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Abstract.    In many of the industrialized countries an increasing amount of infrastructure is ageing. This has 
become specifically critical to bridges which are a major asset with respect to keeping an economy alive. 
Life of this infrastructure is scattering but often little quantifiable information is known with respect to its 
damage condition. This article describes how a damage tolerance approach used in aviation today may even 
be applied to civil infrastructure in the sense that operational life can be applied in the context of modern life 
cycle management. This can be applied for steel structures as a complete process where much of the damage 
accumulation behavior is known and may even be adopted to concrete structures in principle, where much of 
the missing knowledge in damage accumulation has to be substituted by enhanced inspection. This 
enhanced and continuous inspection can be achieved through robotic systems in a first approach as well as 
built in sensors in the sense of structural health monitoring (SHM). 
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1. Introduction 
 

1.1 Ageing infrastructure life cycle management – a motivation 
 
In many of the highly industrialized countries today a lot of infrastructure has been built when 

economy has been taking off. In Germany this has been specifically after WW II as it has been 
happening in a similar way in Japan too. Other countries such as France, the UK, Canada or the 
USA have accumulated also a large number of infrastructure over the last century or two, although 
the establishment of their infrastructure may have been spread more evenly over time. All of this 
infrastructure was built somehow for a vaguely specified period of time which could even be 
defined as ‘forever’, although when thoroughly checked the assumed life is said to be no more 
than 100 years. However, nobody truly has made this check or better, this infrastructure said to last 
for at least 100 years is most likely to last much longer. Much of this infrastructure is even listed 
which is a definition per se that life can be ‘forever’. In many of the cases the degree of damage of 
this infrastructure is not sufficiently known because loads have not been clearly recorded and 
design documents have vanished. However, loads resulting from operation as well as the 
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environment may have changed significantly, specifically in the case of bridges, which do make a 
sufficiently realistic estimation of the damage condition of those structures even more difficult.  

All of this ageing infrastructure needs to be managed with regard to its integrity and the 
question of the damage to be tolerated from a structural integrity as well as from an economic 
point of view arises. Life cycle management therefore becomes essential and the question is on 
how to take this approach. Structures being exposed to loads do damage specifically when they 
exceed a threshold value. Those loads can be mechanical as well as environmental where the two 
types of load interact in a way that the environmental loads will reduce the threshold of the 
mechanical loads leading damage to be initiated. Loads applied to structures can be measured in 
terms of traffic loads, wind, snow, temperature, humidity and possibly more. However, a key 
question arises what damage those loads cause and what damage is defined to be (crack, 
delamination, stiffness loss, material loss, etc.). A further question arises as to how damage 
accumulates as a function of loads over time and when a damage becomes critical. Such an 
assessment can only be done when: 

1. A detectable damage can be defined from an inspection point of view, 
2. A critical damage can be defined from a structural integrity point of view, 
3. The time for the damage to grow between the detectable and the critical damage condition 

can be determined. 
Such an approach is fairly possible with metallic materials at least to a significant extent. It 

starts from the fact that damage can be detected by means of nondestructive testing and a tolerable 
damage can be defined from a structural integrity point of view as well. In metals such as steel 
damage is widely defined as a crack and with the help of fracture mechanics the time can be 
predicted how long a damage/crack will take to progress from a detectable to a critical size. This 
time interval combined with the stochastic nature of damage progression will then determine when 
an inspection will have again to be made and where a non-critical damage may be found that then 
will have to be rectified. This is to what extent damage tolerant design is performed in aviation 
where the objective is lightweight design. However, when lightweight design is less of an issue 
such as in civil engineering, damage tolerant design can still be of an advantage in terms of 
extending a structure’s safe operational life. 

When it comes to non-metallic structures such as made from concrete the damage tolerance 
approach becomes more complicated since neither the detectability nor the criticality of damage as 
well as the way damage propagates as a function of applied loads is known. However, still the 
damage tolerance approach described for metallic structures can be applied in principle with the 
difference that many of the damaging phenomena including the damage accumulation process are 
less known. Damage assessment in concrete structures today is still fairly crude and is mainly 
based on visual inspection only where an experienced inspector will judge if a structure has to be 
classified as ‘green’, ‘yellow’, or ‘red’ equivalent to a traffic light system. Neither a quantifiable 
degree of damage nor a description of damage accumulation exists for concrete structures so far 
and it is such that only by visual inspection those structures can be assessed today with the 
additional effect that the experience and hence images gathered can serve as a database to study 
damage progression as a function of applied loads. Furthermore this procedure does possibly allow 
the respective mechanisms leading to damage progression in a fairly composite material such as 
reinforced concrete to be derived. 

Civil infrastructures with bridges being a good example are large and hence difficult, risky and 
expensive to inspect. This prevents those structures to be inspected frequently by human inspectors. 
However when it comes to damage tolerance of those structures where damage mechanisms are 
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In the respective case for a quenched and tempered SAE 4140 steel shown in Fig. 5 where 
 has been 480 MPa and  has been 680 MPa respectively, the stress levels for these 

CAT have been chosen to be 500 MPa and 640 MPa respectively.  
In Fig. 6 the stress amplitude is plotted versus the damage relevant parameters recorded in the 

LIT as well as the respective damage relevant value obtained at half of the fatigue life for the two 
CATs. To take the pre-damage of lower load levels of the LIT into account, the values of the two 
CATs are used as anchoring points for the transfer of the stress-damage parameter relation of the 
LIT to the one for constant amplitude loading by a linear interpolation function based on the stress 
amplitude ratios of CAT and LIT.  

A power law proposed by Morrow (1964) is used to describe cyclic stress-strain (CSS) curves 
of the load increase test and the constant amplitude tests. This power law has been used in a 
generalized formulation with the cyclic hardening coefficient  instead of  and the cyclic 

hardening exponent  instead of respectively, applying the different damage parameters 
mentioned above such as plastic strain, temperature, electrical resistance or electromagnetic 

impedance, leading this power law to become 

  Mn
Ma

n
pa MKK   )(,                       (1) 

A similar approach is made with regard to the S-N-curve where the Basquin Eq. (5) is applied. 
Here the fatigue strength coefficient  is replaced by the  and the fatigue strength 

exponent  by  respectively, leading to 
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b
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According to Morrow the fatigue strength exponent  can be calculated on the basis of the 

cyclic hardening exponent  
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With the strain hardening exponent  being known from the LIT the fatigue strength 

exponent is determined and with the result of one of the CAT the fatigue strength coefficient 
 can be determined from Eq. (2) too. This finally allows the S-N-curve to be described on 

the basis of  and  only leading to 
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                           (4) 

Fig. 6(a) shows results of proportionally downscaling CAT results from the LIT results and 
proving that a linear relationship can be drawn between the two CAT results obtained.  

Fig. 6 shows on the right hand diagramme the S-N curve obtained with the PHYBAL approach 
and the good match with experimental data for the quenched and tempered SAE 4140. Compared 
to conventional fatigue testing and the way materials data have been presented in the past (Boller 
and Seeger 1987) PHYBAL is an approach that reduces the effort of generating materials data for 
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The different damage parameters considered such as plastic strain, temperature, electrical 
resistance or electromagnetic impedance are very much associated with physical parameters being 
used in nondestructive testing (NDT). Specifically electromagnetic techniques such as measuring 
eddy current impedance, permeability, higher harmonics or Barkhausen noise are techniques which 
have been used to characterize materials under different conditions including ageing at even 
sub-microscopic cracking conditions. An overview of the capabilities of those techniques with 
regard to describing mechanical conditions of materials has been provided in (Boller et al. 2011) 
and its capabilities in analyzing materials even at microscopic level has been described in (Sheikh 
Amiri et al. 2014) respectively. Fig. 8 shows the result obtained on a quenched and tempered SAE 
4140 steel fatigue tested under constant amplitude loading with a stress amplitude of 620 MPa 
where the electromagnetic impedance has been measured using a giant magnetic resistor (GMR) 
(Starke et al. 2009). A sensitivity higher than measuring plastic strains has been determined which 
gives rise to the fact that damage and hence damage accumulation can be measured even below the 
stage where micro-cracking does emerge. 

 
 

3. An Approach for lifecycle management of aged steel infrastructure 
 
As to the methodology described above a lifecycle management concept for ageing steel 

infrastructure can now be established. It is based on the availability of the digital (FE) model of the 
structure considered including the load spectrum being applied to it. This model can be determined 
for even an old structure and can be continuously updated by monitoring strain sequences at 
well-selected locations. With this a fatigue life estimation becomes possible which allows damage 
accumulation to be determined at discrete locations of the structure considered where the locations 
become indicators for visible damage is to be expected first. Since crack initiation is a stochastic 
process a FE model may require an update with regard to the structural damage condition detected 
such that a more precise prediction can be achieved. This looks possible when NDT data such as 
with electromagnetic techniques can be sampled and correlated to the different damage conditions 
over a fatigue life. This may be performed along the LIT and CAT experiments in case the 
PHYBAL method is applied and will result in diagrams of the type shown in Fig. 6. This will 
describe the non-linearity of damage accumulation and may serve as the calibration source once it 
has been normalized such that the non-linearity in damage accumulation can be literally applied all 
along the S-N curve. It will significantly help to circumvent the errors made when applying 
linearized damage accumulation rules such as proposed by Palmgren and Miner. Performing 
electromagnetic sampling at various locations of interest along the structure considered on the 
other hand will allow a full profile of the electromagnetic parameters over the structure to be 
generated. This profile of electromagnetic parameters can be converted to a stress distribution 
profile based on the information provided in Fig. 6. Merging this with the damage parameter 
progression curve obtained for a CAT performed at a defined stress amplitude such as shown in 
Fig. 8 will principally allow a reference point with regard to the degree of damage and hence the 
number of cycles to be found, which will then allow the damage profile of the structure to be 
determined in even absolute terms. This profile can be matched and further updated with the 
fatigue life predictions made and will principally allow for a continuous model update gradually 
refining any damage assessment models such that the structure considered can be managed in 
terms of maintenance, repair and overhaul in the longer term. With sensing devices such as 
monitoring loads or damage being even placed stationary at damage critical locations will allow a 
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way of structural health monitoring to be performed on a wireless basis making management of a 
large number of steel infrastructure possible from a central location only. 

 
 

4. Concrete infrastructure assessment 
 

Concrete is a material much more difficult to understand with regard to its damaging behavior 
when compared to metals. It is a composite material at macro-scale of a mainly brittle nature, 
which can be pre-stressed and may possess cracks already at its onset. It is not exposed to 
mechanical loads only but also to environmental loads where moisture, corrosion and resulting 
carbonation can play a significant role. Concrete structures as they are designed today as well as in 
the past are said to be principally damage free. This is however far from reality as can be seen with 
an increasing number of concrete structures worldwide now deteriorating. 

The approach on how to assess a concrete structure with respect to its life cycle management is 
principally similar to the one applied for steel. Damage could be tolerated provided the criticality 
of the damage is known and the way the damage progresses from a detectable to a critical stage. 
The way concrete structures are assessed today is mainly by visual inspection only. The structures 
are then categorized such as in accordance to a traffic light system, which must be considered as a 
rather subjective approach. Application of NDT in civil engineering can still be considered to be in 
its infancy. First publications in this field appeared in the mid 1980ies and there is still not much 
NDT technology being already available which possesses the maturity to be standardized. 
Overviews with regard to some latest developments of NDT in civil engineering can be found in 
(Kurz et al. 2011, Dobmann et al. 2010) as well as in the proceedings of some recent conferences 
(Wiggenhauser et al.). 

If damage tolerance was to be applied to concrete structures then much inspection would have 
to be required since the period from when first cracking may be observed on a concrete structure 
up to a condition where concrete coverage falls off due to corrosion at and carbonation along the 
metallic rebars may be short or at least fairly impossible to predict. Frequent inspection calls for 
automation of the inspection process and this inspection can become risky, specifically when a 
structure becomes large such as in the case of a bridge. Automation of the process using a robot (or 
multiple robots) equipped with sensors such as digital cameras is therefore an option interesting to 
be explored since it can be used to replace the human inspector. The approach having been taken 
for inspection is based on a micro aerial vehicle (MAV), which is equipped with a digital camera 
underneath such as shown in the case of an octocopter in Fig. 9. The MAV is flown remotely and 
scans the building to be monitored. The camera is set in a continuous trigger mode with a 
frequency of 3Hz, which is also known as the time based method of image capturing. Even though 
the robot is fitted with a GPS receiver and can operate GPS based, the entire flight process is 
manually controlled. This is due to the lack of GPS signal when the vehicle flies close to the 
structure to be monitored. The autopilot together with some additional features such as a vector 
thrust propulsion system only provides auto-stabilization and altitude control. Flight stability of 
the robotic vehicle is important since it is directly correlated to the quality of the images taken. 

To successfully run the photographic monitoring initially, a flight route well planned is most 
essential. For a camera with an image ratio of say 4:3, a horizontal flight route scanning will 
produce a series of pictures with lowest achievable distortion, which is the reason why a horizontal 
scanning is usually preferred. During the monitoring process a volume of several GB of images is 
easily accumulated. From those images only a fraction of the best can be taken for being stitched 
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4. Conclusions 
 
Inspection of civil infrastructure such as bridges has been increasingly improved over the past 

decades. With FE modelling emerging as an established technique, stress, strain and temperature 
distributions in structures have become viably determinable. Similar observations regarding 
simulation can be made with regard to the dynamic behavior of structures. The consequences of 
loads applied to structures can therefore be simulated and with the emergence of a variety of 
sensors those loads can be monitored too. Hence a fairly realistic loading behavior can be 
simulated in structures which again can be correlated to the resulting damaging behavior of the 
structural material considered. Description of this damaging behavior is qualitatively different with 
respect to the type of material and the type of damage considered. With metals and fatigue the 
degree of damage modelling is comparatively advanced while with corrosion it is already less and 
becomes close to zero when moving to other types of materials such as concrete, wood or polymer 
based composites. This leaves visual observation and assessment as the only option and 
denominator in getting the condition related information retrieved and to be combined with the 
structural design methods applied.  

Keeping this general state-of-the-art in structural assessment in mind life cycle assessments of 
metallic structures can be well performed and can even be expanded from a traditional safe life to 
a damage tolerant approach. Combined with destructive and nondestructive assessment techniques 
a structural material’s damage condition can be characterized and merged with prognostic tools 
such as used for fatigue life evaluation. In that regard the PHYBAL approach provides a 
significant progress since it allows much more fatigue related material information to be retrieved 
from a material’s fatigue test than this has been possible in the past. This opens a new quality and 
potential in structural assessment specifically also with the increasing amount of ageing 
infrastructure. Based on monitoring the operational load spectrum with specific sensors at 
dedicated locations the residual life of principally each structure can be determined in the case of 
metals allowing individual maintenance programs to be established in accordance to operational 
needs. With the additional introduction of a damage tolerance principle this can further help to 
postpone maintenance actions and alleviate pressure that might have been imposed when 
conventional safe life time-based approaches would have had to be performed. 

When considering the case of concrete structures, visual inspection is the only approach 
accepted for structural assessment currently. Even if other more efficient non-destructive testing 
techniques might be accepted in the future, visual inspection will still build the basis as it has been 
with metallic structures too. Establishing a monitoring approach therefore on the basis of visual 
inspection is logic for whatever material a structure might be made of, specifically when the image 
is on a digital and hence pixel basis. This pixel-based digitized information builds a basis into 
which additional information can be hung and that can be fed back as an image just in the way 
information on a structure’s condition should be communicated even to people not being experts 
with respect to damage analysis and SHM. 

The approach being proposed here provides a variety of elements that as a combination meets 
the requirements and definitions set for SHM to be performed (Boller 2009) and it can be seen as 
an amendment to what has already been compiled in (Boller 2009) and possibly other pieces of 
reference. With such a diagnostic and prognostic approach a means is therefore provided that 
allows structures to be better assessed in terms of their degree of damage as well as their residual 
operational life. Generating such a type of such damage related information is important in at least 
two regards. First of all it allows to better differentiate the degrees of severity of the different 
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damaging condition of a structure which then allows respective maintenance actions to be planned 
in much more detail and more efficiently than this is done conventionally today. This is important 
from the point of view that maintenance actions do have to be optimized from a cost and 
organizational point of view and to which the approaches proposed here do contribute. 
Furthermore the digitally based approach resulting from the pixel based visual inspection provides 
an excellent data base onto which any further structural information retrieved from other NDT 
techniques can be added and built upon. This will allow true log files of structures to be 
established in the future and allow a structure’s integrity history to be retrieved in much more 
detail than this has been done before. 

The damage tolerance principle as a tool of life cycle management of civil infrastructure is 
therefore principally applicable to any type of structural material. However where the material’s 
damaging behavior is better known such as with metals more of the prognostic capabilities can be 
taken to substitute the inspection effort while with other materials such as concrete a larger 
inspection effort is required until prognostic tools will become available one day. This larger 
inspection effort can currently be compensated through robotic inspection. That the damage 
tolerance principle is becoming viable in civil engineering has been proven with some life cycle 
analysis and management concept proposed in (Wenzel et al. 2013, Veit-Egerer et al. 2013) where 
deterioration of a civil infrastructure is determined as a scatter band as shown as an example in the 
diagram of Fig. 12 considering the variety of possible uncertainties involved. This diagram 
principally does not display anything else than an inversion of a crack propagation curve s shown 
in Fig. 1 before. However what Fig. 12 additionally shows is the criticality of the damage in terms 
of a traffic light system and what implications investments in maintenance would have, shown by 
the kinks in the lower bound degradation curve. With such a procedure the drawbacks of 
negligence in maintenance can be clearly visualized even to the non-engineering community and a 
first steps towards a more efficient life cycle assessment and resulting management of civil 
engineering structures can be made. 
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