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Abstract.  When a building structure requires both health monitoring system and vibration control system, 
integrating the two systems together will be cost-effective and beneficial for creating a smart building 
structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). 
This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration 
control can be integrated in real time to accurately identify time-varying structural parameters and unknown 
excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other 
hand. The basic equations for the identification of time-varying structural parameters and unknown 
excitations of a semi-active damper-controlled building structure are first presented. The basic equations for 
semi-active vibration control of the building structure with time-varying structural parameters and unknown 
excitations are then put forward. The numerical algorithm is finally followed to show how the identification 
and the control can be performed simultaneously. The results from the numerical investigation of an 
example building demonstrate that the proposed method is feasible and accurate. 
 

Keywords:  building structure; identification; time-varying parameters; unknown excitation; vibration 
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1. Introduction 
 

In the last few decades, a great deal of research has been conducted on health monitoring and 

vibration control of building structures subject to earthquakes, strong winds, and other natural or 

man-made hazards. Comprehensive reviews on vibration control technologies for civil structures 

were given by Housner et al. (1997), Nishitani and Inoue (2001), and Spencer et al. (2003). There 

are also many state-of-the-art reports on health monitoring technologies for civil structures (e.g., 

Doebling et al. 1996, Mufti 2001, Sohn et al. 2003, Wenzel 2009, Xu and Xia 2012). However, the 

areas of vibration control and health monitoring have mostly been investigated separately although 

both vibration control system and health monitoring system need similar sensors, data acquisition, 

transmission and processing devices. When a building structure requires both vibration control 

system and health monitoring system, integrating both systems together will be cost-effective by 
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sharing the same hardware devices and beneficial for creating a smart structure with its own 

sensors (nervous system), processor (brain system), and actuators (muscular system). 

In mechanical engineering, Ray and Tian (1999) introduced a method of enhancing modal 

frequency sensitivity to damage using a feedback control that intended for smart structures 

embodying self-actuation and self-sensing capabilities. Gattulli and Romeo (2000) presented an 

integrated procedure based on a direct adaptive control algorithm for uncertain 

multi-degree-of-freedom (MDOF) systems. Viscardi and Lecce (2002) proposed an integrated 

system for active vibro-acoustic control and damage detection on a typical aeronautical structure 

based on piezoelectric devices. Deng et al. (2011) proposed a self-adaptive modal control 

including both identification and control update in real-time. However, these studies focused on 

actively controlled mechanical systems that are different from civil structures where structural 

systems are more complicated with uncertainties and active control may become problematic.  

In civil engineering, Nagarajaiah and Jung (2014) reviewed a number of recent papers on 

vibration frequency tracking and semi-active control of building structures using smart tuned mass 

dampers. Xu and Chen (2008), Chen and Xu (2008), and Chen et al. (2010) proposed an integrated 

procedure of vibration control and health monitoring of building structures in the 

frequency-domain and the time-domain respectively, using semi-active friction dampers to fulfill 

model updating, seismic response control and damage detection of the building structure based on 

the change of natural frequencies and mode shapes. Huang et al. (2012) and Xu et al. (2014) 

extended their methods in the frequency domain based on the change of frequency response 

functions. Nevertheless, these procedures cannot realize real-time integration of vibration control 

and health monitoring of building structures. Recently, Yang et al. (2013) presented a hybrid 

real-time structural health monitoring and control system for building structures, in which a 

model-reference adaptive control algorithm was integrated with an inter-story drift-based 

acceleration feedback method for health monitoring. In their study, the earthquake-induced ground 

excitation to a building structure was assumed to be known for both vibration control and health 

monitoring, and structural vibration control was implemented using active control technology. 

For civil structures, external excitations such as earthquake-induced ground motion and 

typhoon-induced buffeting forces are difficult, if not impossible, to be measured directly and 

accurately on site. The real-time identification of external excitation for both vibration control and 

health monitoring is necessary. Moreover, even for a building structure with control devices, 

structural damage may occur during an extreme event and structural parameters of damaged 

components are actually varying with time. To ensure control performance, time-varying structural 

parameters shall be identified and control parameters shall be adjusted accordingly. It shall be 

noted that the identification of time-varying structural parameters in such a case is for a controlled 

building structure and thus real-time control forces shall be taken into consideration in the 

identification.   

This paper presents a real-time integrated procedure to demonstrate how health monitoring and 

vibration control can be integrated in real time to accurately identify time-varying structural 

parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of 

the building structure on the other hand. The basic equations for the identification of time-varying 

structural parameters and unknown excitations of a magneto-rheological (MR) damper-controlled 

building structure under earthquake excitation are first presented based on the least-squares 

estimation method as well as the measured structural responses and control forces. The basic 

equations for semi-active control of the building structure with MR dampers and clipped optimal 

displacement control algorithm are put forward based on the updated time-varying structural 
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parameters and unknown excitations. The numerical algorithm is then followed to perform both 

identification and control simultaneously. The feasibility and accuracy of the proposed method is 

finally examined through the numerical investigation of an example building. 

 

 

2. Structural health monitoring 
 

For a building structure subject to earthquake-induced ground excitation (see Fig. 1), damage 

may occur and the structural parameters of damaging structural components may vary with time 

during the ground excitation. To detect damage and identify time-varying structural parameters 

on-line in the time domain, a structural health monitoring system including sensors, data 

transmission system, data acquisition system and data analysis system should be installed in the 

building structure to provide essential and correct information. If the earthquake-induced ground 

excitation cannot be directly measured, the identification of ground excitation is also necessary. In 

some cases, the building structure is equipped with control devices to mitigate seismic-induced 

vibration. Therefore, the identification of time-varying structural parameters and ground excitation 

of a controlled building structure is an important part of structural health monitoring. In this 

section, the basic equations for the identification of time-varying structural parameters and 

unknown excitations of a MR damper-controlled building structure under earthquake excitation are 

presented based on the least-squares estimation method as well as the measured structural 

responses and control forces. Although the identification of time-varying structural parameters and 

unknown excitation was investigated before using the wavelet analysis (Basu et al. 2008), neural 

estimation method (Kosmatopoulos et al. 2001), least-squares estimation method (Yang and 

Huang 2007, Yang et al. 2007), and the extended Kalman filter method (Lei et al. 2012a, Lei et al. 

2012b), the method proposed in this study is more accurate and efficient. 

 

2.1 Equation of motion 
 

In this study, the structural mass matrix M is assumed to be known and constant for the 

simplicity of presentation although it is not absolutely necessary. Other structural parameters, such 

as damping and stiffness coefficients, are time-varying as structural damage occurs with time. 

Excitations on a controlled building structure can be separated into two parts: control forces and 

unknown excitations. Consequently, the second-order differential equation of motion of a building 

structure with n degrees-of-freedom (DOF) is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t+ +  +* *
MX C X K X φ f φf                (1) 

where M , ( )tC and ( )tK represent the mass, damping and stiffness matrices of the building 

structure, respectively; ( )tX , ( )tX  and ( )tX  are the  structural acceleration, velocity 

and displacement response vectors, respectively; ( )t*
f is the  measured control force vector 

with the influence matrix
*

φ  ( ); and ( )tf  is the  unknown excitation vector with the 

influence matrix ( ). 

For the controlled building structure with semi-active MR dampers and subjected to earthquake 

excitation, the semi-active control forces could be measured by force transducers to form the 

measured control force vector, while the earthquake-induced ground acceleration could be treated 

n n

1n

1r

n r 1s

n s
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as the unknown excitation vector.  

 

2.2 Multiple linear regression equation 
 

Suppose that Z is an  unknown time-varying structural parameter vector, which can 

include both structural stiffness and damping parameters. The unknown time-varying structural 

parameter vector at time is denoted as kZ , in which is the sampling interval. 

The observation (measurement) equation associated with Eq. (1) at time  can be 

described as 

k k k k k  +y H Z φf v
                         (2)

 

where
*

k k k  + *
y MX φ f is a 1n  measurement vector which can be obtained by the measured 

structural acceleration responses kX and the measured control forces
*

kf ; kH is an 

observation matrix composed of the measured structural velocity and displacement responses kX  

and kX ; kv represents a 1n  noise vector, taking into consideration the model uncertainty of the 

structure and the measurement noise. The noise vector can be assumed as a white noise with a 

normal probability distribution. The subscript represents the values of matrices or vectors at 

time . 
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Fig. 1 Schematic diagram of a building structure with integrated health monitoring and vibration control 

system. (a) sensors and MR dampers and (b) mechanical model of MR damper-brace system 
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810



 

 

 

 

 

 

Integration of health monitoring and vibration control for smart building structures… 

There are two variable vectors kZ and kf in Eq. (2) to be predicted. Therefore, Eq. (2) is a 

multiple linear regression equation. Furthermore, the elements in the predictor variable vectors are 

time-varying. The traditional least-squares estimation method for solving the simple linear 

regression equation to find constant structural parameters cannot be directly applied to Eq. (2). 

 

2.3 Transformation to simple linear regression equation 
 

From Eq. (2), one can obtain 

k k k k k  + +φf y H Z v
                          (3)

 

The closest solution of kf in Eq. (3) can be given by the following projection matrix. 

1

, ( ( )T T

k LS k k k k

  + +f φ φ) φ y H Z v
                    (4)

 

The error of the solution from Eq. (4) is given by 

,

1

1

( ) ( ( )

( ( )( )

k k LS

T T

k k k k k k k k

T T

n k k k k

err =







  + +   + +

   + +

φf φf

y H Z v φ φ φ) φ y H Z v

I φ φ φ) φ y H Z v
             (5)

 

in which nI is the  identity matrix; and the matrix 
1( T T

φ φ φ) φ  is the projection matrix 

that projects the vector k k k k + +y H Z v  on to the space spanned by the columns of φ .  As a 

limit, the error in Eq. (5) tends to be zero, leading to 

k k k k +Φy ΦH Z Φv
                          (6)

 

where
1( )T T

n

 Φ I φ φ φ φ for the simplicity of presentation. It is noted that the projection 

matrix and naturally the matrix Φ has the two properties: (1)Φ  is a symmetric matrix,
T Φ Φ ; 

and (2)
2 Φ Φ . As a result, the multiple linear regression equation expressed by Eq. (2) is 

transformed into the simple linear regression equation expressed by Eq. (6). 

 

2.4 Recursive least-squares estimation for time-varying parameters 
 
When a structure is being damaged, the structural parameters vary with time. To track the 

parametric variation due to damage with unknown inputs, Yang et al. (2007) implemented the 

adaptive tracking technique into their recursive least-squares estimation with unknown inputs 

(ARLSE-UI). In this study, a simple time-varying correction factor is introduced together with Eq. 

(6) to identify the parametric variations due to structural damage. The recursive least squares 

estimation of Eq. (6) yields 

1 1 1 1
ˆ ˆ ˆ ˆ ˆ( ) ( )k k k k k k k k k k k    +   + Z Z K Φy ΦH Z Z K Φ y H Z

         (7)
 

 

n n
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where ˆ
kZ and 

1
ˆ

kZ  are the estimated values of Z  at time  and  

respectively; kK
 

is the least-squares estimation (LSE) gain matrix for ˆ
kZ at time  with 

a size of ;and the term 
1

ˆ
k k kΦy ΦH Z

 
is the correction term. 

The current estimation error k of the unknown parameter vector kZ at time t k t  can be 

obtained as follows 

1 1

1 1

1

ˆ

ˆ ˆ( )

ˆ ˆ( )

ˆ( )( )

k k k

k k k k k k

k k k k k k k k

m k k k k k k

 

 



 

   

   + 

   

ε Z Z

Z Z K Φy ΦH Z

Z Z K ΦH Z Φv ΦH Z

I K ΦH Z Z K Φv
               (8)

 

in which mI is the  identity matrix. If the structural parameters are constants, i.e., 

1k kZ = Z , one can then have 
1 1 1 1

ˆ ˆ
k k k k k      Z Z Z Z ε . However, the structural 

parameters vary with time such as a degradation of stiffness when structural damage occurs. To 

track the structural parametric variations and consequently detect structural damage on-line, a 

time-varying correction factor matrix k  is introduced to reflect the structural parametric 

variations as follows 

1 1 1 1
ˆ ˆ( )k k k k k k k      Z Z Z Z ε 

                   (9)
 

in which k is a diagonal matrix with size of m m . By substituting Eq. (9) into Eq.(8), the 

current estimation error k  could be calculated by 

1( )k m k k k k k k  ε I K ΦH ε K Φv
                  (10)

 

It is noted that Φ  is a symmetric matrix. The estimation error covariance can be obtained as 

1 1

1 1 1

1

1

E( )

E{[( ) ][( ) ] }

( ) E( ) ( ) E( ) ( )

( ) E( )( ) E( )( )

( ) (

T

k k k

T

m k k k k k k m k k k k k k

T T T T T T

m k k k k k k m k k k k k k m k k

T T T T

m k k k k k k k k k k

T

m k k k k k

 

  







    

    

  +

 

P ε ε

I K ΦH ε K Φ I K ΦH ε K Φv

I K ΦH ε ε I K ΦH K Φ v ε I K ΦH

I K ΦH ε v K Φ K Φ v v K Φ

I K ΦH P I

v 

  



  )T T

m k k k k k +K ΦH K ΦR ΦK
(11)

 

where = E( )T

k k kR v v is the covariance of noise kv . Moreover, the estimation error 1kε at time 

can be assumed to be independent of the noise vector kv  at time , and 

accordingly 1 1E( ) E( ) 0T T

k k k k  v ε ε v in Eq. (11). 

t k t  ( 1)t k t  

t k t 

m n

m m

( 1)t k t   t k t 
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The time-varying correction factor matrix k can be calculated based on the current 

measurements. It is noted from Eq. (7) that the current correction term at time  can be 

calculated based on the current measurements as follows 

1 1 1
ˆ ˆ( )k k k k k k k k k k k k     +  +r Φy ΦH Z ΦH Z Z Φv ΦH ε Φv= 

         (12)
 

Hence, the time-varying factor correction matrix k can be determined by the following 

equation 

, 1E( )T T

r k k k k k k k k k +P r r ΦH P H Φ ΦR Φ= =  
                 (13)

 

To obtain the optimal value of the gain matrix kK that can minimize the estimation error 

covariance kP  at time , the differentiation of kP in Eq. (11) with respect to kK produces 

1

1 1

/ 2( ) ( ) 2

2 ( ) 2

T T

k k m k k k k k k k k

T T T T

k k k k k k k k k k k



 

     +

 + 

P K I K ΦH P ΦH K ΦR Φ

K Φ H P H R Φ P H Φ

 

   
            (14)

 

By setting the value of the partial derivative to zero, one can obtain 

1 1/ [ ( ) ]T T T T

k k k k k k k k k k k  +K P H Φ Φ H P H R Φ   
              (15)

 

It is noted that 1kP , kR  and Φ are symmetric matrices, the estimation error covariance 

expressed by Eq. (11) could be simplified in terms of Eq. (15) as 

1

1 1 1

1

( ) ( )

=( ) ( )

( )

T T T

k m k k k k k m k k k k k

T T T T T T T

m k k k k k k k k k k k k k k k k k k

T

m k k k k k



  



   +

  + +

 

P I K ΦH P I K ΦH K ΦR ΦK

I K ΦH P P H ΦK K Φ H P H R ΦK

I K ΦH P

 

     

 
(16)

 

Once the estimate value ˆ
kZ of the unknown parametric vector at time is calculated by 

Eq. (7), the estimate value of the unknown excitation vector at time can be estimated by 

1ˆ ˆ( ) ( )T T

k k k k

  f φ φ φ y H Z
                       (17)

 

Eqs. (7), (13), (15) (16) and (17) form the recursive least-squares estimation for identifying 

both time-varying structural parameters and unknown excitations. If all the external excitations can 

be measured and the unknown parametric vector is constant (the influence matrix of the unknown 

excitation vector   in Eq. (1) is a null matrix leading to nΦ= I  and the time-varying correction 

factor matrix k m= I ), the proposed algorithm becomes the same as the traditional recursive 

least-squares estimation method. 

The proposed algorithm canidentify the unknown inputs and time-varying structural parameters 

simultaneously, and the flow chart of the proposed recursive least-squares estimation algorithm is 

shown in Fig. 2. 

t k t 

t k t 

t k t 

t k t 
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Determine      by solving

Calculate estimator gain matrix

Estimate unknown parametric vector

1k k +

Estimate unknown excitation

Modify estimation error covariance

k

Initial values

0 0
ˆ ,Z P

0k 

, 1E( )T T

r k k k k k k k k k +P r r ΦH P H Φ ΦR Φ= =  

1 1/ [ ( ) ]T T T T

k k k k k k k k k k k  +K P H Φ Φ H P H R Φ   

1 1
ˆ ˆ ˆ( )k k k k k k  + Z Z K Φ y H Z

1( ) T

k m k k k k k P I K ΦH P 

1ˆ ˆ( ) ( )T T

k k k k

  f φ φ φ y H Z

Calculate measurement vector

*

k k k  + *
y MX φ f

 

Fig. 2 Flowchart of the proposed method for identifying time-varying structural parameters and unknown 

excitations 

 
 
3. Structural vibration control 

 

When a building structure is subject to earthquake excitation, excessive vibration may occur 

and cause damage (see Fig. 1). Semi-active dampers can be installed in the building structure to 

reduce the excessive vibration and damage. The vibration control system, including sensors, 

semi-active dampers, data transmission system, data acquisition system, control algorithm, and 

data analysis system, should be installed in the building structure to provide essential feedback 

information and form a close loop control. The semi-active vibration control is then implemented 

based on the measured structural responses and the identified time-varying structural parameters to 

generate optimal control forces and achieve the maximum building response reduction. In this 

section, the basic equations for semi-active control of the building structure with MR dampers and 

clipped optimal displacement control algorithm are put forward based on the updated time-varying 

structural parameters and unknown excitations. 
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3.1 Mechanical model of a MR damper 
 

There are a number of mechanical models available to describe the relationship between force 

and motion of a MR damper. For the sake of simplicity to illustrate the integration of structural 

control and health monitoring in this study, the simple Bingham model is adopted.  For a steady 

and fully developed flow, the Bingham model can be used for the shear resistance of MR fluids, 

which has a friction component augmented by a Newtonian viscosity component. The relationship 

between the force dP and velocity e  of the MR damper can be expressed as follows (Gavin et al. 

1996, Xu et al. 2000, Qu and Xu 2001) 

( ) sgn( )d d dP t C e F e +
                        (18) 

in which 

1 23

12
,

p y

d p d p y

LA L
C C A F C A P

bh h

 
  +

                  (19)
 

For the flow-type damper 

2

1 2

1.0
1.0, 2.07 ,

1.0 0.4 12

y

p

bh
C C T

T A e




  + 

+
              (20)

 

For the mixed-type damper 

 

2
1 2 2

1.51.0
1.0 , 2.07 ,

2 1.0 0.4 1.0 0.4 2p p

Vbh bh
C C V

A T T A
   +  

+ +
       (21)

 

whereb  is the width of the rectangular plate; h  is the gap between two parallel plates; L  is the 

effective axial pole length; pA  is the cross-sectional area of the piston; y represents the yielding 

shear stress controlled by the applied field; and yP  is the mechanical friction force in the damper. 

Clearly, dF  is the function of yielding shear stress and it can be controlled through the applied 

field but dC  is independent of the applied field. 

Let us consider a multi-story shear building subjected to earthquake excitation as shown in Fig. 

1(a), semi-active MR dampers can be positioned between the chevron braces and the rigid floor 

diaphragms to enhance its vibration energy dissipation capacity. In consideration of the stiffness of 

chevron brace, the mechanical model for the MR damper-chevron brace system can be seen as a 

damper and a spring being connected in series as shown in Fig. 1(b). When considering the MR 

damper and the chevron brace to be connected in series, the spring force in the brace is equal to the 

force on the piston of the damper. Eq. (18) should thus be correspondingly changed to 

sgn( ) ( )d d dC e F e K u e+  
                       (22)

 

where u is the relative displacement between the two floors with the damper installed and dK  is 

the horizontal stiffness of the chevron brace. 
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3.2 Equation of motion 
 

In terms of Eq. (22), the equation of motion of an n-story frame structure with m dampers 

subject to earthquake excitation can be expressed as 

( ) ( ) ( ) ( ( ) ) ( ) ( ) ( )T

c d c c d e gt t t t t t t+ + + + MX C X K H K H X H K e H x
       (23)

 

1sgn( ) ( 1,2, , )
j j

j j

d d T

j j j c j kj kj

d d

C F
e e e X X j m

K K
+ +    H X

          (24)

 

where ( )tC and ( )tK  are the n n mass, damping, and stiffness matrices of the frame structure, 

respectively, which are the same as those in Eq. (1); ( )tC and ( )tK are the time-varying structural 

damping and stiffness matrices which are updated by the health monitoring system with time; dK  

is the m m diagonal stiffness matrix, of which the element is the stiffness coefficient of the 

chevron brace; m is the number of stories with MR dampers installed; 
cH is the n m matrix 

converting the brace stiffness matrix into the global co-ordinate system; the superscript T means 

the transposition of a matrix; X , X , and X are the 1n relative displacement, velocity, and 

acceleration vectors of the frame structure with respect to the ground, respectively; e is the m×1 

displacement vector of the MR dampers; c jH is the jth column vector of the matrix
cH ; kjX and

1kjX  are the displacements of the top and bottom floors of the k th story where the jth damper is 

installed. 

Eq. (23) can be written to the same form as Eq. (1) by using the following substitutions. 

, ( ) ( ) ( )], , ( ) ( )T

c d c e gt t t t t  + * *
φ = H f K [H X e φ = H f x

        (25)
 

Eq. (23) can also be replaced by an equivalent first-order differential equation of the state-space 

form 

( ) ( ) ( ) ( ) ( )MR MR MR MR MR gt t t t t + +Z A Z B e D x
                (26)

 

in which 

1 1

1 1

( ) ,
( ( ) ) ( )

( )
, , ( )

( )

MR T

c d c

MR MR MR

c d e

t
t t

t
t

t

 

 

 
  

 +  

     
       

    

0 I
A

M K H K H M C

0 0 X
B

M H K M H X
D Z

            (27)

 

In this study, the stiffness matrix and damping matrix of the building structure is constructed 

using the stiffness coefficients and damping coefficients that are identified from the health 

monitoring system in real time. Accordingly, the matrix ( )MR tA  in Eq. (27) is reconstructed at 

each time step of the computation. 
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3.3 Semi-active control algorithm 
 

Xu et al. (2000) presented a clipped optimal displacement control approach in terms of the 

linear quadratic regular (LQR) control theory that minimizes 

0
[ ( ) ( ) ( ) ( )]

ft
T T

MR MR MR MRJ t t t t dt + Z Q Z e R e
                (28)

 

to control the displacement vector ( )T te as 

( ) ( ) ( )T MR MR MR MRt t t e R B P Z
                     (29)

 

where
MRQ  is the weighting matrix for the structure response in the optimal displacement control, 

it is an n n positive semi-definite matrix; 
MRR is the weighting matrix for the damper 

displacement in the optimal displacement control, it is an m m positive definite matrix; the two 

weighting matrices 
MRQ  and 

MRR
 

are often determined by trial and error for the concerned 

problem; and ( )MR tP is the positive definite solution of the following Riccati equation 

1( ) ( ) ( ) ( ) ( ) ( ) 0T T

MR MR MR MR MR MR MR MR MR MRt t t t t t    P B R B P A P P A Q
        (30)

 

The strategy in the clipped optimal displacement control approach (Xu et al. 2000) can be 

described as follows. When the jth damper displacement je is approaching the desired optimal 

damper displacement vector Tje , the friction force djF in the damper is set to its minimum value. 

When the jth damper moves in the opposite direction to the optimal damper displacement, the 

friction force djF in the damper should be set to a smaller value of the two quantities: maxF and 

the actual damper force 1( )dj kj kj jK X X e  minus a small quantity 0F . In this way, the damper 

is always in motion to dissipate vibration energy. This strategy can be stated as 

min

1 0 max

( ) 0
( 1,2, , )

min{ [ ( )] , } ( ) 0

j Tj j

dj

dj kj kj j j Tj j

F when e e e
F j m

abs K X X e F F when e e e

 
 

     (31)

 

The flow chart of the proposed semi-active control with MR dampers is shown in Fig. 3. 

 

 

4. Integrated numerical algorithm 
 

Based on the equations presented in the previous two sections, an integrated numerical 

algorithm can be implemented for real-time system identification and vibration control of the 

building structure step by step as follows: 

Step 1: Obtain time-varying factor correction matrix k at time t k t   by solving Eq. (13) 

based on the current measurements ky . 
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Fig. 3 Flowchart of semi-active control with MR dampers 

 

 

Step 2: Calculate estimator gain matrix kK using Eq. (15) with the time-varying factor 

correction matrix determined in Step 1. 

Step 3: Generate unknown parametric vector ˆ
kZ using Eq. (7) based on the estimator gain 

matrix calculated in Step 2 and the current correction term. 

Step 4: Update estimation error covariance matrix kP by Eq. (16). 

Step 5: Estimate unknown excitation ˆ
kf  using Eq. (17) with the unknown parametric vector 

identified in Step 3. 

Step 6: Take the increment 1k k + . Form coefficient matrices 1MR k+A  and MRB based on Eq. 

(27) as follows 

1 11 1
,

( )TMR k MR

id k c d c id k c d

 + 

   
     +    

0 I 0
A B

M K H K H M C M H K
         (32)

 

where the stiffness matrix id kK and damping matrix id kC of the building structure are constructed 

using the stiffness coefficients and damping coefficients identified from the health monitoring 
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system in Step 3 at time t k t  . 

Step 7: Calculate the matrix 
1MR k+P by solving the following Riccati equation 

 

1

1 1 1 1 1 1 0T T

MR k MR MR MR MR k MR k MR k MR k MR k MR



+ + + + + +   P B R B P A P P A Q
         (33)

 

where the coefficient matrices 1MR k+A  and MRB are formed in Step 6. 

Step 8: Find optimal control displacement vector 1T k+e at time ( 1)t k t +  as 

1 1 1T k MR MR MR k MR k+ + + e R B P Z
                      (34)

 

where the matrix 
1MR k+P  is calculated in Step 7 and the state vector 1MR k+Z  is composed of 

structural displacement and velocity responses at time ( 1)t k t +  . 

Step 9: Determine control forces based on the semi-active control strategy as shown in Eq. 

(31). 

Step 10: Calculate measurement vector at time ( 1)t k t +  for the identification of structural 

parameter and excitation as well as damage detection based on the measured structural 

acceleration responses 1k+X and the measured control forces
*

1k+f  

 

 

External excitations

Building structures

Sensor system

Data acquisition system

Data transmission system

Structural parameters varying with time

Control algorithm

Control devices

Identify parametric variations

Identify structural parameters

Control forces Estimate unknown inputs

Vibration control Damage detection

As shown in Fig. 3 As shown in Fig. 2
 

Fig. 4 Flowchart of a real-time integrated procedure for both structural health monitoring and vibration 

control 
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*

1 1 1k k k+ + +  + *
y MX φ f

                         (35) 

where c

*
φ = H . Return to Step 1 until the discrete time ( 1)t k t +   is the last datum. 

A flow chart of the integrated health monitoring and vibration control system for the building 

structure is shown in Fig. 4. In this integrated system, the health monitoring system and vibration 

control system are combined together for both system identification and vibration control. The 

control forces are first measured and transmitted to the health monitoring system in real-time for 

the identification of structural parameter and excitation as well as damage detection. The 

time-varying structural parameters and ground excitation, identified from the health monitoring 

system in real time, are then transmitted to the vibration control system on line to determine 

optimal control forces to mitigate the structural responses in the next step. The iteration of the 

above two steps of system identification and vibration control forms the on-line integrated 

structural health monitoring and vibration control.  

 

 

5. Numerical example 
 

5.1 Description of example building structure 
 
A simple five-story shear building is chosen as the example building structure. It has the 

identical story height of 3 meters (see Fig. 1(a)). The building structure has uniform mass 

kgm  3101.5   and uniform horizontal story (shear) stiffness /m Nk 710334.1   for all five 

stories. The five natural frequencies of the building structures are calculated as 2.317, 6.762, 

10.661, 13.695, and 15.620 Hz. The acceleration responses of the building structure are measured 

by five accelerometers with one on each floor of the building structure. From a practical viewpoint, 

the white noise of 2% intensity is added to the calculated acceleration response as the measured 

acceleration response. The noise intensity is defined as the ratio of the root mean square of the 

noise to the root mean square of the acceleration response. Since the highest natural frequency of 

the building is 15.620 Hz, a low-pass filter with a cut off frequency of 30 Hz is applied to the 

noise-polluted acceleration responses. The displacement and velocity responses of the building are 

obtained from the measured noise-polluted acceleration responses through numerical integrations. 

On each story of the building, a semi-active MR damper is installed with a chevron brace that 

connects two neighboring floors. The ratios of the brace horizontal stiffness to the structure 

horizontal stiffness kd/k are selected as one and the same for all the building stories. The properties 

of the MR dampers are listed in Table 1. Damper forces are measured by five force transducers 

with one for each MR damper, and the RMS-noise of 1% intensity is added to the calculated 

control force as the measured control force. 

 
Table 1 Basic parameters of MR damper and fluid 

Parameters of MR damper Parameters of smart material 

L(m) h (m) b (m) Ap(m
2) Py (kN) η (k Pa s) τy min (k Pa)  τy max (k Pa) 

0.5 0.002 0.75 0.04 0.05 0.0002 0.05 10 
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To examine the feasibility and accuracy of the proposed integrated system, the building 

structure subject to earthquake-induced ground acceleration is considered. The ground acceleration 

is taken as the EI Centro earthquake with scaled peak ground acceleration (PGA) of 4.0 m/s2. A 

single damage occurs in the second story with a linear 5% degradation of the story stiffness from 

t=8s to t=9s; and the structural damping matrix is assumed to be the Rayleigh damping matrix

( ) ( )t t  +C M K where  and  are the two constant coefficients decided by the first and 

second modal damping ratios of 2% and the original mass and stiffness matrixes in this study. It is 

noted that the damping matrix is also time varying because the stiffness matrix is time varying. It 

is also noted that the proposed method can also identify the instantaneous change of stiffness. 

 

5.2 Accuracy of time-varying parameter and excitation identification 
 
In this study, the building structure is subjected to earthquake-induced ground acceleration

( ) ( )gt x tf . The unknown parameter vector at time can be written as k

k







 
 


 
  

K

Z K , 

where 1 2[ ]T

nk k k K is the time varying stiffness coefficients and n=5. The observation 

matrix can be worked outas 

1, 2, 3,k k k k
   H H H H

                        (36)
 

in which 

1, 1, 2,

2, 1, 2, 3,

1,

1, 2, 1, ,

, 1,

k k k

k k k k

k

n k n k n k n k

n k n k

x x x

x x x x

x x x x

x x

  



 
 

 
 
 
 

  
  

H  

1, 1, 2,

2, 1, 2, 3,

2,

1, 2, 1, ,

, 1,

k k k

k k k k

k

n k n k n k n k

n k n k

x x x

x x x x

x x x x

x x

  



 
 

 
 
 
 

  
  

H
3,k k

   H MX  

The sampling interval is set as 0.002s, and accordingly the sampling frequency is 500 Hz 

for all the measurement responses. The initial values of time-varying story stiffness coefficients 

are taken as 1.25 times the original stiffness coefficients. The initial values for the two constant 

coefficients  and  are unit but the actual values are 0.4335 and 7.015×10-4 respectively. As 

a result, the initial estimated unknown parametric vector can be written as

 

t k t 

t

 
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 0
ˆ 1.25 1 1.25 1

T

  Z K K . The initial estimation error covariance matrix is set as

7

0 2 110 n+ P I , where 2 1n+I  represents a )12()12( ++ nn  identity matrix. For the controlled 

building structure with semi-active MR dampers subjected to earthquake excitation, the 

semi-active control forces could be measured by force transducers as the measured excitation ( )t*
f , 

while the earthquake ground acceleration ( )gx t  could be treated as the unknown excitation ( )tf . 

The influence matrix of the unknown excitations can be set as  1 1 1 1 1
T

eφ = H   . 

The influence matrix of the known inputs c

*
φ = H  reflects the location of the semi-active MR 

dampers. The time-varying correction factor matrix is set as k m= I during the time period from 

0t s  to 2t s in order to obtain the covariance matrix of noise 
1000

1

ˆ ˆ1/ (1000 1) [( )( ) ]T

k k k k k k

i

    R Φy ΦH Z Φy ΦH Z . The noise covariance matrix 

calculated is then used for every time step subsequently. 

Fig. 5 presents the identified results of time varying stiffness coefficients of the five stories of 

the building structure. Fig. 6 shows the identified results of two coefficients and . In Figs. 5 

and 6, the identified results are presented as dash lines but the real values are presented as solid 

lines for comparison. The initial values of time-varying story stiffness coefficients at t=0 are taken 

as 1.25 times the original stiffness coefficients in the calculation. It can be seen that after a very 

short time period (less than 1.25s), the identified results converge to the actual ones and some 

spikes appear near t=0. It can also be seen from Fig. 5 that the proposed algorithm has a very good 

tracking ability for capturing slightly changed stiffness in a very short time period from 8s to 9s. 
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Fig. 5 Identified results of story stiffness 
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Fig. 6 Identified results of Rayleigh damping coefficients 
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Fig. 7 Identified results of unknown earthquake-induced ground acceleration 
 

The results presented in Fig. 6 also show that the proposed algorithm can identify the two damping 

coefficients accurately. In summary, the proposed algorithm can identify time-varying structural 

stiffness and damping coefficients accurately and therefore can detect structural damage precisely 

on-line. The identified results of the unknown earthquake-induced ground acceleration are 

presented in Fig. 7 with dash lines and compared with the actual ones with solid lines, and the 

average identification error of the ground acceleration is only 3.25%. Clearly, the proposed 

algorithm is capable of identifying the unknown excitation very well. 
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5.3 Performance of semi-active control with MR dampers 
 

To evaluate the semi-active control performance, the seismic record El Centro NS (1940) is 

selected as input to the example building. The peak ground acceleration of the seismic records is 

scaled from 3.417 m/s2 to 4.0 m/s2. The stiffness matrix and damping matrix of the example 

building is constructed using the stiffness coefficients and damping coefficients identified from the 

health monitoring system accordingly. The matrix ( )MR tA in Eq. (27) and the matrix ( )MR tP in Eq. 

(30) are reconstructed at each time step. The ratios of the brace horizontal stiffness to the structure 

horizontal stiffness of all the five semi-active MR dampers are assigned of the same value of 1. 

Five accelerometers and five force transducers with one accelerometer and one force transducer 

for each story are necessary to realize the feedback control. In the numerical investigation of 

semi-active control performance, the corresponding computed building responses and damper 

forces are taken as the relevant feedback instead of the signals from the sensors in practice. In the 

implementation of the clipped optimal displacement control strategy, the two weighting matrices 

MRQ  and 
MRR are selected as the unit diagonal matrix multiplied by a factor 1×105 and 0.00001, 

respectively, after a trial and error study.  

Demonstrated in Fig. 8 are the variations of the peak displacement, velocity, and acceleration 

responses of the example building without control, with passive-on control, and with semi-active 

control. The passive-on control is actually a passive control by setting the maximum damping in 

the MR damper. It can be seen that the peak responses of all the building floors under semi-active 

control are substantially reduced in comparison with those with passive-on control and without 

control. Clearly, the semi-active control with the clipped optimal displacement control algorithm 

can effectively suppress the seismic responses of the building structure. 
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Fig. 8 Comparison of control performance without control and with semi-active control and passive-on 

control 
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5.4 Comparison 
 

To further demonstrate the necessity and advantage of the proposed integrated procedure, the 

performance of semi-active control using on-line updated structural parameters is compared with 

that without updating structural parameters and that with passive-on control. Moreover, the 

accuracy of the parameter and excitation identification of the building structure with time-varying 

structural parameters in control algorithm is compared to that with constant structural parameters 

in control algorithm. 

The semi-active control performance is evaluated in terms of two widely-accepted sets of 

normalized performance indices. The first set of the performance indices is related to the building 

responses, which include peak- and RMS-based inter-story drift ratios (J1 and J3) and peak- and 

RMS-based absolute acceleration responses (J2 and J4) expressed by 

,

1

,

max ( )

max ( )

c

i i
t i

n

i i
t i

dx t h
J

dx t h


                            (37)

 

,

2

,

max ( )

max ( )

c
i

t i

n
i

t i

x t
J

x t


                               (38)

 

,

3

,

max ( )

max ( )

c

i i
t i

n

i i
t i

dx t h
J

dx t h


                           (39)

 

,

4

,

max ( )

max ( )

c
i

t i

n
i

t i

x t
J

x t


                             (40)

 

where ( )c

idx t  and ( )n

idx t are the inter-story drifts of the i th story of the building with and 

without control, respectively; ih  is the height of the i th story; ( )c

i idx t h and are the 

inter-story drift ratios of the i th story of the building with and without control, respectively; ( )c
ix t

and ( )n
ix t are the absolute acceleration responses of the i th floor of the building with and without 

control, respectively. The RMS response quantities within the time duration ft  under earthquake 

excitation are calculated by   
ft

f

dt
t 0

21
. The sign 

,
max

t i
means to find the maximum value 

within the given time duration first and among all the building stories afterwards. The second set 

of performance indices are related to the capacity of control devices. The peak-based control force 

(J5) is 

,

5

max ( )k
t k

u t
J

W


                            (41)
 

( )n

i idx t h

825



 

 

 

 

 

 

Y.L. Xu, Q. Huang, Y. Xia and H.J. Liu 

 
Table 2 Performance indices for semi-active vibration control using MR dampers 

Index      

Passive-on control 0.8703 0.6611 0.8806 0.7532 0.076 

Semi-active control without parametric updating 0.8117 0.5744 0.8301 0.6951 0.068 

Semi-active control with parametric updating 0.5766 0.5376 0.2439 0.3127 0.054 

 

 

where ( )ku t  is the control force generated by the k th control device (MR damper); and W is 

the total weight of all the building floors. 

Table 2 shows the performance indices of the controlled building with semi-active control (with 

and without parameter updating) and passive-on control. It can be seen that the proposed 

semi-active control using MR dampers and considering on-line parameter updating can effectively 

reduce both the peak and RMS responses of the example building under seismic excitation. The 

reduction of the RMS responses (J3 and J4) is even more than that of the peak responses (J1 and J2). 

It can also be seen that the semi-active control with on-line parameter updating has much higher 

control performance than that with passive-on control. The control force index further shows that 

with passive-on control, the control force required is also more than that using semi-active control 

with on-line parameter updating. Therefore, the on-line parameter updating is necessary to ensure 

higher control performance and less control force. The above observation can be further confirmed 

through the comparison of the time histories of displacement, velocity and acceleration responses 

of the top floor of the building without control, with passive-on control, and with semi-active 

control. Fig. 9 shows the time histories of acceleration responses of the top floor of the building 

for various cases as an example. 
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Fig. 9 Comparison of acceleration response time histories of the building structure at the top floor 
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Fig. 10 Comparison of identified results of story stiffness 
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Fig. 11 Comparison of identified results of Rayleigh damping coefficients 
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Figs. 10 and 11 present the identified results of time-varying stiffness coefficients of the five 

stories of the controlled building and the two coefficients and , respectively, with and 

without considering time-varying structural parameters in control algorithm. In Figs. 10 and 11, 

the identified results for the controlled building without considering time-varying structural 

parameters in control algorithm are presented as dash lines, whereas those with considering 

time-varying structural parameters in control algorithm are presented as dot lines and the real 

values are presented as solid lines for comparison. It can be seen that structural parameter 

identification of the building with and without considering time-varying structural parameters in 

control algorithm both have very good tracking ability for capturing time-varying stiffness. 

Moreover, the identified results of the earthquake-induced ground acceleration are almost the same 

for the two cases. However, the results presented in Figs. 10 and 11 show that structural parameter 

identification of the building with considering time-varying structural parameters in control 

algorithm converges much faster to the real value than that without considering time-varying 

structural parameter in control algorithm. This is particularly true in the identification of damping 

coefficients.  

 

 
6. Conclusions 

 

A real-time integrated procedure for both health monitoring and vibration control of a building 

structure has been presented in this paper so that on one hand, the time-varying structural 

parameters and unknown excitations of the building structure during earthquake excitation can be 

identified and, on the other hand, the excessive vibration of the building structure can be 

effectively mitigated. The time-varying parameter and excitation identifications are based on the 

least-squares estimation method and the measured structural responses and control forces, whereas 

the vibration control is fulfilled using semi-active MR dampers, a clipped optimal displacement 

control algorithm, and on-line identified time varying structural parameters and excitation. The 

numerical study of an example building shows that the proposed real-time integrated method does 

effectively suppress the seismic responses of the building compared with the passive-on control 

and at the same time accurately identify unknown excitations and time-varying structural 

parameters. The numerical study also manifests that the control performance will deteriorate if 

only the initial constant structural parameters are taken into account in the semi-active control. 

However, this does not affect the accuracy of identification of time-varying structural parameters 

and excitation except for the initial convergent rate. 
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