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Abstract.   Modal parameters of a structure are commonly used quantities for system identification and 
damage detection. With a limited number of studies on the statistics assessment of modal parameters, this 
paper presents procedures to properly account for the uncertainties present in the process of extracting modal 
parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient 
vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap 
approach is adopted, when an ensemble of a limited number of noised time-history response recordings is 
available. To estimate the modeling error associated with the extraction process, a model prediction 
expansion approach is adopted where the modeling error is considered as an “adjustment” to the prediction 
obtained from the extraction process. The proposed procedures can be further incorporated into the 
probabilistic analysis of applications where the modal parameters are used. This study considers the effects 
of the measurement and modeling errors and can provide guidance in allocating resources to improve the 
estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the 
modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations 
using a damage detection method. It is shown that the variability in the modal parameters can be considered 
to be quite low due to the measurement and modeling errors; however, this low variability has a significant 
impact on the damage detection results for the studied beam. 
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1. Introduction 
 

Modal parameters (e.g., modal frequency and mode shape) are used to describe the 
characteristics of a structure and have been commonly used in system identification to validate 
and/or update computer simulated models (Doebling and Farrar 2001, Ching et al. 2006). They are 
also often adopted in vibration-based nondestructive testing (NDT) methods for damage detection, 
where typically the modal parameters of a damaged system are compared with those of the 
corresponding undamaged system (Doebling et al. 1998). The results of the damage detection are 
useful for estimating the reliability of existing structures and help schedule condition-based 
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maintenance (Ceracolo et al. 2009, Zio 2009). To effectively use the modal parameters in these 

applications, it is critical to know the statistics of the modal parameter estimation. 

Modal data are usually extracted from time-history vibration responses obtained from a 

vibration test. The uncertainties in the modal data mainly come from two sources: one is the 

vibration test and the other is the modal parameter extraction (identification) process. The 

epistemic uncertainty in the measurement process in which the structural dynamic responses are 

recorded is called measurement error. The epistemic uncertainty inherent in the extraction process 

that reflects the inexactness and assumptions in the process is called modeling error. Currently, 

studies that assess the uncertainties in the modal parameters are still limited in number, especially 

in the area of considering the modeling error in the modal parameter extraction process. A typical 

approach is to assume that modal parameters consist of deterministic quantities and additive 

random errors with zero means (Liu 1995, Papadopoulos and Garcia 1998, Xia et al. 2002, 

Pothisriri and Hjelmstad 2003). In this approach, regardless of the inaccuracy of the assumption, 

the contributions to the uncertainties from the measurement and the extraction processes are not 

clear. Thus such approach is not able to provide the necessary guidance when allocating resources 

to improve the accuracy of the modal data estimate. 

This paper presents a procedure that can be used to assess the modal data extracted from 

dynamic responses obtained from ambient vibrations considering the effect of the measurement 

and modeling errors. Particularly, when an ensemble of a limited number of noised time-history 

response recordings is available, a bootstrap approach is used to estimate the statistics of the modal 

data. To estimate the modeling error associated with the extraction process, a model prediction 

expansion approach is adopted where the modeling error is considered as an “adjustment” to the 

prediction obtained from the extraction process. The modeling error considered in this study is due 

to a specific modal data extraction process, namely, Time Domain Decomposition (TDD) method 

(Kim et al. 2005). However, the proposed procedure can be extended to other extraction methods.  

This study is especially useful when the modal parameters are further applied to system 

identification, damage detection, and other applications, where the uncertainties from various 

sources should be considered. Moreover, the modeling error is estimated separately and it can help 

provide guidance in allocating resources to improve the accuracy of the modal data estimate. 

In the following, first a brief review of the uncertainty types and the methods for error 

modeling is given. Next, the procedure to consider the measurement and modeling errors is 

described. Lastly, in a numerical example, the modal parameters of a damaged two-span, 

continuous beam are extracted considering measurement and modeling errors following the 

proposed procedure, and the extracted modal data are used to detect potential damage locations 

using a damage detection method. 

 

 

2. Uncertainty types and modeling 
 

To appropriately account for the uncertainties, different types of uncertainties need to be 

understood. This section first describes the characteristics of different uncertainties associated with 

the process of extracting modal parameters from the responses. The uncertainty classification 

follows Gardoni et al. (2002). Next a review of the available approaches for handling and 

propagating those uncertainties is presented. 

 

2.1 Measurement error 
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Measurement error reflects the difference between the recorded responses and the true 

responses. It may vary with sensor type, layout, installation of equipment, and environment. In 

numerical studies, the measurement error is generally modeled by adding random errors into the 

time-history response signals and the error is often simulated as a random Gaussian noise with 

zero mean and a specific standard deviation. To provide reasonable upper and lower bounds on the 

measurement error, absolute error and proportional error are commonly used (Banan et al. 1994).  

For the absolute error, the standard deviation of the measurement error is a fixed value. For the 

proportional error, the standard deviation of the measurement error is proportional to the value of 

the amplitude of the true response. 

There are two common methods to propagate the measurement error to the modal data. One is 

the perturbation method or sensitivity method, which requires finding the sensitivity of the 

measurement error to the modal data. In this respect, Longman and Jung (1987) developed a 

framework for the eigenrealization algorithm (ERA); Peterson et al. (1996) used the perturbation 

analysis for the fast ERA; and Arici and Mosalam (2005) provided a formulation of sensitivity for 

the observer Kalman filter identification-ERA with direction correlations method. If the sensitivity 

can be expressed analytically, the perturbation approach is efficient. However, the sensitivity 

analysis typically uses a first order approximation that may not be accurate, and the computation 

required to obtain the sensitivity is not an easy task (Doebling and Farrar 2001). The other 

approach is the sampling method, where a set of modal data is extracted from a set of time-history 

responses that are contaminated by the measurement error. Note that using the sampling method 

the variability in the sets of modal parameters reflects the effect from both the measurement error 

and the modeling error associated with the modal data extraction process. The sampling method is 

straightforward but requires a good number of time-history responses. 

 

2.2 Modeling error 
 

Modeling error reflects the error due to model inaccuracy. The sources of the error can come 

from the abstractions, assumptions, and approximations used in the modeling process. There are 

two types of modeling errors: parameter error and model error. Parameter error refers to the 

epistemic uncertainties in the model parameters (e.g., stiffness and mass in a finite element model, 

FEM) in a given model due to the lack of knowledge of the parameter values. The uncertainties in 

the model parameters are parameter errors. Model error is associated with the model itself, 

reflecting the fact that there might not be a perfect numerical model to represent a real-world 

system and/or from the missing portion that is not included in the model. An example is using an 

elastic-perfectly-plastic stress-strain relationship to model material behavior. 

Oberkampf et al. (2002) developed a general framework to deal with modeling error in 

computational simulations associated with the numerical solution of a set of partial differential 

equations. Reinert and Apostolakis (2006) gave a review of approaches to handle modeling errors, 

including model set expansion and model prediction expansion. Model set expansion combines 

different models to produce a meta-model for a real system, incorporating the advantages of 

various models. Model prediction expansion, on the other hand, applies an “adjustment” directly to 

the prediction outcome from one model. In this study, since only one specific extraction method is 

adopted to extract the modal data, using model prediction expansion is appropriate to estimate the 

modeling error associated with the extraction process. 
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3. Estimation of measurement and modelling errors in the extracted modal 
parameters 
 
3.1 Processes for obtaining modal parameters 
 

Two processes are usually involved in obtaining the modal parameters. One is to record dynamic 

responses from a vibration test that can be ambient, and the other is to extract the modal parameters 

from the responses. The ambient vibration test is an attractive option because the excitation can be 

wind, traffic loading, and any other convenient mechanical exciter and only the output needs to be 

recorded. When an ambient vibration test is used, an output-only modal parameter identification 

method is needed to extract the modal parameters. In this paper, an ambient extraction technique 

called Time Domain Decomposition (TDD) method (Kim et al. 2005) is used. For the sake of 

completeness, a brief review of the TDD method is given next. 

 

3.2 Review of Time Domain Decomposition (TDD) method 
 

Acceleration responses are the commonly recorded quantities in a vibration test. If there are p 

acceleration sensors and n modes are considered, the acceleration output can be written as 

       
1 1

n

i i i i t

i i

t c t c t t


 

   y φ φ ε

                     

 (1) 

where 
1

( ) [y ( ),..., y ( )]
p

T
t t ty , ( )

i
c t  ith mode contribution factor at time t, i

φ ith modal shape, 

and εt(t) = truncation error. A mode-isolated response, ÿ(t), is obtained by filtering the acceleration 

response using a digital band-pass filter that is designed by estimating the frequency bandwidth for 

each mode. The filtered acceleration  ÿ
(i)

(t)  for the ith mode can be expressed as 

       
1

1

p
i

i i j j

j

t c t d t





 y φ ψ                        (2) 

where the second term refers to the error due to the truncation and the filtering,  ψj = orthogonal 

noise base, and ( )jd t  jth mode contribution factor to the total error. The dimension of the 

mode-isolated acceleration vector, ÿ
(i)

(t), at the sample, t, is p×1, and it contains the modal space and 

orthogonal noise space. As shown in Eq. (2), the dimension of the modal space is only one (i.e., the 

ith mode shape vector φi) and the dimension of the noise space is p − 1. 

With a total time sample N, and assuming that the orthogonal bases in the modal space consists of 

[ (1),..., ( )]i i ic c Nc  and the error space consists of [ (1),..., ( )]j j jd d Nd , a cross-correlation Ei = 

HiHi
T
 of ÿ

(i)
(t), where Hi = [ÿ

(i)
(1) ÿ

(i)
(2) … ÿ

(i)
(N)], can be calculated as 

1

1

p
T T

i i i i j j j

j

q 




 E φ φ ψ ψ                         (3) 

where 
T

i i iq  c c  and 
T

j j j  d d . Since the energy contributed by the noises is relatively small, then 

it is appropriate to assume that qi>σ1>…>σp-1. Thus, by conducting singular value decomposition on 
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Ei, the first singular vector in the singular vector matrix is the extracted modal shape ˆ
iφ  for the ith 

mode. With the obtained ˆ
iφ , the contribution factor can be calculated as 

T
ii

i
T
iT

i




ˆˆ

ˆ H
c                                    (4) 

The signal, ic , contains the ith modal behavior of the acceleration for the entire set of p signals.  

Therefore, the auto-spectrum of ic , contains one peak, at which the frequency is the extracted modal 

frequency ˆ
if . 

 

3.3 Measurement error in an ambient vibration test 
 

Measurement error in an ambient vibration test can have many causes. The primary sources are 

listed in the following and the examples of influencing factors are given in the parentheses: 

 electromagnetic noises in the sensor (sensor type, signal conditioning type) 

 data acquisition and discretization (data-acquisition system, sampling rate) 

 data processing and testing economy (signal processing system) 

With p sensors, one set of time-history responses ÿ1(t) = [ÿ1,1(t),…, ÿp,1(t)]
T
 is measured in one 

recording. It is assumed that these p series of time-history responses have the same measurement noise 

level. When such measurement is repeated m times, m sets of such time-history responses, 

{ÿ1(t),ÿ2(t),…,ÿm(t)}, are obtained and each set of time-history responses is assumed to have the same 

level of measurement error. Then, for each set of responses, the TDD method is applied to obtain one 

set of modal data, thus m sets of modal data are generated. If m is large enough, the statistics of the 

modal data can be assessed. If m is small (e.g., if the vibration testing is conducted by applying a pulse 

excitation in order to excite out the modal frequencies of interest, then the number of the vibration 

testing will be limited), a bootstrap method (Efron 1982) is proposed in this paper to generate new sets 

of responses based on the recorded ones. The basic idea of the bootstrap method is to randomly 

generate new responses using the original list of responses. The new sets of responses have the same 

level of measurement error as the recorded ones.   

Note that in an ambient vibration test, the excitation is not recorded and it varies for each recording; 

thus, the Bootstrap method cannot directly be applied to the responses in the time domain. In the 

frequency domain, the response amplitude varies with frequencies. However, it is legitimate to assume 

that the amplitude is constant in a narrow bandwidth. In the TDD, the mode-isolated responses are 

obtained using a frequency bandwidth that can be considered to be narrow. Additionally, as the 

normalized mode-isolated responses reflect the normalized mode shapes at the sensor locations, they 

are independent of the excitation. Thus, a Bootstrap method can be applied to the normalized 

mode-isolated responses in the frequency domain at each sensor node. This principle can be applied to 

other output only modal data exaction method such as frequency domain decomposition (Brinker et al. 

2000). 

Fig. 1 shows the flowchart of the proposed procedures for estimating the statistics of the modal data 

considering measurement and modeling errors, where p acceleration sensors are used and m sets of 

dynamic responses are collected. In the proposed procedure, firstly the measured responses, 

{ÿ1(t),ÿ2(t),…,ÿm(t)}, are transferred to the frequency domain and normalized, and then are filtered 

using a digital band-pass filter to obtain the mode-isolated responses in the frequency domain, 
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{Ϋ1
(i)

(ω),Ϋ2
(i)

(ω),…,Ϋm
(i)

(ω)}. Next, the bootstrap technique is applied to {Ϋ1
(i)

(ω),Ϋ2
(i)

(ω),…,Ϋm
(i)

(ω)} 

to obtain a bootstrap sample Ϋb
(i)

(ω). This new bootstrap sample Ϋb
(i)

(ω) is then transferred back to the 

time domain, ÿb
(i)

(t). For each bootstrap sample, the TDD method is applied to extract a set of modal 

data. Thus, a pool of modal data is obtained. The procedures can be repeated to obtain more bootstrap 

samples. As shown in Fig. 1, the proposed procedure involves the extraction process (i.e., the TDD 

method); therefore, the variability in the pool of modal data shows the influence of the measurement 

and modeling errors. The advantages of this proposed procedure are: 1) it does not require knowing the 

measurement noise level in the responses, and 2) the excitation for the vibration can be any ambient 

conditions as noted previously. 

 

 

 

Fig. 1 Flowchart of the proposed procedure to propagate the measurement and modeling errors to the modal 
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3.4 Modeling error due to the Time Domain Decomposition (TDD) method 
 
Using the proposed procedure in Fig. 1, the statistics of the modal data reflect the influences from 

both measurement and modeling errors. However, the effect only due to the modeling error 

associated with the extraction process sometimes needs to be known. For example, in system 

identification, the value of the modeling error is important for updating the structural models using 

the extracted modal parameters if a Bayesian probabilistic framework is applied (Beck and Au 2002, 

Huang et al. 2010). In this study, the modeling error due to TDD alone is investigated. With the use 

of the TDD method, the modeling error arises mainly from the following sources with the examples 

of influencing factors given in the parentheses: 

 truncating non-dominant modes (excitation type, sensor layout, sampling rate) 

 model isolation process (filter width, response length) 

 singular value decomposition (noise orthogonal assumption) 

 system nonlinearity (excitation type and amplitude) 

As discussed previously, it is appropriate to apply model prediction expansion to estimate the 

modeling error in the TDD method. Specifically, the additive model prediction expansion is adopted 

here. The relation between the real modal data in the ith mode (modal frequencies, fi, and mode 

shape, φi) and the extracted modal data ( ˆ
if  and ˆ

iφ ) can be formulated as follows 

ˆ
ii i ff f e                                  (5) 

ˆ
ii i  φφ φ e
                               

 (6) 

where efi and eφi are the modeling errors in modal frequency and mode shape due to the TDD process.  

They can be considered as “adjustments” to the predictions. To assess the “adjustments”, efi and eφi, 

one can directly compare the extracted modal data from TDD, ˆ
if and ˆ

iφ , to the real values, fi and 

φi.   

In system identification or vibration-based NDT, a preliminary FEM usually needs to be 

constructed and validated by calibrating the unknown structural parameters (such as stiffness and/or 

mass) using the extracted modal data. The model used for constructing the preliminary FEM is 

assumed to be correct. Therefore, for given a set values of the unknown structural parameters, the 

modal parameters obtained from the modal analysis of the preliminary FEM are considered as the 

actual values, fi and φi, for this set of structural parameters. If the modeling error in the constructing 

the FEM needs to be considered, one can follow the methodology and specific implementation 

proposed by Haukaas and Gardoni (2011). 

As the structural parameters are unknown, we can generate a group of ne FEMs, where ne is the 

number of FEMs in the group, constructed in the same way as the preliminary FEM but with 

different combinations of structural parameter values that are randomly drawn from the parameter 

ranges. Note that for setting the parameter ranges, the best guess (predictive values, x0) need to be 

made based on the engineering judgment and then one can set [x0/k, kx0] (where k > 1) as the 

parameter ranges. The larger k is chosen, the bigger the range will be. To effectively span the space 

of the parameters given a specific number of combinations, Latin hypercube sampling (McKay et al. 

1979) can be used, where each parameter is approximately sampled uniformly from its range. For 

each FEM, a modal analysis is conducted to find fi and φi that are the true modal parameters for the 

corresponding FEM, while an excitation can be applied to the FEM to obtain the vibration responses, 
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from which ˆ
if  and ˆ

iφ can be extracted through TDD. Thus, ne sets of fi, φi, ˆ
if , and ˆ

iφ  are 

obtained; thus efi and eφi can be assessed through Eqs. (5) and (6). Note that the estimation of efi and 

eφi are based on the FEMs only and it does not need any measurements from a real structure after the 

preliminary FEM has been developed. 

Using the difference between fiand ˆ
if , to estimate efi is straightforward. Given certain 

influencing factors, the mean, μefi, and standard deviation, σefi, of efi can be estimated from the 

differences, ˆ
i if f . The differences between iφ  and ˆ

iφ  for the ith mode are vectors, and can be 

considered a linear combination of mode shapes of other modes. This is because in the frequency 

domain the modes are overlapped due to the existence of damping, which makes it impossible to 

obtain a pure mode-isolated response in the TDD method. Especially, a mode shape is influenced 

most by the nearest mode shape. A linear regression model is proposed to assess the mode shape 

error, eφi, for the ith mode, and it is written as follows 

   ,

, ,

1

1
e

j i

i i

N

j i j i j i j ij

j

f f


   


     
  φ φe φ ε               (7) 

where Ne = number of modes used, αj,i, βj,i, and θj,i= model parameters for the ith mode, δij = 

Kronecker delta (i.e., δij = 1, for i = j; δij = 0, for i ≠ j), σφi = standard deviation of eφi, and ε = a vector 

of standard normal random variables. The model parameters can be estimated by the Bayesian 

updating rule (Box and Tiao 1992). One could use locally uniform distributions for the model 

parameters as the non-informative priors in the Bayesian updating rule. Note that the further a mode 

is from the ith mode, the less contribution that mode has to eφi. Moreover, the closeness of two 

modes can be measured by the difference between the corresponding modal frequencies; thus, the 

term βj,i(fj − fi)
θj,i

 is included in Eq. (7). A stepwise deletion procedure (Gardoni et al. 2002) can be 

also used to eliminate the unimportant terms in Eq. (7) to obtain an accurate but parsimonious model.  

Fig. 2 summarizes the steps for accessing efi and eφi, where the modal data extraction process can be 

general. 

 

 

 

Fig. 2 Flowchart of the proposed procedure to estimate the modeling error in TDD 
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3.5 Considerations on the sample size for the bootstrap method 
 
In the flowchart shown in Fig. 1, the sample size for the bootstrap method needs to be determined.  

Efron (1987) suggested 1000 samples for confidence intervals. However, given available computing 

power and time, it is reasonable to use as many samples as actually needed based on a convergence 

criterion. The sample size, ne, in the flowchart in Fig. 2 is determined by the maximum of two sample 

sizes: a sample size, nf, for determining the statistical interferences of efi, and a sample size, nφ, for 

assessing the regression models of eφi. Although efi is unknown, by setting predefined confidence 

intervals, nf can be estimated. Assuming that efi follows a normal distribution, with 100(1−α)% 

confidence, where α refers to the significance level, the following relationships hold (Ang and Tang 

2006) 

f

ef

efef

f

ef

ef
n

S
t

n

S
t







 
ˆ

ˆ
ˆ

ˆ
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 (8) 
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 (9) 

where μef = mean of efi, ˆ
ef  sample mean, σef = standard deviation of efi, ˆ

efS  sample standard 

deviation, tα/2 = t1-α/2 = (1−α/2)th quantile of the student’s t distribution with degree of nμf − 1, and 

χ
2
1-α/2=(1−α/2)th and χ

2
α/2 = α/2th quantiles of the χ

2
 distribution with degree of nσf − 1. When the 

confidence intervals are given for μef and σef, then nμf  and nσf can be calculated through Eqs. (8) and 

(9) and the sample size nf is determined as nf = max(nμf ,nσf). 

The sample size, nφ, needs to be determined for Eq. (7) to ensure a sufficient statistical power to 

detect the significant effects. Following Cohen (1988), four input parameters are needed: (1) a 

significance confidence level, α, (2) a target power level of a F-test, γ, (3) an effect size, ES, and (4) 

the number of predictors used in the linear regression model, pe. The power level γ refers to the 

probability that one rejects the null hypothesis while the alternative hypothesis is true. Type III F-test 

is used in the procedure, where the null hypothesis states that all coefficients of predictors of interest 

are zero. To calculate the power of the F-test, the F-distribution and the non-central F-distribution 

probability density function are used and they are respectively expressed as 

 
2 2
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            (11) 

where p(·) = probability density function, B(·) = Beta function, u = number of predictors or numerator 

degrees of freedom, ν = denominator degrees of freedom, λ = non-centrality parameter, and g = critical 

value of F-distribution. Note that as no intercept is included in Eq. (7), the sample size is u + ν; 

otherwise, the sample size would be u + ν + 1. The effect size, ES, describes the degree to which the 
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null hypothesis is false: the larger the effect size indicates the greater degree to which the alternative 

hypothesis is manifested. Conventionally, ES of 0.02, 0.15, and 0.35 are considered as small, medium, 

and large, respectively. With the four input values, the sample size, nφ, can be calculated by the 

following steps: 

i) Set a significance confidence level α, a desired power level γ, and an effect size ES, and 

set an initial value ν = pe. 

ii) Calculate the (1−α/2)th quantiles of the F-distribution g through Eq. (10), with the given 

values of α, u(= pe), and ν. 

iii) Compute λ = ES(u + ν). 

iv) With the values of g,u (= pe),ν, and λ, estimate the corresponding value of the non-central 

F-distribution through Eq. (11). 

v) Compute the power by calculating the cumulative area under the standard normal curve 

from zero to the value of the non-central F-value estimated from the previous step. 

vi) If the power computed from step v) is less than the desired power level γ, increase ν value 

and repeat step ii) through step v). 

vii) Determine the sample size nφ = u + ν. 

Then, the sample size, ne, in the flowchart in Fig. 2 is determined as ne = max (nf,nφ). 

 

 

4. Illustration 
 

This section illustrates the proposed procedures using a numerical example considering a two-span 

continuous aluminum beam on elastic supports. Modal data is extracted from an ambient vibration test, 

and then a damage detection method, called Damage Index Method (DIM) developed by Stubbs and 

Kim (1996) is applied using the extracted modal data to study the effect of the measurement and 

modeling errors on the damage detection. This example beam has been previously analyzed by Stubbs 

and Kim (1996). The FEM of the beam is built in OpenSees (Mckenna and Fenves 2002) using 50 

elastic beam-column elements with elastic springs for the supports, as shown in Fig. 3, where Eb refers 

to the flexural stiffness of the beam and K1 and K2 are the spring stiffness. Table 1 summarizes the 

structural properties for the FEM. A damage scenario is simulated by introducing a reduction of 10% of 

the flexural stiffness in the beam Element 16. The first four modal frequencies of the damaged structure 

obtained from the modal analysis are 36.56 Hz, 55.11 Hz, and 141.47 Hz, 158.72 Hz, respectively.  

For the purpose of the illustration, the stiffness properties of the study structure, Eb, K1, and K2 are 

assumed to be unknown. A preliminary FEM is constructed in the same way as the study structure 

but with different values of Eb, K1, and K2 and assuming that all the elements have the same 

flexural stiffness. The values of Eb, K1, and K2 in the preliminary FEM can be arbitrary since they 

are unknown. 

Next, a vibration test is conducted to collect the dynamic responses, from which the modal 

parameters are extracted. The proposed procedures are applied to estimate the influence of 

measurement and modeling errors on the modal data. Finally, DIM is applied to identify the damage 

location using the extracted modal parameters to investigate the influence of measurement and 

modeling errors on the damage detection. 

A vibration test is conducted by collecting the dynamic responses of the element nodes (a total 

of 51 nodes) under a force excitation. To avoid the issue of not being able to observe some modes 

due to a narrow-band excitation, a pulse loading that contains a wide range of frequencies is 

applied. The recording time for each node response measurement is 4 second with a sampling rate 
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1000 Hz. As the recording time is one of the influencing factors of the modeling error, the 

modeling error changes when the recording time varies, as shown later. With the 4 second 

recording time, there are 51 x 4 x 1000 = 204,000 response points obtained and they are noise-free 

since in this example they are the responses obtained from a numerical analysis. 

 Measurement noise is simulated using a proportional error and is added to the noise-free 

responses. Three different noises levels are considered and they are 0.5%, 1.0%, and 2.0%.  

Specifically, the measurement noises that are added to the 204,000 response points are assumed to 

follow independent Gaussian distributions with zero mean and specific standard deviations that are 

proportional to the amplitudes of the responses. The standard deviations are calculated by 

multiplying the amplitudes of the responses with the measurement noise level (i.e., based on a 

0.5%, 1.0%, and 2.0% coefficient of variation). For each noise level, the procedures of adding the 

simulated measurement noise to the noise-free responses are repeated 10 times (m = 10 is used in 

this study just to illustrate a case when a limited number of records is available). Thus 10 sets of 

responses at each noise level are generated and they can be considered as the recorded responses, 

{ÿ1(t),ÿ2(t),…,ÿm(t)}, obtained from the vibration testing. With the recorded responses, the 

statistics of the modal parameters considering the measurement and modeling errors can be 

estimated following the flowchart shown in Fig. 1. Particularly, 1000 bootstrap samples (suggested 

by Efron 1987) are generated for each measurement noise level. Note that the measurement noise 

level does not need to be known when using the flowchart in Fig. 1. 

 

 

 

Fig. 3 Schematic of the example beam and the FEM 

 

 
Table 1 FEM properties for the example beam 

Property Value 

Cross section area, A 1.05×10
-3

m
2
 

Second moment of area about vertical axis z, Iz 9.57×10
-7

m
4
 

Second moment of area about transverse axis y, Iy 7.23×10
-7 

m
4
 

Mass density, ρ 2710 kg/m
3
 

Young’s modulus, Eb 70 GPa 

Poisson’s ratio, ν 0.33 

Stiffness for support springs, K1 6.0×10
-5 

N/m 

Stiffness for support spring, K2 1.2×10
-4 

N/m 

K1 K2 K1

2.286 m 2.286 m

Aluminum beam Eb

Element                        … 50                        1                    …

Element 16
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To estimate the modeling error due to the TDD method following the flowchart in Fig. 2, the 

minimum sample size, ne, needs to be determined first. If a significance confidence level 5% is 

chosen, and the desired confidence intervals for μef and σef are set to be  5/ˆˆ,5/ˆˆ
efefefef SS     

and 




 22

%164.1,ˆ%864.0 efef SS  respectively, one can obtain nμf = 97 and nσf = 349 through Eqs. 

(8) and (9). Following the steps for determining nφ, with selected α= 0.05, γ = 0.9, ES = 0.15, and 

pe = 6, then nφ= 123 is obtained. Thus, ne = max (nf, nφ) ≥ 350. In this study, ne = 400 is used. As 

mentioned previously, Eb, K1, and K2 are unknown. Then 400 FEMs are generated with the same 

configurations as the preliminary FEM by varying the three stiffness properties of the structures. In 

this study, we use [0.5x0, 2x0] as the ranges for Eb, K1, and K2, where x0 are the best guessed values 

for Eb, K1, and K2. Particularly, we let x0 = [1.1Eb, true, 1.05K1,true, 1.05K2,true], where Eb,true, K1,true, 

K2,true are the values used for the damaged beam are listed on Table 1. 

For each of the 400 FEMs, the modal analysis is conducted to obtain fi and φi, and a pulse 

excitation is applied to the FEM to obtain the vibration responses, from which if̂  and î  are 

extracted through TDD. Then, the modeling errors, efi and eφi, are assessed using Eqs. (5) and (6). 

As described previously, the modeling error due to the TDD method is a function of the 

corresponding influence factors. Given the influence factors, the statistics of modeling error can be 

estimated. In this illustration, the recorded response length is 4 s and the sampling rate is 1000 Hz, 

and we use ±1 Hz for the filter width in the TDD method. By changing only one influence factor, 

we can observe how the modeling errors vary with that influence factor. Fig. 4 shows how the 

mean and standard deviation of modeling error efi for the first four frequencies varies when one of 

the influencing factors, the recorded response length in the vibration test, increases. As the lower 

modes have the longer periods, given the same response length, the standard deviation of the 

modeling errors are higher for the lower modes. In other words, longer the response length, more 

reliable the extracted modal frequencies is. However, after exceeding a certain response length, the 

error does not change significantly. Other influencing factors can be studied similarly. 

The regression models for the mode shape error eφi of the first three modes are written following 

the formulation given in Eq. (7) as 

 

 

                  (a)                                       (b) 

Fig. 4(a) Mean and (b) standard deviation of the estimated modeling error in modal frequencies 
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   1,1

1 1,1 2 2,1 3 3,1 4 1,1 2 1 2 0,1 1,1 2 1f f


              φe φ φ φ φ I φ ε        (12) 

   1,2

2 1,2 1 2,2 3 3,2 4 1,2 2 1 1 0,2 1,2 1 2f f


              
φ

e φ φ φ φ I φ ε       (13) 

   1,3

3 1,3 1 2,3 3 3,3 4 1,3 4 3 4 0,3 1,3 4 3f f


              φe φ φ φ φ I φ ε       (14) 

where the statistics of the model parameters αj,i, βj,i, θj,i, and σj,i are shown in Table 2 and they are 

estimated using the Bayesian updating rule (Box and Tiao 1992). 

With the consideration of the measurement and modeling errors, the DIM (Stubbs and Kim 1996) 

is applied using the extracted modal parameters. Since the stiffness properties of the structures, Eb, 

K1, and K2, are unknowns, one could use the extracted modal frequencies to identify a baseline FEM 

for the study structure following a system identification method proposed by Huang et al. (2010).  

The DIM calculates a damage index, Z, for each element in the FEM based on the mode shapes from 

the baseline FEM and the mode shapes extracted from the dynamic responses of the study structure.  

The damage indexes of the damaged elements can be differentiated from the ones of the undamaged 

elements through statistical approaches, such that the damage location can be identified. 

The normalized damage index, Z, is calculated for 50 elements of the beam. For brevity, the 

procedure for calculating Z is not included here but it can be found in Stubbs and Kim (1996). The 

left column plots in Fig. 5 give the normalized damage index of each element for the beam under 

different levels of measurement noise, while the left plot in Fig. 6 shows the damage indexes when 

only the modeling error due to TDD is considered. The solid lines and the dotted lines are the mean 

and mean ± 1 standard deviation of Z, respectively.   

The variability of Z shown in the left column plots of Fig. 5 reflects the influences of the 

measurement and modeling errors, which are not negligible. This result is consistent with the 

conclusion drawn from the study conducted by Doebing and Farrar (1997), where they found that the 

statistical significance of the modal parameters could not be ignored when the modal data are used in 

the damage detection applications. Moreover, with the increment of the noise level shown in the left 

column plots of Fig. 5, the mean value of Z of the damaged element decreases, while the standard 

deviation of Z increases. The larger the standard deviation is, the more uncertainties are brought into the 

damage detection. Under the high noise level 2%, the Z value of the damaged element is hardly 

differentiated from other elements, which might make the damage detection difficult. The results show 

that it is important to account for the statistical significance of modal parameters when modal data are 

applied for damage detection. 

 
Table 2 Statistics of model parameters 

  α1 α2 α3 β1 θ1 σ0 σ1 σ 

Mode 1 
Mean -1.41E-04 -2.57E-05 -1.96E-05 -2.03E+00 1.41E-01 5.38E-05 2.68E-04 8.51E-07 

St. Dev -9.38E-07 -2.80E-07 -2.70E-07 -2.15E-03 4.82E-04 2.98E-07 2.13E-06 – 

Mode 2 
Mean 9.10E-05 -4.10E-05 -2.59E-05 -1.70E+00 1.51E-01 1.23E-05 1.08E-03 1.61E-06 

St. Dev. 1.71E-06 -4.26E-07 -3.60E-07 -1.32E-03 3.31E-04 1.19E-07 8.50E-07 – 

Mode 3 
Mean 1.68E-04 2.20E-04 -1.34E-03 -3.86E+00 -3.55E+01 8.98E-04 6.70E-03 4.10E-05 

St. Dev.. 3.21E-05 3.19E-05 -3.56E-05 -2.55E-02 -1.44E+00 8.55E-06 6.11E-05 – 
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(a) measurement noise level 0.5% 

 
(b) measurement noise level 1.0% 

 
(c) measurement noise level 2.0% 

Fig. 5 (left) Z values (thick solid line: mean, dotted line: mean ± 1 standard deviation, thin solid line: no 

error considered) for the beam elements and (right) 1 − TMAC for mode shapes 

 

 

 

Fig. 6 (left) Z values (thick solid line: mean, dotted line: mean ± 1 standard deviation, thin solid line: no 

error considered) for the beam elements and (right) 1 − TMAC for mode shapes considering the 

estimated modeling error due to TDD 

 

 

Another observation is that the influence on Z from the measurement and the modeling errors 

shown in the left column plots of Fig. 5 is larger than the influence from the estimated modeling error 

due to the TDD method alone shown in the left plot of Fig. 6. Therefore, more emphasis needs to be 

put on reducing the measurement noise when the dynamic responses are collected. 
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Assessment of modal parameters considering measurement and modeling errors 

To exam the influence of the measurement and modeling errors on the mode shape only, the modal 

assurance criteria (MAC) (Allemang and Brown 1982) is used for estimating the degree of correlation 

between two mode shape vectors. When NT modes are considered, a Total MAC (TMAC) between two 

sets of mode shapes from two records, records a and b, can be calculated by 

  

2

, ,

, , , ,

TMAC
T

TN
i a i b

T T
i i a i a i b i b


φ φ

φ φ φ φ
                     (15) 

The value of TMAC is between 0 and 1. When TMAC is close to 1, it indicates the mode shapes 

obtained from the two records a and b are very similar. In other words, the bigger the value of (1 − 

TMAC) is, the bigger the difference between the mode shapes influenced by the measurement and 

modeling errors is. Thus, (1 − TMAC) reflects the variability in mode shapes in an overall sense. 

The right column plots in Fig. 5 show the values of (1 − TMAC) for the mode shapes of the beam 

under different levels of measurement noise. The right plot in Fig. 6 shows the values of (1 − TMAC) 

considering the modeling error due to TDD alone. All the values of (1 − TMAC) are smaller than 

1.5×10
-4
, indicating that TMAC is close to 1. Therefore, the variability in the mode shapes due to 

measurement and modeling errors can be considered to be low. However, as discussed previously and 

shown in the right plots of Figs. 5 and 6, this low variability has a significant impact on the damage 

detection results. Moreover, as expected, when the measurement noise level becomes higher the values 

of TMAC  become smaller, which means the variability in mode shapes is higher as shown in the 

right column plots of Fig. 5.   

Interestingly, the values of TMAC in the right column plots of Fig. 5 are much larger than the values 

in the right plot of Fig. 6, indicating that the different sets of mode shapes due to measurement and 

modeling errors are more similar to each other than the sets of mode shapes considering only the 

modeling errors. However, the Figs. 5 and 6shows that the influence on the damage detection due to 

measurement and modeling errors (shown in the right column plots of Fig. 5) is significantly larger 

than the influence due to modeling error (shown in the right plot of Fig. 6). Therefore, using the TMAC 

values cannot be used for measuring the influence of the measurement and modeling errors on the 

damage detection. 

As discussed previously, when the measurement noise level becomes high, the damage detection 

may become impossible. Since the level of the measurement noise is unknown in reality, it is desire to 

have a quality that can be used to measure the variability of mode shapes so that by examining this 

quality one can determine whether the extracted modal parameters are useful for the damage detection 

and how reliable the damage detection results are. One option of such quantity could the standard 

deviation of the damage index and the standard deviation can be calculated using the data pool of 

modal shapes generated following the proposed procedure shown in Fig. 1. However, the further study 

in this regard is needed. 

 

 
5. Conclusions 
 

This paper presented procedures to account for the uncertainties in the modal parameters 

extracted from ambient vibration tests. In particular, the focus is on the measurement errors and the 

modeling error resulting from Time Domain Decomposition (TDD). To estimate the statistics of the 

extracted modal parameters considering these errors, a bootstrap approach is used to generate 

artificial records based on limited number of response records obtained from the ambient vibration 
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test. As it is critical to estimate the modeling errors associated with the extraction process particularly 

for system identification applications, the model prediction expansion is adopted in this study to 

assess the modeling errors. The proposed procedure to evaluate the modeling error associated with 

TDD can be extended to other extraction methods. 

The proposed procedures are illustrated by a numerical example of a two-span continuous 

aluminum beam. The influences from measurement and the modeling errors are studied by applying 

a damage detection method, the Damage Index Method (DIM), on the example beam using the 

extracted modal parameters. Future work should include applying the proposed procedures using 

laboratory or field data.   
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