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Abstract.     A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has 
recently been devised to facilitate real-time close-looped control of structural vibration in a simple and 
reliable manner. The development and characterization of the self-sensing MR damper are presented based 
on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. 
With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is 
formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and 
neural network techniques. The Bayesian regularization is adopted in the network training procedure to 
eschew overfitting problem and enhance generalization. Verification results indicate that the developed 
NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has 
superior prediction performance and generalization capability over a Bouc-Wen parametric model. 
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1. Introduction 
 

Semi-active control systems that offer the reliability of passive control systems as well as the 
versatility and adaptability of active control systems have received significant attention for 
structural vibration control worldwide (Jung et al. 2004). Magnetorheological (MR) fluid dampers 
have emerged as such a class of semi-active damping devices. By activating the MR fluid 
contained in the device through its magnetic field, it can reversibly change from liquid to 
semisolid in milliseconds, which results in a continuously controllable device with considerable 
bandwidth. MR dampers require minute power for field activation and are insensitive to impurity 
penetration commonly encountered during manufacture and usage (Carlson et al. 1996). More 
importantly, they are inherently fail-safe devices in that they can still operate as passive dampers 
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once the control hardware fails (Dyke et al. 1996, Spencer et al. 1997). Recognizing the attractive 
characteristics and promising potential of the MR-based damping technique, global researchers 
and engineers have investigated the feasibility and application of MR dampers in a wide variety of 
areas, such as seismic protection of building and bridge structures (Dyke et al. 1996, Gordaninejad 
et al. 2002, Fujitani et al. 2003, Jung et al. 2003, Ni et al. 2004, Ying et al. 2005, Loh et al. 2007), 
vibration control of bridge cables (Johnson et al. 2000, Ko et al. 2002, Duan et al. 2005, Weber et 
al. 2005b, Li et al. 2007), vibration damping of suspension systems of trains and vehicles (Liao 
and Wang 2003, Song et al. 2005, Choi et al. 2009) and stability augmentation of helicopters 
(Gandhi et al. 2001, Hu and Wereley 2008). 

In spite of the abovementioned advantages, existing MR dampers are incapable of monitoring 
structural vibration, external loadings or their damping forces, and hence require extra sensors for 
realizing closed-loop feedback control. As a consequence, they are used as adjustable passive 
dampers in an open-loop mode in a certain current practices of civil structural control, like in 
vibration mitigation of bridge cables (Chen et al. 2004, Weber et al. 2005a), which hinders full 
utilization of their controllable damping capability. To advance the MR damper based structural 
control from an open-loop operation to a closed-loop manner, a novel self-sensing MR damper 
possessed of a sensing-while-damping functionality has been devised with a piezoelectric force 
sensor embedded inside the device (Or et al. 2008). 

MR dampers demonstrate highly nonlinear behaviors because of the inherent non-Newtonian 
nature of MR fluid. Hence, it is challenging to formulate models that accurately represent their 
nonlinear dynamics. Such models are essential in understanding the operation principles of the 
devices and in developing robust control strategies that take full advantage of their unique features. 
Various parametric models, which are described by an arrangement of mechanical elements such 
as masses, springs and dashpots, have been developed (Spencer et al. 1997, Pang et al. 1998, 
Jiménez and Álvarez-Icaza 2005, Ikhouane and Dyke 2007, Boston et al. 2010). The parametric 
model structures are typically determined by a trial-and-error iterative procedure and with some 
heuristics, based on the qualitative interpretation of measurement data. In order to account for the 
complex phenomena such as nonlinear and hysteretic behaviors, additional nonlinear blocks, such 
as Bingham model, Bouc-Wen model, Dahl friction model and LuGre friction model, have been 
included frequently. Optimizing the parameters of the highly nonlinear model structures, therefore, 
requires sophisticated identification methods, in which intelligently selected initial points or proper 
constraints on the parameters are usually necessary to avoid divergence or local minima. 

Alternative representations of MR damper dynamics using nonparametric methods have been 
proposed to eliminate some pitfalls of the parametric approaches in terms of artificial neural 
network (Chang and Roschke 1998, Wang and Liao 2005, Cao et al. 2008, Boada et al. 2010), 
neuro-fuzzy inference system (Schurter and Roschke 2000, Ahn et al. 2009), polynomial NARX 
(nonlinear autoregressive with exogenous inputs) modeling (Leva and Piroddi 2002), and 
wavelet-based identification (Jin et al. 2005, Karimi et al. 2009), etc. The majority of the previous 
studies in the context of nonparametric modeling have been made by using numerical simulation 
data rather than using real experimental data of MR dampers. In addition, neural networks are 
commonly believed to prone to overfitting, which results in overparameterized models that fail to 
generalize to novel situations. The previous works rarely addressed on overfitting or generalization 
issue in training neural networks to identify the dynamics of MR dampers, which may give rise to 
questionable stability or reliability problem in the control application associated with the overfitted 
models. 

This paper presents the development and characterization of a self-sensing MR damper, and 
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then addresses the modeling of its forward dynamics by means of an NARX-based neural network 
technique. NARX model is employed due to both its capability of capturing a wide variety of 
nonlinear dynamic behaviors and the availability of identification algorithms in a reasonable 
computational cost (Chen et al. 1990). A multilayer perceptron (MLP), a class of feed-forward 
artificial neural networks, is then used to identify the NARX model in that it is a universal 
approximator for any continuous nonlinear function (Hornik et al. 1989). The synthesized 
technique, named NARX network, results in a powerful model structure that is able to represent 
complex nonlinear behaviors, such as chaos, hysteresis, saturation effects and combinations of 
several nonlinear phenomena (Suykens et al. 1996). To derive a robust model with low complexity 
and good generalization capability, the topology of the NARX network is optimized and the 
Bayesian regularization technique (MacKay 1992) is incorporated in the NARX network learning 
process to eschew overfitting. Comparison of the prediction performance is also made between the 
NARX network model and a Bouc-Wen based parametric model. 

 
 

2. Characterization of self-sensing MR damper 
 
2.1 Self-sensing MR damper 
 
Fig. 1 displays a prototype of a self-sensing MR damper, which is fabricated by integrating a 

piezoelectric force sensor with a conventional actuation-only MR damper. The damper comprises 
an electromagnet, a diaphragm, an accumulator, a bearing and seal unit, a piston and MR fluid, 
which are housed in a metallic main cylinder, as well as a pair of electrical wires extended from 
the electromagnet and through the piston. It is 208 mm in total length and has a 25 mm stroke. 
The magnetic field strength inside the device can be varied by supplying input currents through the 
electrical wires with the maximum of 1 A and 2 A for continuous and intermittent working 
situations, respectively. 

Fig. 2 shows the detailed configuration of the embedded piezoelectric force sensor. 
Components of the sensor include a lead zirconate titanate (PZT) piezoceramic wafer, two 
electrode wafers, two insulating wafers, two metal adaptors, a pair of signal wires and a threaded 
bolt. These components are sandwiched centrally in a stack between the adaptors by using the bolt. 
Good surface finishing on the neighboring faces of the two adaptors is made to ensure high 
reliability and sensitivity of the piezoelectric sensor. Since the piezoelectric sensor works properly 
only under compression, the technique of mechanical prestressing is performed on the sensor so 
that tension forces can be measured while the piezoelectric element remains in compression during 
operation. The prestressing is carried out by employing a torque driver to produce a compression 
stress of 18 MPa on the piezoelectric wafer with a calibrated torque of 30 N·m. The torque is 
slowly exerted by the torque driver to the bolt until it is overloaded. During this procedure, the 
positive and negative electrodes are connected to form a short-circuit condition to avoid 
accumulation of charges on the surfaces of the piezoelectric wafer. The assembled sensor is then 
calibrated (as detailed in the next section) before it is embedded with the damper part to form the 
prototype as shown in Fig. 1. 

In operation, the embedded force sensor senses the variation of force imposed on the damper 
during structural vibration. The sensed signals are then used to assist in adjusting the current input 
to the damper through an appropriate control strategy and thereby the commanded damping force. 
The self-sensing MR damper thus has the dual function of force sensing while controllable 
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damping. 
 
2.2 Calibration of piezoelectric force sensor 
 
The fabricated piezoelectric force sensor is calibrated by evaluating its charge-to-force 

sensitivity prior to its integration with the damper part. The calibration test is conducted on a 
servohydraulic material testing system (MTS) operated in force-controlled mode. The charges 
produced by the piezoelectric sensor due to the external excitation forces are measured through a 
charge meter. The output charge and input force signals are sampled at 1 kHz and recorded by a 
data acquisition system. 

In calibration, the MTS machine is commanded to generate sinusoidal force excitations exerted 
on the sensor structure with frequencies of 0.2, 1.0, 2.5 and 5.0 Hz and amplitudes of 500, 1000, 
1500 and 2000 N. Experimental data are used to investigate the relationship between the MTS 
driving force and the output charge produced from the piezoelectric sensor. The acquired data are 
filtered using an elliptic lowpass filter to remove any undesirable noises above 20 Hz. Fig. 3 shows 
the time domain signals of the driving force and the output charge for a selected calibration case 
under a sinusoidal force excitation with frequency of 2.5 Hz and amplitude of 1000 N. For other 
calibration cases, similar results are obtained as plotted in Fig. 3. It is observed that for each case 
there is always a phase difference of 90 between the charge and the force. The relationship 
between charge and force is linear for each calibration case with a nearly identical slope. 

Based on the linear relationship between the charge (QPZT) and the force (FMTS), the sensitivity 
of the piezoelectric force sensor, defined by the charge-to-force factor (kPZT), can be derived as 

 
 

Fig. 1 Prototype of self-sensing MR damper
 
 

Fig. 2 Assembly diagram of piezoelectric force sensor
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2.3 Performance of self-sensing MR damper 
 
To evaluate the force sensing capability and damping behaviors of the self-sensing MR damper, 

performance tests are carried out on the whole device by operating the MTS machine in 
displacement-controlled mode. The displacement excitation is manipulated in sinusoidal waveform 
with different frequencies and amplitudes, and the current input to the damper is set at different 
constant levels via a direct current (DC) power supplier. The damper force sensed by the 
piezoelectric force sensor, the displacement excitation and the reaction force measured with the 
transducer embedded in the MTS are recorded by the data acquisition system for analysis. 

The sensing performance of the device is assessed by the degree of agreement between the 
force signals from the piezoelectric force sensor and the MTS load cell, which is defined by 
another normalized RMS deviation of 
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in which m is the total number of data samples used in the calculation. 
Fig. 4 shows the experimental results obtained from the performance tests, in which a 

sinusoidal displacement-controlled excitation with frequency of 5.0 Hz and amplitude of 5.0 mm 
is exerted on the damper powered with DC current levels of 0, 0.5 and 1.0 A, respectively. A good 
agreement is observed between the force signals of FPZT and FMTS, and is also evidenced in Table 1 
with small values of the normalized RMS deviation 2. The measured results therefore verify the 
reliable force sensing capability of the devised self-sensing MR damper. 

The controllable damping behaviors of the self-sensing MR damper are examined in terms of 
the measured force-displacement and force-velocity trajectories. Fig. 5 displays the hysteresis 
behaviors of the MR damper subjected to a sinusoidal displacement-controlled excitation with 
frequency of 5.0 Hz and amplitude of 5.0 mm and different input currents from 0 A to 1.0 A. It is 
observed that the damper force has a dependency on the applied current level for activating the 
magnetic field to energize the MR fluid. In the absence of the field strength at 0 A, the damper 
force mainly results from the viscous behavior of the MR fluid together with the friction between 
the damper rod and the bearing and seal unit. The magnitude of the damper force then increases 
with the increment of the applied current, but the increase slows down when the current 
approaches to 1.0 A due to the gradual magnetic saturation effect of the MR fluid. In addition, the 
areas enclosed by the force-displacement and force-velocity hysteresis loops enlarge with the 
increasing current, indicating the enhanced capability of vibrational energy dissipation provided by 
the damper. Therefore, the damping performance provided by the self-sensing MR damper is 
controllable through adjusting the current strength, but it is also limited by the residual state and 
the magnetic saturation of the damper. 

 
Table 1 Normalized RMS deviations in performance tests 

Current (A) 0 0.25 0.5 0.75 1.0 

2 (%) 3.89 2.70 2.30 2.46 2.39 
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(a) 0.0 A (b) 0.5 A 

(c) 1.0 A 

Fig. 4 Validation of force sensing capability under 5.0 Hz, 5.0 mm sinusoidal displacement excitation with 
different current levels 

 
 

(a) Force versus displacement (b) Force versus velocity 

Fig. 5 Hysteresis behaviors of self-sensing MR damper 
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3. Modeling of self-sensing MR damper 
 
3.1 Model formulation 
 
As observed in Fig. 5, the self-sensing MR damper is a highly nonlinear device and hence the 

modeling of its dynamic behaviors is a non-trivial task. In this study, an NARX network model 
which integrates the NARX modeling and neural network techniques is developed to emulate the 
self-sensing MR damper. The proposed model is formulated as 

 ));1(,),1(),(,),(),(,),(()(ˆ θFxx ntFtFntxtxntxtxftF     (5) 

where x, x  and F are the displacement and velocity of the damper piston and the sensed damper 
force, respectively; nx, xn   and nF denote lag spaces of the displacement, velocity and damper 

force, respectively; and );( θf  represents a nonlinear parametric function in terms of the 
displacement and velocity at present and previous time steps and the damping force at previous 
time steps, and is identified by an MLP; and  is a parameter vector including weights and biases 
of the MLP. The parameters can be derived by training the NARX network to minimize a typical 
objective function, namely, the sum of squared error between the target and the network prediction 

 



T

t
D tFtFE

1

2)](ˆ)([                          (6) 

 
3.2 Parameter identification 
 
Due to its fast convergence property, the Levenberg-Marquardt algorithm (Hagan and Menhaj 

1994) has been widely used for network training to identify and update the network parameters. 
During training, the objective function (6) is minimized. The nonlinear properties of neural 
network allow fitting the training set to very small errors. However, overfitting problem occurs 
when the training error is minimized to an extreme value; thus the generated model fails to 
generalize to unseen data well. One approach to ameliorating network generalization capability, 
referred to as regularization (Sjӧberg and Ljung 1995), is to constrain the growth of network 
parameters by expanding the objective function (6) as 

  EEE DR                              (7) 

where 



M

i
iE

1

2  is the sum of square of the network parameters, M is the total number of the 

parameters,  and  are regularization parameters which control the flexibility of the model and 
are objectives of the network optimization process. 

Within the Bayesian framework, MacKay (1992) interpreted network learning as an inference 
of the most plausible network parameters given the training data and optimized the regularization 
parameters by finding their most probable values, which are derived as 

 

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MP  

                     (8a, b) 
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where )(trace2 1 H M  measures the effective number of network parameters involved in 
reducing the objective function, and H is the Hessian matrix of the objective function (7). In 
training implementation, with an initial guess of  and , the Levenberg-Marquardt algorithm is 
employed to find the most plausible network parameters to minimize the objective function 
defined in Eq. (7). The use of the Levenberg-Marquardt algorithm can also overcome the costly 
computation of the Hessian matrix and its inverse by making a Gauss-Newton approximation to 
the Hessian matrix (Foresee and Hagan 1997). During the training process, re-estimation of  and 
 is executed automatically to obtain their most plausible values according to the implicit formulae 
given in Eq. (8). It is suggested that all data sets be scaled into the range of [-1, 1] to avoid that 
some network parameters will be trained to be extremely large or small to accommodate different 
scales of input and target variables. In addition, the procedure of multiple random initializations of 
network parameters is used to retrain the network to assure that the optimal solution, instead of 
local minimum, has been reached during the training phase. 

 
3.3 Network architecture 
 
According to Eq. (5), a three-layer NARX network with S1 ( 3 Fxx nnn  ) neurons in the 

input layer, S2 neurons in the hidden layer and one neuron in the output layer, is employed to map 
the input-output relationship of the self-sensing MR damper. The input variables in the model will 
be selected from the displacement x and velocity x  of the damper piston at present and previous 
time steps and the sensed damper force F at previous time steps to predict the one-step-ahead 
damper force. Transfer functions in the hidden and output layers are selected as a hyperbolic 
tangent sigmoid function and a linear function, respectively, with the forms of 

 
)2exp(1

)2exp(1
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11 u
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ug
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 , 222 )( uug                    (9a, b) 

Experimental data collected from the displacement-controlled tests performed on the 
self-sensing MR damper are used as training, validation and testing data sets for the NARX 
network modeling. The model is first trained using the training data through the Bayesian 
regularized learning procedure, with its architecture being determined using the validation data. 
The well-trained model is then exposed to the testing data unseen during the training phase to 
examine its generalization capability. In the case of constant input current I = 0.5 A, recorded 
signals under sinusoidal excitations with frequency of 1.0 Hz, amplitude of 1.0 mm and with 
frequency of 5.0 Hz, amplitude of 5.0 mm are taken as the training data, while the validation data 
set includes signals collected under sinusoidal excitations with frequency of 1.0 Hz, amplitude of 
5.0 mm and with frequency of 5.0 Hz, amplitude of 1.0 mm. 

To assess the prediction performance of the resulting NARX network model, the root mean 
square error (RMSE) between the measured damper force and the prediction from the model is 
evaluated by 

 



T

t

tFtF
T 1

2)](ˆ)([
1

RMSE                       (10) 

An appropriate architecture of the NARX network is important to realize good modeling 
performance. To optimize input variables for the NARX network, the sensitivity of the model with 
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respect to different input configurations of displacement (x), velocity ( x ) and past value of damper 
force (F) is examined. The resulting model performance evaluated on the validation data set is 
compared in Fig. 6. It is apparent that the model performance is poor if only the displacement x 
and velocity x  are used as the network input. Hence, incorporation of the past value of the 
damper force F into the network input is essential for improving the modeling accuracy. Moreover, 
results with the input combinations of (x, F) and (x, x , F) are comparable, while the role played 
by the displacement x is negligible and it can be excluded to simplify the model architecture. 
Accordingly, the damper velocity x  and the past value of damper force F are chosen as the input 
variables for the NARX network. 

After determining the input variables, the selections of the lag spaces ( xn   and nF) for the input 
and the number of neurons in the hidden layer (S2) are addressed. It is assumed that the lag spaces 
of the velocity and damper force are the same, namely, Lnn Fx  . Fig. 7 provides the training 
and validation performance of the NARX network with different input lag spaces. The network is 
configured with 10 neurons in its hidden layer. The optimal value of the lag space L for each input 
variable is then chosen to be 4 with the lowest RMS validation error. Once the input variables and 
the number of input lags are determined, it is simple to decide the number of hidden neurons (S2) 
using a trial-and-error procedure by varying the number of hidden neurons from 1 to 25. Fig. 8 
shows the modeling performance evaluated on the training and validation data sets as a function of 
the number of hidden neurons (S2). It is clear from the figure that the best choice of S2 is 9 with the 
minimal value of RMS validation error. 

As a result, the NARX network with a topology consisting of 10 input neurons (lag space of 4 
for each input variable), 9 hidden neurons and 1 output neuron is configured for modeling the 
forward dynamics of the self-sensing MR damper. 

 
 
 

 

Fig. 6 Performance evaluation over different input configurations 
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Fig. 7 Performance evaluation over different lag spaces
 

Fig. 8 Performance evaluation over different number of hidden neurons 
 
 
3.4 Verification 
 
The prediction performance of the well-trained NARX network model is examined using 

various testing data sets unseen in the training phase. These testing sets are acquired under 
sinusoidal displacement excitations with frequency of 2.5 Hz and amplitudes of 1.0 mm and 5.0 
mm, and under triangular displacement excitations with frequencies of 1.0, 2.5, 5.0 Hz and 
amplitude of 5.0 mm, as well as with the applied current level held at 0.5 A for the self-sensing 
MR damper, respectively. They have not been involved in the training phase, and are new for the 
model assessment. The one-step-ahead damper force is produced from the model once it is 
exposed to the testing data. Figs. 9-12 plot the hysteresis loops of force-displacement and 
force-velocity of the damper obtained from the predicted results and the measured data. A 
comparison between the prediction and the measurement indicates that the NARX network model 
accurately describes the dynamic behaviors of the self-sensing MR damper, and hence 
demonstrates its good generalization capability. Likewise, the developed NARX network model 
can be trained to predict the forward dynamics of the self-sensing MR damper commanded with 
other input current levels. 
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(a) Force versus displacement (b) Force versus velocity 

Fig. 9 Generalization result for sinusoidal excitations with frequency of 2.5 Hz and amplitudes of 1.0 mm
and 5.0 mm (I = 0.5 A) 

 
 

 
(a) Force versus displacement (b) Force versus velocity 

Fig. 10 Generalization result for triangular excitation with frequency of 1.0 Hz and amplitude of 5.0 mm (I = 
0.5 A) 

 
 

 
(a) Force versus displacement (b) Force versus velocity 

Fig. 11 Generalization result for triangular excitation with frequency of 2.5 Hz and amplitude of 5.0 mm (I = 
0.5 A) 
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(a) Force versus displacement (b) Force versus velocity 

Fig. 12 Generalization result for triangular excitation with frequency of 5.0 Hz and amplitude of 5.0 mm (I = 
0.5 A) 

 
 
4. Extension to time-varying current excitation 

 
The modeling of the self-sensing MR damper presented previously has been based on the cases 

that the input current applied to the damper was held at a constant level. After recognizing the 
effectiveness of the previous NARX network model in the current-invariant scenario, it is 
extended herein to accommodate the situation of time-varying current. Therefore, the formulation 
in Eq. (5) is extended to include the input quantities of current I(t) and its nI past values as 

));1(,),1(),(,),(),(,),(),(,),(()(ˆ θFIxx ntFtFntItIntxtxntxtxftF     (11) 

where ),( θf  is again an MLP trained by the Levenberg-Marquardt algorithm with Bayesian 
regularization. 

Experimental signals acquired when the self-sensing MR damper is commanded with 
sinusoidal displacement excitations and random current input are used for the identification of the 
current-variant model in Eq. (11). The frequency and amplitude of the displacement excitation are 
5.0 Hz and 2.5 mm, respectively. The current command is generated using band-limited white 
noises with amplitude between 0.0 A to 2.0 A and frequency ranging from 0 Hz to 10 Hz. Input 
and output signals of the damper are recorded at a sampling rate of 500 Hz for 15 s, which 
produces 7500 samples of data. These data are split into training, validation and testing sets (with a 
ratio of 4000:2000:1500) for building the NARX network model. Similar to the previously 
discussed modeling procedure and based on the training and validation data, the input to the 
NARX network is determined to be the damper velocity ( x ), the input current (I) and the past 
value of the damper force (F) with their lag spaces of 4 FIx nnn  . The single hidden layer of 
the NARX network is configured with 20 neurons. Transfer functions in the hidden and output 
layers are also chosen as a hyperbolic tangent sigmoid function and a linear function, respectively, 
as given in Eq. (9). 

After the model design and optimization steps, the well-trained NARX network is exposed to 
the testing data for performance evaluation. Fig. 13(a) shows the comparison of the predicted and 
measured damper forces based on the testing set, and Fig. 13(b) plots the corresponding prediction 
error. The favorable coincidence between the prediction and the measurement verifies the accurate 
prediction capacity of the developed forward model for the current-varying case with the RMS 

-6 -4 -2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

Displacement (mm)

F
o

rc
e 

(k
N

)

 

 

Measured
Predicted

-150 -100 -50 0 50 100 150
-1.5

-1

-0.5

0

0.5

1

1.5

Velocity (mm/s)

F
o

rc
e 

(k
N

)

 

 

Measured
Predicted

1115



 
 
 
 
 
 

Z.H. Chen, Y.Q. Ni and S.W. Or 

 

prediction error of 0.038 kN, which is 3.5% of the RMS value of the corresponding target force. 
Two more sets of testing data are used to further assess the generalization performance of the 

formulated model. The testing results are also compared with those obtained from the modified 
Bouc-Wen phenomenological model proposed by Spencer et al. (1997). Testing set 1 is acquired 
under a sinusoidal displacement excitation with frequency of 1.0 Hz and amplitude of 2.5 mm. 
Testing set 2 is obtained under a triangular displacement excitation with frequency of 2.5 Hz and 
amplitude of 2.5 mm. Current inputs for both cases are again generated with band-limited white 
noises with amplitude between 0.0 to 2.0 A and frequency ranging from 0 to 10 Hz. Figs. 14 and 
15 display the predicted forces from the NARX network model and the Bouc-Wen model, which 
are also compared with the measured ones. The good generalization performance of the NARX 
network model is demonstrated in Figs. 14(a) and 15(a), in which the prediction matches well with 
the measurement. Moreover, the NARX network model outperforms the Bouc-Wen model in 
prediction accuracy, which is also evident from the RMS values of the testing errors summarized 
in Table 2. It is therefore confirmed that the NARX network model performs with good prediction 
accuracy and generalization capability, due to its flexibility in modeling and the overfitting control 
of the Bayesian regularization. 

 
 

 
(a) Predicted and measured damper forces (b) Prediction error 

Fig. 13 Verification result of NARX network model under time-varying current input 
 
 

 
(a) NARX network model (b) Bouc-Wen model 

Fig. 14 Comparison of prediction results for testing set 1 
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(a) NARX network model (b) Bouc-Wen model 

Fig. 15 Comparison of prediction results for testing set 2 
 
Table 2 RMS values of testing errors for damper models 

Model RMSE (kN) 

 Testing set 1 Testing set 2 

NARX network 0.078 0.059 

Bouc-Wen 0.398 0.269 

 
 

5. Conclusions 
 

A self-sensing MR damper with embedded piezoelectric force sensor has been devised and 
characterized to possess an attractive dual-function of sensing-while-damping. The embedded 
piezoelectric force sensor has shown a high charge-to-force sensitivity under various 
force-controlled excitations. When subjected to displacement-controlled excitations and 
commanded with different levels of current input, the self-sensing MR damper has demonstrated 
excellent force sensing performance as well as controllable damping capability with its inherent 
highly nonlinear behaviors. 

An NARX network model has been developed to emulate the nonlinear forward dynamics of 
the self-sensing MR damper subjected to harmonic loadings. To enhance its generalization 
capability, the NARX network was trained by using the Bayesian regularization technique and 
with optimally configured model architecture. The resulting NARX network model has been 
verified to accurately describe the nonlinear hysteretic behaviors of the self-sensing MR damper in 
the constant current settings when exposed to novel testing data. With the success, the NARX 
network model has been further extended to accommodate the scenario of time-varying current. 
Testing results have verified that the current-variant NARX network model significantly 
outperforms a Bouc-Wen based parametric model in both prediction accuracy and generalization 
capability, due to its flexibility and the overfitting control by the Bayesian regularization. 

It is worth mentioning that all the experimental data used for the NARX network modeling in 
this study were obtained from the self-sensing MR damper subjected to harmonic loading. To 
ensure generalization and robustness of the damper model in practical control circumstances, 
further investigation is in need to be conducted by presenting the developed NARX network model 
to random loading conditions. 
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