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Abstract.    This paper proposes an efficient system identification method for modeling nonlinear behavior 
of civil structures. This method is developed by integrating three different methodologies: principal 
component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS 
(PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped 
with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the 
input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of 
characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, 
Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a 
baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is 
effective in modeling complex behavior of the smart building.  It is also shown that the proposed PANFIS 
produces similar performance with the benchmark ANFIS model with significant reduction of 
computational loads. 
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1. Introduction 
 

Smart control strategies constitute an important class of strategies used in the field of 
engineering (Housner et al. 1997, Spencer et al. 1997, Symans et al. 1999, Soong et al. 2002). The 
implementation of smart control devices such as magnetorheological (MR) dampers in structures 
has led to an increase in the buildings’ ability to withstand destructive environmental forces such 
as strong winds and/or earthquake. However, it is challenging to model the structure integrated 
with nonlinear smart dampers. It is generally known that even if the structure is assumed to 
linearly behave, there are nonlinearities introduced due to the implementation of various actuators 
and smart dampers (Kim et al. 2009). Creating effective models for capturing nonlinear behavior 
of smart structures demands considerable amount of effort in terms of devising new models or 
using combinations of already available approaches as more efficient methods. With this in mind, 
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this paper proposes a method that efficiently identifies nonlinear behavior of seismically excited 
buildings equipped with smart dampers. 

System identification (SI) is an essential part for synthesis of smart structures because it 
produces mathematical models for control system design using data measured from the structures. 
SI is used to reliably predict how a structure behaves using the inputs and outputs measured from 
the structure under a variety of dynamic loading scenarios such as far- and near-field earthquakes. 
SI can be separated into two categories: parametric and nonparametric approaches (Bani-hani et al. 
1999). Parametric approach identifies the properties of the structural system, including stiffness 
and damping elements that are intrinsically imbedded in the structure and its materials 
(Jalili-Kharaajoo 2004). The nonparametric SI method is used to train the input-output function of 
the structural system as a black box model (Filev 1991). It does not require accurate information 
about the structure. Thus, the nonparametric approach is easily applicable to nonlinear modeling of 
the structural system. This has successfully been performed with neural networks as well as fuzzy 
logic systems. 

Fuzzy inference system, most commonly used as a nonparametric approach of modeling a 
system, uses fuzzy set theory to create a set of rules. It can be effective in dealing with 
nonlinearities and uncertainties of dynamic systems (Gu and Oyadiji 2008). Since the work of 
Zadeh (1965), fuzzy logic has been applied to many SI problems (Takagi and Sugeno 1985, Yan 
and Langari 1998, Kim et al. 2011). A number of studies on Takagi-Sugeno (TS) fuzzy models 
have been conducted in recent years, which deals with effective representations of nonlinear 
systems with the aid of fuzzy sets, fuzzy rules, and a set of local linear models (Filev 1991, 
Gopalakrishnan et al. 2010, Johansen and Babuska 2003). Fuzzy logic theory has been used 
mainly for nonlinear fuzzy control system design in the field of large-scale infrastructures (Guo et 
al. 2011, Kim et al. 2009, Mitchell et al. 2012).  However, estimating the parameters of a fuzzy 
inference system requires many trials and errors.Hence, these fuzzy model parameters can be 
determined using neural networks. 

Development of artificial neural networks (ANN) was inspired by the cognitive mechanism of 
the human brain (Wang et al. 2009). The ANN consists of linked nodes. Each node computes an 
output from its input. The node output is then used as another input for other nodes, and a link is 
created between each two nodes. ANNs improve the performance of each node by adjusting the 
parameters of the network, resulting in a more accurate model. Although ANN is effective in 
modeling nonlinear dynamic systems, it is challenging to design the ANN models in a transparent 
way because it is a black box modeling framework.  

An integration of favorable features of both ANN and fuzzy logic models produces an effective 
nonlinear SI model, an adaptive neuro-fuzzy inference system (ANFIS). Its application for SI in 
civil engineering applications has been studied in many other researches; however, it still is a 
relatively new research topic (Gu and Oyadiji 2008, Gopalakrishnan 2010, Schurter et al. 2000, 
and Ozbulut et al. 2007, Hakim and Abdul-Razak 2013). An advantage of this modeling technique 
is its ability to create effectively a nonlinear function using adjustable parameters, including types 
of the membership functions (MF), the number of MFs, step size of the learning process, and 
number of epochs. However, the ANFIS modeling technique can be computationally expensive or 
time-consuming (Wang et al. 2009). It would be disadvantageous when dealing with real-time 
situations and/or with large sets of data. To resolve these issues, principal component analysis 
(PCA) is incorporated to the ANFIS model to reduce the computation load. 

PCA, first introduced in a context of data fitting by Pearson (1901), has been mainly used as a 
method for dimensional reduction of measurement data in diverse fields such as psychology, 
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biology, chemistry, economics, genetics, and geology among other areas (Jollife2002). Using this 
method, the contribution of each measurement to the variation of the whole data set can be 
determined. Such a process can be used to decrease the amount of data needed for further use by 
discarding redundant data or variables that are less important. There are some examples of 
implementation of PCA in the control and health monitoring field of civil engineering. Sharifi et al. 
(2010) applied PCA to sensor fault isolation and detection. Kuzniar and Waszczyszyn (2006) used 
PCA to identify natural periods from data measured from a building. Mujica et al. (2010) and Park 
et al. (2007) applied PCA to assess and detect damages in civil infrastructure. 

The use of PCA as a means of data compression for an efficient training of ANFIS model 
significantly reduces computation time. Warne et al. (2004) proposed a hybrid PCA-ANFIS 
measurement system for monitoring product quality in the coating industry by inferring the 
‘Anchorage’ of polymer-coated substrates. Avci and Turkoglu (2009) proposed an intelligent 
diagnosis system based on PCA and ANFIS for the heart valve diseases. Polat and Gundes (2007) 
suggest using PCA and ANFIS together to diagnose lymph disease.  

However, to date, there has been minimal research regarding the application of PCA to the 
estimation of smart structures using the neuro-fuzzy modeling framework. Compression of various 
types of time series data using PCA for modeling nonlinear behavior of smart structures using 
ANFIS introduces a new challenge, which is addressed in this paper. PCA is implemented as a 
time series data compression method. Parts of the data are effectively removed during the 
compression process; however, the majority of the variation within the data is conserved for 
modeling purposes. 

 
 

2. PCA-based adaptive neuro-fuzzy inference system (PANFIS) 
 
PANFIS is an integrated model of PCA, ANN and fuzzy inference systems. It is a nonlinear 

learning model that uses a least-squares method as well as back-propagation methods to train the 
fuzzy inference system’s MFs and its associated parameters using the PCA-based compressed 
input and output data sets.   

 
2.1 Takagi-Sugeno fuzzy model 
 
Takagi-Sugeno (TS) fuzzy model is the backbone for the proposed PANFIS control system. In 

1985, Takagi and Sugeno proposed an effective way for modeling complex nonlinear dynamic 
systems by introducing linear equations in consequent parts of a fuzzy model, which is called TS 
fuzzy model (Takagi and Sugeno 1985). It has led to the reduction of computational costs because 
it does not need any defuzzification procedures. The fuzzy inference system used in the PANFIS 
model is of the TS fuzzy model form. It typically takes the following form 

 
1 2

1, 2, ,

1

:

, , , 1,2, ,

i
j FZ j FZ j FZ i j

i
FZ j FZ FZ r

R IF u is P and u is P and u is P

Then z f u u j N 



 
                 

(1) 

where jR is the thj fuzzy rule, rN is the number of fuzzy rules, ,i jP are fuzzy sets centered at the 

operating thj point, and i
FZu are premise variables that can be either input or output values. The 
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equation of the consequent part 1( , , )i
FZ j FZ FZz f u u  can be any linear equation. Note that the Eq. 

(1) represents the thj local linear subsystem of a nonlinear system, i.e., a linear system model that 
is operated in only a limited region. All of the local subsystems are integrated by blending 
operating regions of each local subsystem using the fuzzy interpolation method as a global 
nonlinear system 

   
 

1

1

1

, ,r

r

N i i
j FZ j FZ FZj

FZ N i
j FZj

W u f u u
y

W u





  





                     

(2) 

where    
,1 i j

ni i
j FZ P FZi

W u u


 and  
,i j

i
P FZu is the grade of membership of i

FZu in ,i jP . These 

parameters are optimized by the back propagation neural network. A typical architecture of fuzzy 
rules for a model with n membership functions for each input and 2n  rules are shown in Fig. 1. 

Optimization of the parameters of the model is the main challenge in the application of a fuzzy 
model. Therefore, incorporating neural networks to create an adaptive neuro-fuzzy inference 
system allows for these parameters to be optimized during computation, which is explained below. 

 
2.2 ANFIS architecture 
 
The architecture of a typical ANFIS model is as in Fig. 2. This figure represents two inputs and 

one output architecture with n MFs for each input, which is only for illustrative purposes and the 
model used has two MFs for each input. 

 
 

Fig. 1 Typical fuzzy rules layout
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Fig. 2 ANFIS architecture with n MFs for each of the two inputs 
 
 
Each layer has particular tasks to complete before the data moves to the next layer. In the first 

layer (layer 1), the function of the node is represented by 

 
,

1,

i j

j i
FZ P FZF u

                             
(3) 

The Gaussian MF used in the examples of this paper has the following form 

    ,

2 2
1 2exp 2

i j

i
P FZu u a a   

                       
(4) 

where 1a and 2a are adjustable parameters of the Gaussian function. This MF is applied to each 
input in layer 1. The second layer (layer 2) then outputs the product of all inputs of layer 2, known 
as the firing strengths 

     
, , ,

2, 1 2

i j i j i j

j i
FZ P FZ P FZ P FZF u u u    

                    
(5) 

The third layer (layer 3) takes a ratio of layer 2 firing strengths in order to normalize the layer 2 

outputs 2, j
FZF  as following 

 
,

3, 2,

1 i j

nj j i
FZ FZ P FZi

F F u


                        
(6) 

The fourth layer (layer 4) then applies a node function to the normalized firing strengths 

 4, 3, 3, 1 , ,j j j i
FZ FZ j FZ j FZ FZF F f F f u u     

                   
(7) 

The last layer summates the layer inputs 

   
 

,

,

1

15

1
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i j

i j

n i i
P FZ j FZ FZj i

FZ n i
P FZj i

u f u u
F

u








  
 

 


                 

(8) 

The output of the system 5
FZF  is then used in a hybrid learning algorithm. The key parameters 
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for this simulation include the number of iterations or epochs, the number of MFs and their type, 
as well as the step size of the function or algorithm. Types of MFs can vary from a generalized bell 
function, Gaussian functions, sigmoidal functions, trapezoidal function, as well as other forms. 
Each change of variables will yield different output results (Filev 1991 and Kim et al. 2011). The 
fuzzy inference system sets up rules based on the number of MFs used in simulation. 

For a system with n MFs for each input, fuzzy rules are set up as shown in Fig. 1, where FZy

corresponds to 5
FZF . Each number in layer 4 of Fig. 2 represents one of the n2 fuzzy regions that are 

created with n MFs in the ANFIS model. The fuzzy region is defined by the premise, and the 
output is generated through the consequent.  

Although ANFIS is very effective in modeling complex nonlinear systems, it requires much 
computational effort. Such a problem can be addressed through the integration of principal 
component analysis. 

 
2.3 Principal component analysis (PCA) 
 
PCA was introduced by Pearson (1901) in the context of data fitting and was developed 

independently by Hotelling (Jollife 2002). Hotelling method of derivation of principal components 
using Lagrange multipliers and eigenvalue/eigenvector analysis is explained in this section. 

Suppose .obsV is a matrix representing N observations of p random variables, organized as p

rows and N  columns, where the mean of random variable i is subtracted from each element of 
row i. Covariance matrix for this matrix of measurement data .obsV  can be constructed as  

. . .

1
obs

T
obs obsN

VC V V
                            

(9) 

where each element , , , 1, ,i jc i j p  of the covariance matrix 
.
,

obsvC  is the covariance between 
thi and thj variables. Element , ,i jc i j  of the covariance matrix is the covariance between thi  

and thi  variable which is the same as the variance of the thi  variable. It is often desirable to find 
a linear transformation of observation matrix .obsV , with the following form 

. .tran obsV QV                             (10) 

which results in the maximum variances between linear combinations of p random variables 
among all other permissible linear combinations of them. Q is a transformation matrix. It is 
desirable for the transformation matrix Q to be a unit norm matrix, that is T Q Q I . In other words, 

the goal is to find Q , with the constraint T Q Q I , such that the covariance matrix 
.tranVC of the 

transformed set of data .tranV  is maximized, 

 
.tran

Max V
Q

C
                           

(11) 

The function to be maximized, 
.tranVC  can also be written as 

 
. .

1
tran obs

TNV VC QC Q
                     

(12) 

1144



 
 
 
 
 
 

PCA-based neuro-fuzzy model for system identification of smart structures 

 

By employing a constraint condition, the objective function is formulated as follows 

 
.

1 ( )
obs

T TN  VQC Q Q Q I
                       

(12) 

where  is the Lagrange multiplier. Differentiating with respect toQ gives 

  
.

1
obs

N  VC I Q 0
                         

(13) 

where I is an p p  identity matrix,   is an eigenvalue of the covariance matrix of the original 

data, and Q  is found to be the corresponding matrix of eigenvectors of all the eigenvalues . 

Therefore, the eigenvectors of
.obsvC  (i.e., Q ) transforms

.obsvC to a covariance matrix: the 

off-diagonal elements are zero and the diagonal elements have the maximum value. It is possible 
to examine each row as observations of random variables in terms of their contribution 
(corresponding element in matrix of eigenvectors, Q ) to the covariance matrix. The variables with 
larger eigenvectors contribute more to the variation of the measurements. Therefore, it is possible 
to discard variables that contribute less than a threshold and decrease the dimensions of data 
needed for further analysis.  

 
2.4 PCA-based ANFIS system identification 
 
In the context of structural system identification, complex behaviour of structures can be 

estimated using black box modeling framework using measured data. The measured data can 
include inputs and outputs to the structure. The input data may contain time series of earthquake 
signals and forces of control devices such as smart dampers. The output data may contain 
structural responses such as accelerations and displacements. In practice, the amount of 
measurement data for long periods can be huge. Hence, sometimes it is difficult to apply signal 
processing techniques (e.g., vibration analysis, system identification, structural health monitoring, 
control system designs, among others) to the lengthy data sets. Therefore, it is crucial to decrease 
the number of data points in these input-output time series. This can lead to a significant reduction 
in training time of ANFIS models or other machine learning techniques. With this in mind, PCA is 
applied to the set of input and output data to reduce the number of data.  

Ground acceleration constitutes an important part of the inputs to the smart structure. It would 
be effective in increasing the computational efficiency by applying only a short duration of ground 
acceleration with large variations to the modelling process. These large variations may result in a 
broad range of behavior of the structure, which then helps to perform a more accurate and efficient 
system identification. 

To find a short duration of earthquake signal with maximum variations among other durations, 
it is proposed to divide earthquake acceleration ( ), [0, ]g t t Tx  to tN number of time series 

 ( ), ( 1) ,( ) , 1,...,i t t tt t i T N i T N i N  v with equal lengths called segments, where each segment 

is small enough for favourable training time and large enough for reasonably accurate training of 
the ANFIS model. Then, PCA can be applied to the following matrix of the time series segments 

 1 2(0, ) ( ,2 ) ( 1 , )t t t N t tT N T N T N N T N T    v v v v
             

(14) 

to find principal components of the time series with the length of tT N .Fig. 3 represents a 
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conceptual example on the application of PCA to times series. Any signal (Fig. 3(a)) can be 
divided into n segments with equal lengths using the window functions (applied point by point) 
and then the PCA is applied to the selected signals. The PCA coefficients show where the 
important signal component is located within the whole data sets: indices of 1, 4, and 3n  . 

The higher PCA coefficients represent that the dynamic signals have the broader range of 
variations, which means that the signal includes the better information. Hence the signal with the 
highest PCA components is selected in this study. As shown in the concept example in Fig. 3, the 
indices of 1, 4, and n-3 have the higher PCA values than other indices. Thus, the application of the 
first index component to identifiers would produce the better identification results. Hence, instead 
of training the ANFIS model using the entire data sets, the ANFIS is developed using the selected 
time series with the high values of PCA coefficients and the corresponding input-output segments. 
Therefore, the architecture of PANFIS can be proposed as Fig. 4. It should be noticed that PCA is 
applied to the earthquake time series to find the major contributing part to make the training data 
set smaller. In the following section, the effectiveness of the PANFIS modeling is demonstrated 
with examples. The application of such a strategy to smart structures under a variety of 
earthquakes will be described with examples in the following section. 

 
 

 
(a) An illustrative times series 

   (b) Window functions 

       (c) PCA coefficient for each segment 

Fig. 3 Conceptual example on the application of PCA to times series 
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Fig. 4 PANFIS architecture
 
 

3. Example 
 
To demonstrate the effectiveness of the PCA-based adaptive neuro-fuzzy inference system 

(PANFIS) approach, a three-story building employing a magnetorheological (MR) damper is 
investigated.   

 
3.1 Magnetorheological (MR) damper 
 
In recent years, smart structures have emerged from many engineering fields because the 

performance of structural systems can be improved without either significantly increasing the mass 
of the structure or requiring high cost of control power. They may be called intelligent structures, 
adaptive structures, active structures, and the related technologies adaptronics, structronics, etc. 
The reason to use these terminologies is that a smart structure is an integration of actuators, 
sensors, control units, and signal processing units with a structural system. The materials that are 
commonly used to implement the smart structure: piezoelectrics, shape memory alloys, 
electrostrictive, magnetostrictive materials, polymer gels, magnetorheological fluid, etc. 
(Hurlebaus and Gaul 2006).  

Semiactive control systems have been applied to large structures because the semiactive control 
strategies combine favorable features of both active and passive control systems. Semiactive 
control devices include variable-orifice dampers, variable-stiffness devices, variable-friction 
dampers, controllable-fluid dampers, shape memory alloy actuators, piezoelectrics, etc. (Hurlebaus 
and Gaul 2006). In particular, one of the controllable-fluid dampers, magnetorheological (MR) 
damper has attracted attention in recent years because it has many useful characteristics. 

In general MR dampers consists of a hydraulic cylinder, magnetic coils, and MR fluids that 
typically contain micron-sized magnetically polarizable particles floating within oil-type fluids as 
shown in Fig. 5. The MR damper can be operated as a passive damper; however, when a magnetic 
field is applied to the MR fluid, the fluid changes into a semi-solid state in a few milliseconds. 
This is one of the most unique aspects of the MR damper compared to active systems: the active 
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control system malfunction might occur if some control feedback components, e.g., wires and 
sensors, are broken for some reasons during severe earthquake event; while a semiactive system 
can still be operated as a passive damping system even when the control feedback components are 
not functioning properly. Its characteristics are summarized in (Kim et al. 2009). 

To fully exploit the behavior of MR dampers, a mathematical model is needed that portrays the 
nonlinear behavior of the MR damper. However, this is challenging because the MR damper is a 
highly nonlinear hysteretic device. The MR damper force ( )MRf t predicted by the modified 
Bouc-Wen model is governed by the following differential equations (Spencer et al. 1997) 

0
( )MR a b a a af c u k u u  

                            
(15) 

 1
( )

n n

BW a b BW BW a b BW a bz u u z z u u z A u u            
               (16) 

 1
( )

( )b BW b a b a b
a b

u z c u k u u
c c

   


 

                     
(17) 

a b MRu                                  (18) 

1 2a a a MRc c c u 
                              

(19) 

1 2b b b MRc c c u 
                              

(20) 

( )MR MR MRu u v                              (21) 

 
 

 

Fig. 5 Schematic of the prototype 20-ton large-scale MR damper (Yang et al. 2002) 
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where BWz and  called evolutionary variables, describe the hysteretic behavior of the MR 
damper; cb is the viscous damping parameter at high velocities; ca is the viscous damping 
parameter for the force roll-off at low velocities; a , b ,

1b
c ,

2bc , 
1ac and 

2ac are parameters that 

account for the dependence of the MR damper force on the voltage applied to the current driver; 

bk controls the stiffness at large velocities; ak represents the accumulator stiffness; 
0au is the 

initial displacement of the spring stiffness ak ;  ,  and A are adjustable shape parameters of 
the hysteresis loops, i.e., the linearity in the unloading and the transition between pre-yielding and 
post-yielding regions; M Rv and MRu are input and output voltages of a first-order filter, 

respectively and   is the time constant of the first-order filter. The structure itself is assumed to 
behave linearly; however the addition of the MR damper introduces nonlinearities which 
necessitate developing a mathematical model to portray this behavior which is usually the key part 
in the design of semiactive control systems. 

 
3.2 Integrated structure-MR damper system 
 
The equation of motion of a structure employing MR dampers is given by  

( , , , )
iMR i i MR gt v x   Mx Cx Kx Γf x x MΛ   

                  
(22) 

where gx denotes the ground acceleration, M the mass matrix, K the stiffness matrix, C  the 

damping matrix, and the vector x  the displacement relative to the ground, x the velocity, x the 
acceleration; ix and ix are the displacement and the velocity at the thi floor level relative to the 

ground, respectively, 
iMRv is the voltage level to be applied, and Γ andΛ are location vectors of 

control forces and disturbance signal, respectively. The second order differential equation can be 
converted into a state space model 

( , , , )

( , , , )

MR i i i g

MR i i i

t v x

t v

  

  

z Az Bf x x E

y Cz Df x x n

  

                      
(23) 

in which the following parameters are used 

1 1 

 
    

0 I
A

M K M C                            
(24) 

1

 
  
 

0
B

M F                                
(25) 

1 1 

 
   
   

I 0

C 0 I

M K M C
                           

(26) 
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1

 
   
  

0

D 0

M F
                               

(27) 

 
  
 

0
E

F                                  
(28) 

where F is the location matrix of Chevron braces within the building structure, n is the noise 
vector, ix and ix are the displacement and the velocity at the thi floor level of the 
three-storybuilding structure, respectively. Properties of the three-story building structure are 
adopted from Dyke et al. (1996). 

 
3.3 Simulation 
 
To demonstrate the effectiveness of the PANFIS model, a set of input-output data is generated 

from a building equipped with an MR damper. MR damping forces and an artificial earthquake are 
used as input signals while the structural response is the output. In system identification, it is 
critically important to generate input signals for training the system model such that the input data 
include a broad range of spectrums. Hence the MR damping forces are produced using a random 
voltage generator so that much voltage information is included in the data set of the applied MR 
damper forces. As the 2nd input signal, the artificial earthquake is developed such that the 
stochastic signal has a spectral density defined by the Kanai-Tajimi spectrum (Yang et al. 1987). 
Although the proposed modeling framework can be applied to any type of signals such as 
accelerations, velocities, and displacement (or drift), the output in this study is the acceleration. 
The reason is that accelerometer is relatively cheap and is easy to install into large-scale civil 
infrastructural systems. Furthermore, accelerometers provide absolute measurement values, not 
relative one. This acceleration-based prediction model will be useful to implement output feedback 
controllers into large civil structures, i.e. acceleration feedback control systems. Note that many 
structural control systems are implemented using acceleration responses (Schurter and Roschke 
2001).  

Once the set of input and output data is generated, the approach proposed in Section 2.2 is then 
applied, i.e., PCA is first used to compress the five-seconds-long artificial earthquake signal to a 
one-second-long signal using a window function. The performance of the proposed PCA algorithm 
may change depending on the width of the window function. Hence it is recommended that the 
window width should be optimized. Furthermore, the use of adaptive window functions would 
improve the robustness of the proposed algorithm in detecting some sudden peak in the structural 
responses during very short periods such as impulse loading. The segments of the signal along 
with the corresponding PCA coefficients are illustrated in Fig. 6. It should be noted that the sum of 
squares of the PCA coefficients is equal to one. In this paper, the two components (b) and (c) of 
artificial earthquake shown in Fig. 7 are used with the corresponding MR damper forces and 
acceleration responses to train the ANFIS model, reducing the computation load significantly. 

The architecture of the PANFIS model is determined via trial-and-error strategies: the number 
of MFs is chosen to be two for both earthquake and MR damper force. Gaussian MFs are used as 
the design variables. Maximum number of epochs is 150 and the step size is chosen as 0.001. 
Although the architecture of the PANFIS model can be optimized through an optimization 
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procedure, it is beyond the scope of the present paper. 
Fig. 8 compares the dynamic response of the original simulation model with that of the trained 

PANFIS model. Notice that the original simulation model is an analytical model of the building 
equipped with an MR damper subjected to the artificial earthquake signal. As seen, overall good 
agreements between the original data and the identified PANFIS model is found. The modeling 
errors are quantified using indices defined later. As previously discussed, the performance of the 
PANFIS model can be improved by increasing input parameters, which can also significantly 
increase computation time, however. 

 
 
 

 
(a) Artificial earthquake 

 
(b) MR damping forces 

 
(c) Structural responses 

Fig. 6 A set of input and output for training the PANFIS model 
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(a) 0.08    (b) 0.98   

  
(c) 0.26   (d) 0.01    

 

(e) 0.01    

Fig. 7 Five segments of the artificial earthquake with corresponding PCA coefficients 
 
 
It is necessary to validate the trained model using data that are not used for training the model 

so that the trained model can be used for a range of possible earthquakes. The selected earthquakes 
include El-Centro, Kobe, Hachinohe, and Northridge. Because the benchmark smart building used 
in this study is a 1/5 scale model structure, all the real earthquakes that were used for both training 
and validating were reproduced at five times the recorded rate (Chung et al. 1989, Dyke et al. 
1998). However, it should be noted that this proposed approach can be applied to any type of 
signals by adjusting the width of the window functions. Figs. 9-12 show comparisons of the actual 
accelerations at the third story level and the predicted responses obtained from the PANFIS for the 
validating earthquakes. It is clear from the figures that the validated responses correlate well with 
the actual accelerations, meaning that the proposed PANFIS model is effective in modeling the 
nonlinear dynamic response to various earthquake signals. The accuracy of the identified model 
can be improved by increasing either the number of MFs or the step size. However, these increased 
parameters (i.e., overtraining) may not be an efficient approach for validating the developed model 
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using other data sets. 
 
 

 

Fig. 8 Training: Artificial earthquake 
 
 

Fig. 9 Validation: El-Centro earthquake 
 
 

Fig. 10 Validation: Northridge earthquake 
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Fig. 11 Validation: Kobe earthquake 
 
 
In order to quantify the error and the relationship between the predicted response and the actual 

response of the structure, six indices are introduced. The first index 1J  is the maximum error of the 
estimated data 

 1 ˆJ Max y y  
                           

(29) 

where ŷ is the estimation and y  is the actual structural response data. The next index, 2J is the 
minimum error of the predicted data 

 2 ˆJ Min y y  
                           

(30) 

Root-mean-square error (RMSE) index 3J  is defined as 

 2

3

ŷ y
J RMSE

N


 



                        
(31) 

4J  is also used for evaluating the fitting rate of the predicted data as follows. Note that if the 

PANFIS model produces the same responses as the simulation model, the fitting rate 4J will be 
100%. 

 4

ˆvar( )
1

var

y y
J

y

 
   
 




                        

(32) 

The training time is considered as another index 5J  

5 training timein minutesJ                        (33) 

To compare the validation results of ANFIS and PANFIS, 6J  is defined. It is simply the 

absolute value of the difference between the fitting rate index 4J  of the ANFIS and PANFIS 
results 
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Table 1 Training results of ANFIS and PANFIS 

 
 

Table 2 Validation of the trained models 

 
 

 

6 4 4
ANFIS PANFISJ J J 

                            
(34) 

The evaluations of the training results are provided in Table 1. It is evident from 4J and 5J  
that the accuracy of the PANFIS model is close to that of ANFIS, while PANFIS’s training time is 
35.13% of ANFIS’s, proving to be an efficient method. 

The validation errors arefor ANFIS and PANFIS models also provided in Table 2. It shows that 
the PANFIS model performs slightly better than ANFIS with a significant decrease in computation 
time (approximately 64.87% less than ANFIS). 

 
 

4. Conclusions 
 
In this paper, an efficient PCA-based adaptive neuro-fuzzy inference system (PANFIS) is 

proposed for a fast nonlinear system identification of seismically excited building structures 
equipped with magnetorheological (MR) dampers. To fully exploit their advantages, 
Takagi-Sugeno fuzzy model, principal component analysis, and artificial neural networks are 
integrated to create the PANFIS system. The proposed model yields accurate results for the system 
identification of smart structures with significantly reduced time of computation compared to 
ANFIS. To train the input-output mapping function of the PANFIS model, an artificial earthquake 

System 

Number 
of MFs 
for each 

input 

1J
(m/s2) 

2J  

(m/s2) 
3J  

(m/s2)
4J
 

(%)
 5J

 
(min.) 

6J
 

(%)
 

ANFIS 2 16.78 0 2.973 73.22 2.068 
1.68 

PANFIS 2 16.87 51.131 10 3.058 74.90 0.7265 

Index 
El-Centro Northridge Kobe Hachinohe 

ANFIS PANFIS ANFIS PANFIS ANFIS PANFIS ANFIS PANFIS

1J  7.814 7.574 33.50 25.97 21.49 19.24 7.567 7.284 

2J  7.137 0.025 35.17 5.281 21.22 43.68 60.91 4.845 

3J  1.301 1.249 1.785 1.969 3.278 3.445 1.054 0.736 

4J  66.86 69.38 62.31 64.33 45.69 44.79 58.58 67.38 

5J
 

2.068 0.727 2.068 0.727 2.068 0.727 2.068 0.727 

6J  3.769 3.14 2.01 13.06 

1155



 
 
 
 
 
 

Soroush Mohammadzadeh, Yeesock Kim and Jaehun Ahn 

 

signal and an MR damper force signal are used as a disturbance input signal and a control input, 
respectively, while the acceleration response is used as output data. Furthermore, a variety of other 
earthquake records, MR damping forces, and their associated responses are used to validate the 
trained model. This approach can be applied to an integrated model of a building employing 
nonlinear MR damping devices without decoupling the identification procedure of the highly 
nonlinear MR damper from that of the primary building. It is demonstrated through the simulation 
results that the proposed PANFIS model is effective in identifying the nonlinear behavior of the 
seismically excited building-MR damper system while significantly decreasing the training time. 
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