin{aligned} k_{33} &= \zeta_{55}e_{6} + \zeta_{44}e_{12} + 2\eta_{12}e_{14} + 4\eta_{66}e_{18} + \eta_{22}e_{19} + \eta_{11}e_{20} \;, \\ k_{34} &= \zeta_{55}e_{6} + \overline{\eta_{6}}e_{18} + \overline{\eta_{6}}e_{18} + 2\overline{\eta_{6}}e_{20} \;, \\ k_{44} &= \zeta_{55}e_{6} + \eta_{66}e_{18} + \eta_{1}e_{20} \;, \\ k_{45} &= 2\eta_{1}^{*}e_{14} + 2\eta_{66}e_{18} \;, \\ k_{65} &= -(A_{1}^{p} + A_{2}^{p})e_{18} \;, \\ \overline{k}_{62} &= -(A_{2}^{p} + A_{2}^{p})e_{18} \;, \\ \overline{k}_{63} &= -(s_{11}^{p} + s_{12}^{p})e_{13} - (s_{22}^{p} + s_{12}^{p})e_{16} \;, \\ \overline{k}_{64} &= -(s_{11}^{p} + s_{12}^{p})e_{13} \;, \\ \overline{k}_{65} &= -(s_{22}^{p} + s_{12}^{p})e_{16} \;, \\ k_{6i} &= \frac{d_{31}}{h_{p}} \bar{k}_{6i} \;, i = 1, 2, \dots, 5 \end{aligned}$$ $$k_{1} &= (k_{22} \; L_{2} \; + \; k_{24} \; L_{4} + \; k_{25} \; L_{5} \; + \; k_{12} \; L_{1} + \; k_{23} \;) \; L_{2} + \; (k_{44} \; L_{4} \; + \; k_{14} \; L_{1} \; + \; k_{13} \; + \; k_{45} \; L_{5} \;) \; L_{4} \; + \; (k_{11} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{13} \;) \; L_{1} \; + \; k_{33} \; + \; (k_{55} \; L_{5} \; + \; k_{12} \; L_{1} + \; k_{23} \;) \; L_{2} + \; (k_{44} \; L_{4} \; + \; k_{14} \; L_{1} \; + \; k_{13} \;) \; L_{2} + \; (k_{44} \; L_{4} \; + \; k_{14} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{13} \;) \; L_{1} \; + \; k_{33} \; + \; (k_{15} \; L_{5} \; + \; k_{12} \; L_{1} \; + \; k_{23} \;) \; L_{2} \; + \; (k_{44} \; L_{4} \; + \; k_{14} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{13} \;) \; L_{1} \; + \; k_{33} \; + \; (k_{15} \; L_{5} \; + \; k_{12} \; L_{1} \; + \; k_{23} \;) \; L_{2} \; + \; (k_{44} \; L_{4} \; + \; k_{14} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{13} \;) \; L_{1} \; + \; k_{13} \; + \; k_{14} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{12} \; L_{1} \; + \; k_{14} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{12} \; L_{1} \; + \; k_{14} \; L_{1} \; + \; k_{15} \; L_{5} \; + \; k_{12} \; L_{1} \; + \; k_{14} \; L_{1} \; + \; k_{14} \; L_{2} k_{15} k_$$ $$a_{7} = a_{1} , a_{8} = -8k_{3}k_{6}L_{3p}^{4} , a_{9} = -4k_{3}L_{3p}^{2}(k_{3}^{2} - k_{3}k_{5}L_{3p} + k_{2}k_{6}L_{3p}) ,$$ $$a_{10} = 4k_{3}^{2}k_{6}L_{3p}^{2} , a_{11} = 4k_{3}^{2}(2k_{3}^{2} - k_{3}k_{5}L_{3p} + k_{2}k_{6}L_{3p}) , a_{12} = k_{3}^{2}(4k_{3}^{2}k_{4} - 2k_{2}k_{3}k_{5} + k_{2}^{2}k_{6}) ,$$ $a_6 = k_2^3 (4k_1k_2 - k_2^2)$ $a_4 = -4k_3^2 L_{3p}^2$, $a_5 = -4k_3^3 (k_2 L_{3p} + 2k_3 \omega^2)$, $$a_{13} = 4k_3^4$$, $a_{14} = 2k_6L_{3p}^4(k_2L_{3p} + 2k_3\omega^2)$, $a_{15} = a_1$, $a_{16} = 0.5a_8$, $$a_{17} = -2k_3L_{3p}^2(2k_3^2 - k_3k_5L_{3p} + 2k_3k_6\omega^2 + 2k_2k_6L_{3p}), \ a_{18} = -k_3(k_2L_{3p} + 2k_3\omega^2)(2k_3^2 - k_3k_5L_{3p} + k_2k_6L_{3p}).$$