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Abstract. The present paper is concerned with the optimal control and/or design of symmetric and
antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the
laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem,
Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response
of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty
functional including the control force. Simultaneously with the active control, thicknesses and the orientation
angles of layers are taken as design variables to achieve optimum design. The formulation is based on
various plate theories for various boundary conditions. Explicit solutions for the control function and
controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the
effectiveness of the proposed control and design mechanism, and to investigate the effects of various
laminate parameters on the control and design process.

Keywords: piezoelectric; actuators; minimizing the dynamic response; optimal design, composite
laminated plates; plate theories

1. Introduction

Active control of vibrations in flexible components of the smart structures is a developing area
of research. It has numerous applications, especially, in the vibration control of structures (such as
beams, plates and shells), in aerospace engineering, flexible robot manipulators, antennas, active
noise control, shape control and in earthquake resistant structures. In aircraft structures, the wings
and fuselage consist of a skin with an array of stiffening ribs. Such structures are subjected to
dynamic loads, and their control is of paramount importance for safe and smooth functioning of
the system. Piezoelectric materials are able to produce an electrical response when they are
mechanically stressed (sensors). Also, a high precision motion may be obtained when they are
subjected to an electrical field (actuators). The literature reviews (Frecker 2002, Kapuria et al.
2010, Vivek et al. 2011) show that many theoretical, experimental and computational studies have
been carried out on the piezoelectric smart structures, particularly, on piezoelectric materials used
as distributed sensors or active dampers of vibrations, i.e., for sensing and actuation. Presently one
of the most widely used piezomaterials in active control is piezoceramics due to their large
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bandwidth, their mechanical simplicity and their mechanical power to produce controlling forces.
The books by Reece (2007) and Jianguo et al. (2007), provide an overview of these materials and
the related control techniques. Modeling of the direct and the reverse effects of a distributed
piezoelectric layer has been studied in (Qiu et al. 2007), Khdeir and Aldraihem (2013), Xu et al.
(2013), Foda and Alsaif (2012)).

Alexandre Molter et al. (2010) and Nanda and Nath (2012) discussed issues related to
simultaneous sensing and actuation in structural control. Ji-Zeng Wang et al. (2012) proposed a
hybrid active passive control strategy for suppressing vibrations of laminated rectangular plates
bonded with distributed piezoelectric sensors and actuators. Kapuria and Yaqoob (2013) employed
the linear quadratic Gaussian (LQG) control strategy and the optimal direction of fibers to achieve
the minimum control voltage for skew plates. In the paper of Sadek et al. (2009), open-loop
control results were obtained using a maximum principle for the optimal boundary of
one-dimensional structures. The piezo-control problem is formulated as an optimal boundary-value
problem using a control function including the applied voltage to damp out the vibrations of the
micro-beam. The objective function is specified as a weighted functional of the dynamic responses
of the micro-beam which is to be minimized at a specific terminal time using continuous
piezoelectric actuators.

Kapil Narwal and Deepak Chhabra (2012) applied a linear quadratic regulator (LQR) controller
for attenuate the global structural vibration of simple supported plate with piezoelectric sensors
and actuators. Nemanja et al. (2013) studied optimal vibration control of a thin-walled composite
beam by using the fuzzy optimization strategy. Padula and Kincaid (1999) and Frecker (2002)
presented a survey on optimization strategies for smart structures.

In some structures, external static and dynamic excitations can cause large deformation or
geometrical non-linearity due to small material damping or the lack of other forms of damping. In
this case non-linear treatment is needed in order to accurately design and effectively control of
structural systems. Behjat and Khoshravan (2012) used a nonlinear analysis to study the
piezoelectric effect on functionally graded laminates.

The current work deals with optimal design and control of the dynamic response of an
anisotropic rectangular piezoelectric laminate for various cases of boundary conditions using
higher-order plate theory. The objective of the present control problem is to minimize the dynamic
response (vibrational total energy) with minimum expenditure of electric force. Furthermore,
thickness of piezoelectric layers and orientation angle of the material fibers are taken as design
variables. The energy of the structure is taken as a measure for the dynamic response of the
laminate. A quadratic functional of the total energy is specified as the control performance index.
The expenditure control energy is limited by attaching a functional of the electric force to the
objective functional as a penalty term. The necessary and sufficient conditions for optimal
stabilization in the Liapunov—Bellman sense (Gabralyan 1975) are used to determine the optimal
control function and deflections. Numerical examples are given to assess the present
design—control approach.

2. Geometry of the plate and basic equations
Consider a smart rectangular laminate (as shown in Fig. 1) of length a, width b, total thickness

h and composed of N anisotropic homogeneous layers. The material of each composite layer is
assumed to possess one plane of elastic symmetry parallel to the mid-plane of the laminate. The
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coordinate system is taken such that the mid-plane coincides with Xy plane and normal to z- axis.

The top and bottom layers of the laminate are piezoelectric layers, and they completely covered
with electrodes. The piezoelectric layer performs only the actuation job, and can be excited in
extension mode. The laminate is not loaded by any external loads and assumed to be perfectly
bonded.

The present study accounts for a unified displacement field as

(.2 =uly) 2 (@ e oy ey) o2 Shew () (12
uz(x,y,z)=v<x,y)+z[a%ww,y)jm{%m(x,y)j (1b)
U3(X, y,Z)ZW(X, y) (IC)

where (U,,U,,U;) are the displacements components along X, y and z directions, respectively,

(u,V,W) are the displacements of a point on the mid-plane, and ¢ and Y are the rotations
about the x and y axes respectively.
The above displacement field (1) contains the displacement field of the classical plate theory

(CPT), the first-order shear deformation plate theory (FPT) and the higher-order shear deformation
plate theory (HPT) which can be obtained as

1. Classical plate theory (CPT): a=-1, B=0, .
2. First - order plate theory (FPT): p=1, a=0, y=0,
3. Higher-order plate theory (HPT): a=0, B=1, y=-

, v=-4/(3h%
g=e" 12601760 g =60 1220), (i=1,2,6 j=4,5)
ou ov oW
& =0, 51(0)_&, 8§0)=E, 8£0)=(1+0‘)a+ﬁ¢
2
0 _ (14 )N (0)_0v, ou 0_q IV
a=(lraf by, o Tox oy’ R +ﬂ
2
énzwgﬂ+ﬂgﬂ’ %U:mzyw4¢3§ﬂ+gﬂ )
oy axay Ty
() (2)
o) =10 =3 Mg, o) = 105
3 ox oy 3 oy
2
Q) 5[ W, j (0 _,[,0W 04 Oy
&5 7(6)( v, O Ervvas-vaary

where & =¢&,, & =&, & =Ep, &E=&E5 & =&
Piezoelectricity couples the mechanical stress (o) and strain fields (&) with the electric field

(E) and electric strains. The linear piezoelectric constitutive equations for a PZT may be given in
the form
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Fig. 1 Geometry of the rectangular laminate

O-I:CIJ(gj_g]p)’ |,j:1,2,6, O-IZCIJSJ’ |,J:4,5 (3)

where o; (i=12,..,6) denote the stress components o,=0,, , O,=0, , O,=0,,

O5 =03, 04=0y,, C; are the material stiffnesses which depend on material properties and

orientation angle of the material, & Jp are the piezoelectric strains defined as

p

— P P_
g =¢, =d;E; & =0

where d,, is the piezoelectric extension coefficient, E; is the electric field applied across the

thickness which may be takenas E, =—, V is the electric voltage applied across the surfaces

v
P
of the piezoelectric layers, and h, is the piezoelectric layer thickness.
The governing equations of the laminate are determined using the dynamic version of the
principle of virtual displacements in the form (Fares et al. 2002)
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Where 2z, and 1z are the bottom and top z-coordinates of the kth layer.
The stress resultants N; , M; ,...etc., can be expanded as
(N,,M,,P) Zj 1,2,2°) o, dz, (i=1,2,6)
k=17, ,
N - Z
@.R)=D[ (L.2%) o, dz (i=4,5) (5)
k=1 7,
and related to the strain components by the following relations
N; = Ajel) +Byel) + E el -NP, M, =Byl + Dyl + Fiel - mpP
P =E;el + Fel) +H el PP, (i,i=1,2,6) (6)
Q =Ael + Dl Ri =Dyl + Fjel?, (i,j=4,5)
Moreover, the piezoelectric stress resultants are defined by
N Ik
(NP.MP.PP)= [ cpe *(,2,2°) dz, (i=1,2,6), j=12 )
k=1 7,

where the constants C;’ denotes stiffnesses of the piezoelectric layers. The homogeneous laminate
stiffnesses ~ Ajj ,Bjj,...etc., are given by

(A;,B;Dy Ey . Fy o Hy ) Zj c,z, 2%,2%,2*,2%) dz, (i,j=1,2,6)

I 5 & (83)
klzkl

(Au’ IJ’ u) iIZk Ci(jk)(l,zz,z“)dz,

(i,j=4,5) (8 b)
k=1"¢,,

In the present study, various types of boundary conditions will consider, these boundary
conditions on the edges perpendicular to X-axis may be described as

for simply supported (S): u=w=¢=N,=M, =0,
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for clamped (C): Uu= v= w=y 0, ©)
for free (F): N,=M,=N;=M,=Q, =0.

3. The optimal control problem

The objective of the present control problem is to minimize the dynamic response of the
laminate in a specified time 0 <t <7< oo . The dynamic response of the laminate is measured by a
cost functional including the energy of the laminate which is a function of displacements, their

spatial derivatives and the velocity. The control voltage function Vv (X,Yy,t) is introduced into the

formulation by taking a performance index which compresses a weighted sum of the energy (cost
functional) and a penalty functional involving the control energy. In addition to the active control

function Vv (X, Yy,t), we compute the ratio of piezoelectric layer thickness to the total thickness T,
and the orientation angles 6, (the optimization design variables) which make the dynamic
response of the laminate extremly minimum. Then, the mathematical formulation of the
multiobjective design-control problem can be reduced to determine the optimization variables, v°,

r* and 6™ that minimize the following control objective

J=;1J1+;232+;3‘]3 (10)
1 © a b %
JIZ_I j J.J. (&0, + 6,0, +&,0, +£505 + £,0,) dzdy dxdt, (11 a)
2 0 0o o _h
2
h
e %2 (2 2o
Jz=—j _[ II p (02 +12 +02) dzdy dxdt, (11b)
2 0 0o o _h
2
(1 a_z( ) (11 ¢)
Jy=— v2(x,y,t)dxdydt, c
=l
where  4,> 0, z;_zi=1, i=1,2,3 are weighting factors summing the functionals Ji, J,
i

and J; which represent the strain energy , the kinetic energy of the laminate and the electricity
energy respectively, as the weighting factors are varied, the emphasis of the optimization problem
is shifted among various objectives resulting in compromise solutions, the single objective designs
can be obtained as special cases by setting ,L_t, =1, i=1, 2, 3. The constant € is the
permittivity of the piezoelectric layers. The functional J; is a penalty term involving the control
function v belongs to L%, where L? denotes the set of all bounded square integrable functions on
the domain of solution {0 <x <a, 0<y<b, O0<t<r<w}.
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4. Solution procedure

The solution of the system of partial differential Eq. (4) with the boundary conditions (9) may
be expanded in the form of double series in terms of the free vibration eigenfunctions of the
laminate. Then, for antisymmetric laminated plate the displacements functions u, v, W, w, ¢ and

v may be represented as

m,n o e
WZZ \Pmn(t)XxYa ¢=Z (Dmn(t)XYy, \7:2 \/_mn (t)XY (12)
m,n o o
=Y WX, =Y XY, =Y 2 OX
m,n o =

where  Upn, Vin , Win , Yo 5 @ Slp, gzp, €6p and V_, areunknown functions of time,

mand n are the mode numbers. For symmetric laminated plate the displacements functions (W,
v, ¢)may be taken as (12) but

u=; U, ()XY, v=>" Vo (O)XY,

m,n

The functions X(X) and Y(y) are continuous orthonormed functions which satisfy at least the
geometric boundary conditions given in (9), and represent approximate shapes of the deflected
surface of the vibrating laminate. These shape functions, for different cases of boundary conditions,
are given in Appendix A.

Using Egs. (2), (6) and (7), we can get the governing Eq. (4) in terms of the displacements only.
For these equations, the in-plane inertia terms may be neglected. Substituting expressions (12) into
the resulting equations and multiplying each equation by the corresponding eigenfunction, then
integrating over the domain of solution, we obtain, after some mathematical manipulations, the
following time equations

U, VW @ [ Uy, VV W =S
U, V; W, ¥, @, ||V Vl m =52 m
U, Vi W, ¥, @, ||W, =W, W - SP (13)
u, v, w, ¥, o, ||Y¥Y, VV W - S0

|Us Vs Wy ¥ O || D, | _Vv W Sspmn_

the coefficients U;, V,, W,, ®, , ¥, SPand W, (i=1,2,..,5) are given in Appendix A.
Solving the system (13), one gets an equation in the form

— p
an, wz — Amn , L _ASmn (14)

. 5
Wi + @ Wi = L LY 3Pm A

3Pmn

3mn 3mn

where, A_ A

m>As.. and  Af - are given in Appendix B.
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Following previous analogous steps, we can get the objective functional (10) in the final form

J :ZTJ_mndt

m,n o
Where

—_— 1 . . . .
‘]mn = E(kl Wn?n + k2 Wmn an + k3 QT%]H + k4 Wrr%n + k5 Wmn an + k6 Qr%m )’ (15)
where, the coefficients K;, (i = 1,2,..6) are given in Appendix B. Since the system of Eq. (14) is

separable, hence the functional (15) depends only on the variables found in (m,n)th equation of the
system, which reduce the problem to a problem of analytical design of controllers (Gabralyan
1975) for every m,n =1,2,...0.

Now the optimal control-design problem is to find firstly, the optimal control function Vg, (t)
that satisfies the conditions

I (V) < 3 (V) forall Ve, (el*([0, ]),
that is minJ :minZ:Jmn :Zimin J,
Ymn m.n Vmn el?
and, secondly, to find the optimum values of €, r, from the following minimization condition

IV, 1P, 8P =min J(VS,, I, 6,),0<r<05 , 0<O0<x/2.
r.o
kK

For this problem, Liapunov-Bellman theory (Gabralyan (1975)) is used to determine the control
function V (X, Y,t). This theory gives the necessary and sufficient conditions for minimizing the
functional (15) in the form

min OLm, W, + 0 Wy +Jmn | =0, (16)
V| Wi oW,
provided that the Liapunov function
Lmn = AmnWrT%n + 2anWmnWmn + Cman%n > (17)

is positive definite,i.e =~ Ampn>0, Cpn>0 and ApChn> B2
Using Eq. (17), we can obtain the optimal control function in the form

_ -1 C |_3 I
Vnﬁn :_(2an L3pmrI +k2)Wmn _Mwmn > (18)
2k, k

3

then, substituting Eq. (18) into (16) and equating the coefficients of W2, , ann and WmnV\-/mn by
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zeroes, the following system of equations are obtained
2 2 2
Con(8,Byy +2,B, +35) +2,By, +a5B, +a, =0,
2 2 2
Con(a;Chy+a3 By + @9)+2a,0By, +2,,By + 2, =0, (19)
2 2 2
a3 An +Crn(814Chn +15C50 By +216Bin +217Bpn +2,5) =0,

where a; ,(i=1,2,...,18 ) are given in Appendix B. Under the condition that the Liapunov function
is a positive definite, the solution of the system of nonlinear algebraic Eq. (19) may be obtained,
then, using this solution into Eq. (14), one gets

(o

L
\/ y 2 _ _7mn =3py, 2 2 3 P
Wmn + amnWmn + ﬂmnWmn - 0, Oy = k > ﬂmn = O +T(2 an L3 Prn + kz ):
3 3

the solution of this equation when 24, > ¢, is given by

Qg t

W, =e 2 [5mn cos(a);nt) + Ton sin(a);nt)],

* / 1
O = IBr?m _Zarzm

where O,,,7,, are unknown coefficients which may be obtained from the initial conditions by

expanding it in a series. If the initial conditions have the form

w(x,y.0)=A(x.y),  w(xy,0)=0,

then, the controlled deflection solution takes the form

_ t
W, =Ae 2 {cos(a):mt) + ;—mj‘sin(a);nt)} (20)

mn

Insert expressions (20) into (13), (15) and (18), we can get the controlled displacements, the
total energy and the optimal control function. Then, we complete the minimization process for the
dynamic response of the laminate by determining the optimal design of the laminate using the
design variables ry , 6, .

5. Numerical results and discussion

Numerical results of the fundamental modes for optimal control function V°, central
controlled deflection w and total energy J are presented for symmetric (or antisymmetric) laminate
with various cases of the boundary conditions (9). All layers of the composite laminate are
assumed to be of the same orthotropic materials. A shear correction factor for FPT is taken to be
5/6. The plane reduced stress material stiffnesses Cj; are given by:
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E v,,E E
Ch= : > Cph= T Cyp= 2 >
1-v,vy 1=v,vy 1—v,vy,
Cu =Gy, Cs5 =Gy, Cs =Gias VijEjZVjiEia(ia j=1,2)-

where E;j are Young’s moduli; V; are Poisson’s ratios and Gjjare shear moduli. In all calculations,

unless otherwise stated, the following parameters are used:
a=b=20in, h=2in, p=0.00012Ib.—s*in’, &d, =-274(107>*)Farad/Volt,
A=10°L,07%,v, =024, E,=10.8x10° psi., E, =123x10° psi, G,; =3.38x10° psi.

G,, = G,; =5.65x10° psi., =03 |,  1,=04 14,=03

Also, in all calculations, unless otherwise stated, the following parameters are used for
piezoelectric layers

p =0.00023 Th.—s*/in*, C,, =61.08x10° psi., C,, =76.63x10° psi.,

C,, =31.29x10° psi., C,, =23.5x10° psi., C,; =C, =23 x10° psi.
For the optimal design, we consider (P, 8,0, 8 ,P) laminate with outer layers having the same

thickness rh as shown in Fig. 2, where r represents the ratio of the outer layer thickness to the
total laminate thickness. All calculations in tables and figures are carried out for maximum
amplitude of wand v°.

The effectiveness of the control process can be studied by defining an efficiency index which
gives the percent of decrease in the uncontrolled total energy, viz.

J unc _ J c
| ¢ = JT x 100 %.

where J© and J™ denote controlled and uncontrolled energy.

5
ERNNARNRNNY _

Fig. 2 Orientations of the piezoelectric laminate
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Tables 1 and 2 contain results for control function V°, controlled energy J and maximum
deflection max|w| for antisymmetric and symmetric laminates against a/h due to various plate

theories. Notice that, the classical and first order theories under-predict the values of v ¢ while,
they over-predicts the values of max|w| when comparing the results with the counterparts due to
the higher order theory. This is due to that, the description of the deformation process occurring in
the plate makes the structure more flexible.

Table 1 The effect of a/h on V°, J and max|W| for four, six and twelve-layer antisymmetric SSSS
equithickness laminate according to CPT, FPT and HPT,a=b =20, E;/E,=11.389

(P’ 45"45’P) (P5(45s'45)29P) (Pa(45s-45)5’P)
ah Th.

ve J max|W| ve J max|W| ve J max|W|

CPT 144225 0.09123  0.00445 136156  0.12195 0.00500 112558  0.18612 0.00556

5 FPT 127792 0.08876  0.00445 116482  0.11852 0.00499 90219 0.18081 0.00556
HPT 116088 0.08886  0.00445 105626  0.12329 0.00520 87926 0.20108 0.00618

CPT 144566 0.79530  0.04005 136548 1.06297 0.04496 112845 1.62411 0.05005

15 FPT 142444 0.79330  0.04005 133874  1.06032 0.04495 109529  1.62029 0.05004
HPT 140355 0.79370  0.04006 131385 1.06553 0.04516 108199  1.64120 0.05068

CPT 144596  2.20334 0.11126 136581  2.94489 0.12488 112870  4.49989 0.13902

25 FPT 143822 2.20140 0.11126 135602  2.94235 0.12488 111643  4.49632 0.13902

HPT 143036  2.20186 0.11126 134641  2.94768 0.12509 111099  4.51743 0.13965

Table 2 The effect of alh on V°, J and max|W| for five, seven and thirteen-layer symmetric SSSS
equithickness laminate according to CPT, FPT and HPT,a=b =20, E;/E,=11.389

(P,45,0,45,P)

(P,45,-45,0,-45,45,P)

(P45,-45, ...,0, ... 45,45.P) 5

ah Th.
ve J max|W| ve J max|W| ve J max|W|
CPT 138907  0.10501  0.00466 130034  0.13183 0.00504 108677  0.19236 0.00554
5 FPT 120399  0.10207  0.00466 109310  0.12807 0.00504 86309 0.18682 0.00553
HPT 108359  0.10436  0.00476 99998 0.13563 0.00534 84869 0.20888 0.00619
CPT 139330  0.91555 0.04194 130444  1.14962 0.04539 108956  1.67900 0.04983
15 FPT 136859  0.91322  0.04193 127557  1.14674 0.04539 105594  1.67502 0.04982
HPT 134351 0.91583  0.04204 125129  1.15473 0.04569 104419  1.69769 0.05049
CPT 139366 2.53650 0.11649 130480  3.18505 0.12610 108980  4.65210 0.13842
25 FPT 138462  2.53426 0.11649 129419  3.18230 0.12609 107734  4.64838 0.13841
HPT 137503  2.53697 0.11659 128470  3.19043 0.12640 107249  4.67125 0.13907




1188 ALhadi E. ALamir

Tables 3 and 4 contain results for control function V°, controlled energy J and maximum
deflection max|w| for antisymmetric and symmetric laminates against the number of layers N due
to various plate theories, for various boundary conditions, the deviations in results due to various
theories are increasing with decreasing of the number of layers, especially for the control voltage
function V°® Generally, these deviations are not less than 10% in all cases. This confirm that, the

higher order shear deformation theory is needed for describing the deformation more accurately,
especially for thick or moderate thickness laminates.

Table 3 The effect of the number of layers N on ve , J and max|W| for antisymmetric equithickness
laminates (P, (45 ,-45)n5-1 , P) according to CPT, FPT and HPT, with various boundary conditions a
=b=20, E;/E,=11389,a/h=5

CCss Cccc CFSS

Ve J max|W| Ve J max|W| Ve J max|W|

CPT 230794 0.08636 0.00408 405250 0.10030  0.00459 655047 0.58286  0.02617
FPT 195943 0.08829 0.00431 309534 0.09664  0.00459 676202 0.69074  0.03009

4
HPT 176132 0.09111 0.00444 264132 0.09648  0.00458 626262 0.65136  0.02892
CPT 219564 0.11745 0.00466 388509 0.13862  0.00532 657712 0.88131  0.03253
6 FPT 179130 0.12099 0.00496 281016 0.13337  0.00532 671628 1.04277  0.03752

HPT 163857 0.13285 0.00545 248102 0.14435  0.00576 613359 0.97888  0.03621

CPT 184070 0.18478 0.00535 330706 0.22452  0.00629 625190 1.73364  0.04449
12 FPT 139979 0.19252 0.00576 218796 0.21595  0.00628 626907 2.03043  0.05138
HPT 141770 0.22968 0.00687 225108 0.26562  0.00772 581628 1.91208  0.05006

Table 4 The effect of the number of layers N on v, Jand max|W| for (P,(45-45),,,0/,, ), laminates
BN

according to CPT, FPT and HPT, with various boundary conditions a = b =20, E;/E; =11.389,
ah=5

CCSS Cccc CFSS

Ve J max|W| Ve J max|W| Ve J max|W|

CPT 222720 0.09989 0.00429 393238 0.11745  0.00488 656861 0.72584  0.02928
FPT 184311 0.10253 0.00455 289918 0.11305  0.00488 673824 0.86203  0.03380
HPT 165230 0.10853 0.00482 250129 0.11849  0.00512 614781 0.81367  0.03261

CPT 210210 0.12773 0.00473 373402 0.15200  0.00545 653063 1.02259  0.03482
FPT 168114 0.13173 0.00504 263332 0.14620  0.00545 663782 1.21039  0.04026
HPT 155639 0.14649 0.00561 239972 0.16446  0.00613 604213 1.14159  0.03905

CPT 169738 0.20891 0.00544 306173 0.25575  0.00645 605676 2.11849  0.04819
15 FPT 126089 0.21784 0.00586 197008 0.24596  0.00644 603303 2.46992  0.05564
HPT 131519 0.26212 0.00705 212558 0.31102  0.00814 564749 234522 0.05452
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Tables 5 and 6 show the effect of the aspect ratio a/b on the v°®, J and max|w| for
antisymmetric and symmetric laminates due to various plate theories, for some boundary
conditions.

Table 5 The effect of the aspectratioa/b on  V°, J and max|W| for antisymmetric ( P, 45, -45,P)
equithickness laminate according to CPT, FPT and HPT, with CCSS, CCCC, and CFSS boundary
conditions, E; /E,=11.389, a/h =15

CCSS CCcC CFSS
alb Th. B B B
ve J max|W| ve J max|W| ve J max|W|
CPT 231296 0.33528 0.01632 406196 0.38824 0.01834 654227  2.29636  0.10467
1 FPT 220296 0.33843 0.01659 374038 0.38532 0.01834 706132  2.78143  0.12072
HPT 211247 0.34285 0.01679 349874 0.38532 0.01834 681151 2.65024  0.11668
CPT 311237 0.15128 0.01344 471010 0.11954 0.01031 733690  0.51896  0.04749
15 FPT 293194 0.15162 0.01362 411820 0.11912 0.01041 721424  0.53236  0.04873
HPT 278408 0.15318 0.01375 373743 0.11965 0.01045 696890  0.52677  0.04837
CPT 371678 0.07471 0.01013 514167 0.04634 0.00609 798977  0.18233  0.02648
2 FPT 343274 0.07410 0.01022 419400 0.04630 0.00622 759975  0.18151  0.02668
HPT 320945 0.07456 0.01028 368858 0.04666 0.00627 722246  0.18051  0.02658
CPT 557375 0.00470 0.00231 695881 0.00210 0.00098 1070500  0.00757  0.00416
5 FPT 428134 0.00427 0.00231 359437 0.00192 0.00102 843611 0.00689  0.00416

HPT 363474 0.00423 0.00229 283046 0.00187 0.00099 723733 0.00682  0.00412

Table 6 The effect of the aspect ratio a/b on V°, J and max|W|for symmetric ( P, 45, 0, 45, P )
equithickness laminate according to CPT, FPT and HPT, with CCSS, CCCC, and CFSS
boundary conditions, E;/E;=11.389,a/h=15

CCSS Cccc CFSS

alb  Th

v J max|W| Ve J max|W| ve J max|W|

CPT 223350 0.38790 0.01718 394443 0.45471  0.01954 656175 2.85975  0.11712
FPT 210805 0.39217 0.01748 358332 0.45117  0.01954 708859 3.48667  0.13581
HPT 200726 0.40020 0.01783 332065 0.45677  0.01977 679950 331677  0.13125

CPT 301278 0.17557 0.01419 459665 0.14158 0.01110 730316 0.63734  0.05274
FPT 280797 0.17636 0.01441 393783 0.14103  0.01121 714740 0.65373  0.05416
HPT 263958 0.17983 0.01469 354045 0.14516  0.01154 684194 0.64853  0.05395

CPT 361213 0.08735 0.01078 503278 0.05527  0.00661 793067 0.22270  0.02932
2 FPT 329201 0.08684 0.01090 399313 0.05520  0.00675 748142 0.22153  0.02955
HPT 303984 0.08848 0.01111 349868 0.05784  0.00707 702003 0.22164  0.02964
CPT 547246 0.00562 0.00252 683235 0.00252  0.00108 1059100 0.00918  0.00459
5 FPT 407189 0.00512 0.00252 334358 0.00230  0.00111 811016 0.00835  0.00459
HPT 346439 0.00534 0.00264 295967 0.00267  0.00129 693263 0.00864  0.00476
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Table 7 Values of @°" by degrees and J respectively for (P, 6 ,0, &,P) laminate against a/h and a/b
with HPT for various boundary conditions, E;/ E, = 11.389

ab=1 a/h=10
a/h a/b
BC Th.
5 10 20 50 1.25 1.5 1.75 2
r=05 Undefined  Undefined Undefined Undefined Undefined  Undefined Undefined Undefined
- 0.04310 0.17242 0.68908 4.30534 0.09597 0.05763 0.03669 0.02447
SSSS r=0.2 45.1° 45° 45° 45° 53.5° 65.8° 90° 90°
0.10436 0.40900 1.62512 10.13528 0.22921 0.13779 0.08684 0.05710
r=0.1 43.3° 44.5° 44.9° 45° 52.5° 62.2° 75.7° 90°
0.17557 0.65727 2.57964 16.03072 0.37264 0.22500 0.14181 0.09258
=05 Undefined  Undefined Undefined Undefined Undefined Undefined Undefined Undefined
e 0.05501 0.21962 0.87703 5.47817 0.13233 0.08369 0.05512 0.03760
CSSS  r=02 30.4° 32.2° 32.3° 32.3° 46.3° 59° 86.7° 90°
' 0.13488 0.52165 2.06358 12.85162 0.31850 0.20220 0.13253 0.08890
r=01 32.9° 33° 32.5° 32.4° 45.9° 56.8° 69.5° 90°
' 0.23122 0.84072 3.26599 20.22789 0.52299 0.33428 0.21877 0.14657
r=0.5 Undefined  Undefined Undefined Undefined Undefined Undefined Undefined Undefined
e 0.04169 0.16269 0.64505 4.02049 0.10758 0.07277 0.05019 0.03533
cCS  r=02 0° 0° 0° 0° 31.9° 53.6° 90° 90°
s e 0.10809 0.38423 1.46151 8.98095 0.26370 0.17962 0.12274 0.08455
=01 23.1° 0° 0° 0° 35.6° 52.9° 70.2° 90°
e 0.19288 0.62379 2.21192 13.24791 0.43964 0.30176 0.20538 0.14028
=05 Undefined  Undefined Undefined Undefined Undefined Undefined Undefined Undefined
e 0.30728 1.23619 495113 30.95528 0.49915 0.24694 0.13851 0.08468
CFS =02 90° 90° 90° 90° 90° 90° 90° 90°
S e 0.56776  2.23792 8.91462 55.64824 0.95563 0.48792 0.27956 0.17371
r=01 90° 90° 90° 90° 90° 90° 90° 90°
e 0.71659 2.70669 10.66162 66.34105 1.21703 0.64204 0.37717 0.23949

Table 7 include optimum values of fiber orientation angle 6°" and corresponding controlled
energy J for five-layer symmetric laminates (P, 8,0, 0 ,P) for different values of r , a/b and a/h in
some cases of boundary conditions. Note that, for all cases of boundary conditions and r ® = 0.5
the optimization by the angle @is not significant. This is because the whole material of the



Optimal control and design of composite laminated piezoelectric plates 1191

laminate becomes piezoelectric, while this design procedure is needed and active when r =0.2 and
r =0.1 for different values of a/h and a/b in all cases of boundary conditions.

Tables 8-9 give the numerical results of efficiency index I; for four-layer antisymmetric
laminates (P, 8 ,- 8 ,P) and five-layer symmetric laminates (P, 6 ,0, 8 ,P) which show the remarkable
effectiveness of the present control procedure in minimizing the dynamic response of the laminates,
especially after 0.1 sec.

Figs. 3-5 display J- curves against t, a/h and a/b for five-layer symmetric laminates (P, 8 ,0, 6 ,P)
due to HPT theory, with SSSS boundary condition. The behavior of the energy J with time t is
displayed in Fig. 3 for four cases of design and control optimization: the first case is for
uncontrolled laminate, the second is for controlled laminate without optimal design, the third is for
controlled laminate optimally designed only by fiber orientation angle &, and the fourth is for
controlled laminate optimally designed by the thickness ratio r only. These cases generally, show
that the optimal design procedure reduces significantly the level of the energy, but the optimal
design over r is most efficient. In addition, the simultaneous design and control optimization is
very active for reducing and damping the energy in least possible period of time. The effect of a’h
and a/b ratios on the energy J is presented in Figs 4-5. The figures confirm the efficiency of the
present optimal design over r, particularly for thin laminate (a / h >10) which need more
expenditure of energy to control its dynamic response, these figures reveal that the laminate may
be tailored using a/h and a/b to improve its performance, where J is rapidly decreasing with
decreasing in a/h and rapidly decreasing with increasing in a/b. Thus the present optimization
control may be extended to include four or more design variables.

Table 8 The percent Iy for (P, &,-6,P) laminate with using SSSS, HPT,a/h =20, a=b=20, E;/

E,=11.389 for some r and t values

t=0.005 t=0.01 t=0.1
r=20.125 79.18% 89.50% 98.95%
r=0.25 68.97% 83.78% 98.38%
r=0.375 61.99% 79.27% 97.95%
r=0.500 58.08% 76.44% 97.61%

Table 9 The percent I¢ for (P, 6 ,0, &, P) laminate with using SSSS, HPT, a / h =20, a=b = 20,
E,/ E,=11.389 for some values of randt

t=0.005 t=0.01 t=0.1
r=20.125 69.42% 84.04% 98.40%
r=0.25 72.47% 85.84% 98.58%
r=0.375 71.47% 85.27% 98.52%

r=0.500 67.91% 83.12% 98.31%
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Figs 6-8 , Figs 9-11 and Figs. 12-14 give the same results for CSSS, CCSS and CFSS boundary
conditions respectively.

I

3500 - Uncontrolled #=45, r=0.2
i~
2500
2000 4
1500 4
oo 8=0, r=02
f=
500 + r=0.5
(] - . - Ak
0 0.0005 0.001 0.0015 0.002

Fig. 3 Values of J against t for (P, &, 0, @, P) plate with SSSS using some values of r and €, a/b =1,
a/h=20

20 1
15 1

10 A1

[ T T T T
5 15 25 35 45

Fig. 4 Values of J against a/h for different values of r using SSSS, a/b =1 (P, 0.0, 0.P)

0.4 7
0.3 1
0.2 1

0.1 1

0 v . , b
125 15 1.75 2

Fig. 5 Values of J against a/b for different values of r using SSSS , a’/h =10
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Uncontrolled =90, r=0.2

5000 <
4000 4

3000 4

2000 -
goPt =323 ,r = 0.2

1000 <

0 0.0005 0.001 0.0015 0.002

Fig. 6 Values of J against t for (P, @, 0, €, P) plate with CSSS using some values of r and €, a/b =1,
alh=20

20 1
15 4

10 1

0 1 T T T T
5 15 25 35 45

Fig. 7 Values of J against a/h for different values of r using CSSS , a/b =1

0.6 1

0 T T v a'h
1.25 15 1.75 2

Fig. 8 Values of J against a/b for different values of r using CSSS , a/h = 10
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Fig. 9 Values of J against t for (P, &,0, @, P) plate with CCSS using some values of r and &, a/b =1,
alh=20
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0 4 T T T T
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Fig. 10 Values of J against a/h for different values of r using CCSS , a/b =1
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Fig. 11 Values of J against a/b for different values of r using CCSS , a/lh =10
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Fig. 12 Values of J against t for (P, 6,0, 6, P) plate with CFSS using some values of r and &, a/b =1,
a/h =20
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Fig. 13 Values of J against a/h for different values of r using CFSS , a/b =1

Fig. 14 Values of J against a/b for different values of r using CFSS , a/h = 10
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6. Conclusions

A structural and control optimization technique for minimizing the dynamic response of
composite piezoelectric laminate is presented. A higher-order plate theory is used to formulate the
control objective for various cases of boundary conditions. Optimal levels of ply thickness, fiber
orientation angle and closed-loop control voltage function are determined for various cases of
boundary conditions. The discrepancy between the CPT, FPT and HPT results is investigated by
numerical examples. It is found that the optimal design procedure reduces significantly the level of
the energy, but the optimal design over r (r ® = 0.5) is the most efficient. In addition, the
simultaneous design and control optimization is very active in reducing and damping the energy in
least possible period of time. For each case of boundary conditions, a/h and a/b can play a
significant role to enhance the design process so, the laminate may be tailored using a/h and a/b to
improve its performance. There is a suitable optimal design for every laminate to improve its
performance. The present optimal control approach is believed to be more efficient.
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Appendix A
SS : X(x)=sin g, X, Uy, =mz/a.
CC: X(X)z sin i, X —sinh g, X =1, (cos,umx —cosh,umx),

1, = (sin g, a —sinhyy,a)(cos y,a —cosha)”, w, =(m+0.5)z/a
CS: X (x)=sin g, x —sinh g, X — 77, (cos £4, X — cosh 11, X),
T = (sin,uma+sinh,uma)(cos,uma+cosh,uma)_1 NTNE (m+0.25) z/a,
CF: X (X): sin g, X —sinh g, X — 1, (cosumx - cosh,umx),
M = (sin 24,8 + sinh z,a) (cos g4, @ + cosh @) ', u =1875/a,

1, =4.694/a, 1, =7.855/a, 1, =10.996/a
and 1y, =(m-025)z/a for m=>5

The coefficients U;, V;, W;, ®; , ¥; S and W. (i=12,..,5) for symmetric plate are given as:

U =Ag&+A S , Vi=(As+Ar)eg
Wi = (812 +2546) €10 + 511811+ Sye85 + 351689 »

W) =Se€ 156,258 A =(S12+S66)€10 T o + 5168

— d., =, .

57 = (A + AB)e, ~(Af + Aley 5P = LSP L i=12...5

p

W, =-1e

U, =(Ast+ A8 , V, = A, + Ay

W,

$08) 35,68, (515 +2546) €5 + 5684

Yo =58 H(Sn+56)8 1518 5 B =581258& +5:8 , S7 =—(AL+Ah)e, — (Al +Al)e,
W, =—1,€;

U; =—(S), +2546)€ —S;1€11 —3816€14 — S2¢817
V3 =508 —(S12 +2846) €11 — 3526814 — 1815

W, =583 = 2(10 + 2756) €14 — Th1€15 + Gaa€i6 — Thofi7
W3 =G55813 = (Tho + 2166) €14 = Th 15

@ =1y +2766) €14 + C1s€16 — hof17
Sy =(sh +sh)e +(sf +sH)ey, +2(sf +siey,

Wy =—1,8; +(al; + A5)(815 + &) , U, =548 +5 6 +25,8, ) Vi=w,
W, = (ﬁlz +2566)e2 +ﬁne4 — 55
W= 77:6 € +771*164 - C:;Ses 5 ¢ = (771*2 + 77:6)62 ) S =—(sfy +si)e, —(sfi +sf))e,

W, =~(a |A3 Ty IAs)eé
Us =S8 + 5168 +(S12 +S66) €10 ) Vs =28,489 + 55,819 + 56611

b
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W, = Ezzeg +(ﬁl2 +2566)e9 =G4
Ws = (771*2 +77;6)99 > &= 77;2e8 +77;6€9 _4/14912 > SP=—(sf+sh)e, —(sh+she,

W, =—(al;+y15)e,

a b
(61,:.€5.€4.85,6,)= | J'(xvij,x,XY,W,x,XXY,y,x,XXXY,XY,y,xMY)x,XY dxdy,
0 0

a b
(es-80.01001.6) = [ [ (XY 4y s X Y s XY 0 X oY, XY )XY dx dy
0 0

a _b
(7,65-810-815.€16.€17)= | J.(XY,X,XXY,X,XXYyyy,X’XXXXY,XY’W,XYJM)XY dxdy ,
0 0
a _b
2 2 2v 2 2 2
(e & &) = [ [ (X2YZ X322, X2,¥2 ) dxay,
0 0
Sj=aBy+rE; sj =a By +yEf Sij=pAB;+7E;
77ij = Dijaﬂ+7Fij(:B+a)+ Hij72:
1 =D a2+2a7|:ij+Hij v, 77; =D B+2y B Fi +Hij72 ’
(i,j=1.2,6),
2
G =9F; 7’ +6y(1+a) Dy +(1+a )’ A )

é’i}ﬁ =9F; y? +6y S D; +,B2Aij,
Ci=9F 7 +3y (l+a+B)D;+ B (1+a)A;, (i, i=4.5).
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U1mn Vlmn Wlmn Vllmn (Dlmn
U2mn V2mn VVzmn Vlzmn cDZmn
Agon =Usmn Vamn Wiy Wiy @i
Usmn  Vamn Wamn V\ilmn Dy
Usin Vs Wsmn W @sn
Ui Vimn Wi Slp Dy
q Uomn Vomn  Wom SZp Dy
A4pmn :h_MU3mn Vim Wi, S3p D 3mn
P U4mn V4mn W4mn S4p CI)4mn
Usin Vsmn Wsmn SSp Dy
Um Vien Wim  ¥im Vllmn
Uomn Vo Womn  Wam Vlzmn
Asmn = U3mn V3mn W3mn Wi Vl3mn
Usmn Vamn Wamn  Famn %mn
Usin Vsm Wsmn Wsmn Wsmn
Um Vien Wim  ¥im Slp
q Usmn Vomn Womn  Wom Szp
Asp = h—31 Usn Vamn Wsm  Wam Ssp
" Uim Vamn Wimn  Yamn S4p
Usin Vs Wsmn Wsmn SSp
Vion Yt Wimn i @i
Vorn Yo Womn  Womn @omg
Ao =Vsm Usmm Wamn Yo Pimg
Vin  Yamn Wamn Pamn Pumn
Vi Usmn Wsmn Wsmn Psmn
Lizi_; , Lip:%_g%, i=12,45

kit =A €5+ Ao »
ki3 =28;18; +2(S, +2845)810 +25,6(€14 +2€15) + 25,681
Kiy =28 85 + 2846810 +2516(B14 T €15) »

Kyo = Anlig + Asclao »
Kys = 2(S1 +2546)€ + 25,5810 +25)6(814 +2815) + 25,68y »

Kyy = 2(512 + §66)e3 + 2§26e18 + 2§16920 )
Kys =28468; 25,0810 +2554(E14 +€15) »

1201

Kiy =2A 85 + 2”814 »

kis= 2(512 + g66)elo + 2516818 + 2526919 5
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Ky = 5586 + Cag€ia + 2101814 + Wi + Thofro + 101820 »

Koy =258 + 27010 + 4705815+ 277 50 » Kys =201+ 277 14 + Hlseis + 210
Kyg = 586 +TlocBis +7H €20 »
Kys = 2784+ 2'726e18 ) Kss = Cais +'726e18 + 77;2819 ) ke =—(Af+Adeyg
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