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Abstract.    A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative 
change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is 
performed in a statistical pattern recognition framework using empirical complementary cumulative 
distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. 
Methods are discussed to perform probabilistic structural health assessment with respect to the following 
questions: (a) “Is there a change in the current state of the structure compared to the baseline state?”, (b) 
“Does the change indicate a localized stiffness reduction or increase?”, with the latter representing a 
situation of retrofitting operations, and (c) “What is the severity of the change in a probabilistic sense?”. To 
identify a range of normal structural variations due to environmental and operational conditions, lower and 
upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple 
“non-damage” related variations from damage induced changes, and account for the unknown 
environmental/operational conditions of the current state. The damage assessment procedure is discussed 
using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table 
experimental data from a 4-story steel frame. 
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1. Introduction 
 

Vibration based Structural Health Monitoring (SHM) usually involves either “model based” or 
“data based” techniques. In model based methods the parameters of an assumed analytical model 
of the true physical system are identified so that the response of the identified model mimics the 
measured response from the real structure (Friswell 2007). While the identification of an accurate 
parametric model of the structure will allow an accurate identification of the existence, location 
and severity of damage, accurate models of true physical systems are seldom available. Moreover, 
most model based approaches involve some nonlinear optimizations with only a limited number of 
model parameters to be optimized or identified. This requires a reliable a priori analytical model. 
If the representative model is not very reliable, applying conventional model based methods with 
all/most of the model parameters as unknowns may not converge to a unique solution 
(Katafygiotis and Beck 1998, Mukhopadhyay et al. 2014a, b). 
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Data-based methods rely exclusively on the data recorded from the true structure, and do not 

require an a priori definition of accurate physical models (Worden and Farrar 2013). Implemented 

in a statistical pattern recognition framework, they attempt to identify patterns of Damage 

Sensitive Features (DSFs) characterizing the structure’s condition by analyzing its recorded 

vibration signatures. The DSFs extracted from the measured responses of a baseline structure are 

first used to construct a baseline statistical model of the DSFs (training phase), where the baseline 

structure represents the system in its present conditions. In the following, the baseline system is 

also referred to as the reference or healthy system, always implying that it represents a system 

under conditions that have been observed during the training phase. Subsequently, during the 

testing phase, the DSFs extracted from any new measured response of the structure are compared 

to the baseline statistical model to identify whether the structure is still in its reference conditions 

or has undergone any deterioration. Since measured data from different real damage states are not 

available, data-based SHM involves unsupervised learning, with any new measured data assigned 

to either the healthy class or a damaged class; questions on the type, location and severity of 

damage are usually left unanswered. Another challenge in data-based methods is the selection of 

an appropriate statistical model for the DSFs. The popular normal distribution assumption 

(Balsamo et al. 2014a) may not hold if the number of observations is small, e.g., when 

instrumentation and data storage/processing costs, faulty instruments etc. lead to small training 

data set. 

In this paper, the comparative advantages of model-based and data-based techniques are 

combined to a “mixed” approach in vibration based SHM. Due to the intuitive relationship of 

modal properties to structural characteristics, a modal parameter based DSF may be expected to 

successfully locate and quantify damage. In fact, several studies have used modal parameters for 

damage detection (Kim and Stubbs 2003, Yuen et al. 2006, Duan et al. 2007, Balsamo et al. 2013a, 

b, Huang et al. 2012). While modal frequencies, being global features, may be relatively 

insensitive to local structural damage, mode shapes, being “spatially distributed” features, contain 

information which may be employed for damage localization (Farrar et al. 2001). However, the 

direct comparison of mode shapes using inner product norms, e.g., the Modal Assurance Criterion, 

may not provide sufficiently discernible results for structural damage detection, as the differences 

reflected by such measures are of a lower order than the differences in the structural flexibility 

matrix (Mukhopadhyay et al. 2012). Instead, in (Mukhopadhyay et al. 2012, Balsamo et al. 2013b) 

modal parameter comparative measures which mimic changes in the structural flexibility and 

stiffness matrices are derived. In this paper, we use a stiffness proportional DSF, which gives a 

measure of the relative difference between the corresponding diagonal elements of the stiffness 

matrices of two models at comparison. The DSF is defined in terms of experimentally identified 

modal parameters, which may be identified from the response of the monitored structural system 

using any modal analysis technique. We consider here the most feasible operational testing 

scenario (output-only data). 

The damage assessment procedure is developed in the statistical pattern recognition paradigm 

using the DSFs extracted from measured response data. The Empirical Complementary 

Cumulative Distribution Functions (ECCDFs) of the extracted DSFs are computed, and damage 

assessment is performed by comparing the ECCDFs obtained during the testing stage with those 

created during the training stage. The proposed structural health assessment exercise attempts to 

answer the questions: (1) “Is there a change in the current state of the structure compared to the 

baseline state?”, (2) “Does the change indicate a localized stiffness reduction or increase?”, and (3) 

“What is the severity of the change in a probabilistic sense?”. The possible scenario of localized 
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stiffness increase is intended for applications in retrofitting operations (Nayeri et al. 2007).  

It has been widely reported that modal parameters are significantly affected by “non-damage” 

related structural variations, induced, for example, by environmental/operational fluctuations 

(Sohn2007, Soyoz and Feng 2009). Such effects are taken into account here, using lower and 

upper bound ECCDFs, obtained from training response time histories measured in different 

environmental/operational conditions, to define the baseline structural state. Such an approach is 

intended to decouple normal structural variations from damage induced changes in the values of 

the proposed DSFs. The lower and upper bound baseline ECCDFs are also used to quantify the 

uncertainty in damage probability vs. damage severity curves, induced by unknown 

environmental/operational conditions in the testing phase. 

The proposed SHM framework addresses several relevant issues. Defining a physically 

meaningful DSF in a model-based setting allows not only the detection of damage, but also its 

location and severity estimation. On the other hand, the data-based SHM strategy statistically tests 

for the existence of damage at any location, and expresses the damage severity through damage 

probability vs. severity curves, accounting for the different inevitable sources of uncertainty, 

including those induced by environmental/operational fluctuations. It is worth emphasizing that 

the proposed algorithm does not require the definition of reliable models describing the effects of 

environmental/operational conditions on structural parameters, nor does it require the 

measurements of any operational or environmental variable, e.g., temperature measurements. 

Hence, the proposed approach may be applied even in those scenarios where measurements of 

these external conditions are unavailable. While the DSF computation does not require a 

priori knowledge of the mass/stiffness parameter values, limiting the modeling assumptions only 

to the knowledge of the model class, the use of ECCDFs further avoids the assumption of any 

particular parametric distribution to statistically model the DSFs. Finally, in addition to damage 

detection, the proposed approach may also be used to validate retrofitting operations. 

The DSF computation is discussed in Section 2. The derivation of the training and testing 

ECCDFs of the DSFs are discussed in Section 3, and the different levels of damage assessment are 

discussed in Section 4 using numerical simulations of ambient vibration testing of a bridge deck 

system. In Section 5, the approach is applied to shake table experimental data from a 4-story steel 

frame. 

 

 

2. Stiffness proportional damage sensitive feature 
 

In modeling structural damage as localized stiffness reduction, a DSF which is tailored to 

measure the deviation of stiffness properties from a baseline state should be ideal. To define such a 

DSF, consider an N degrees of freedom (DOF) classically damped model of a system, with N×N 

mass and stiffness matrices, respectively denoted by M and K. Let the state of the system 

described by {M, K} be the baseline state. Let an alternative state of the system, representing it in 

an unknown condition, be denoted by {M
*
,K

*
}. Then, the DSF discussed here measures the 

departure of the (i,i)th element of K
*
 from the (i,i)th element of K 

.DSF
,

*
,,

ii

iiii
i

K

KK 
                               (1) 
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Since this DSF measures the relative change in the system’s local stiffness properties, it is 

named Stiffness Proportional Damage Sensitive Feature (SPDSF). Since the DSFs discussed in 

this section are related to the different DOFs constituting the model of the system, these DSFs may 

be used not only to test for the existence of damage in the system, but also to locate the damage to 

the neighborhood of any particular DOF. Moreover, since the DSFs provide a measure of the 

relative change, with respect to the baseline state, in the diagonal elements of the stiffness matrix, 

they may also be used to assess the severity of any localized damage. 

Let λj and j denote the jth eigenvalue and mode shape vector of the model corresponding to the 

baseline state, and ij the ith component (corresponding to DOF i) of j. Any appropriate 

operational modal analysis technique may be used to identify these parameters. In this paper we 

consider systems which can be represented through lumped mass models, i.e., M and M
*
 are 

diagonal. The DSF in Eq. (1) can then be written in terms of the modal parameters of the two 

states of the system as 
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with the superscript 
*
 denoting parameters belonging to the alternative {M

*
, K

*
} state. In Eq. (2), 

the  factors {1 = 1, 2, …, N} are proportional mass normalizing factors, which account for the 

arbitrary scaling of the identified mode shapes in output-only/base excitation situations, while the 

scalar α is the true mass normalizing factor for mode 1; for any mode j, αj is the true mass 

normalizing factor. In tests with known input forces, with one collocated sensor-actuator pair, it is 

possible to directly identify the mass normalized mode shapes (e.g., Mukhopadhyay 2014a), and 

so the and all 's in Eq. (2) become equal to 1. However, when considering the more feasible 

output-only/base excitation scenarios, these factors need to be estimated separately. The first factor 

1 is taken as 1, since in output-only situations, for models with diagonal M, one can identify only 

a model proportional to the true model by a single scalar factor without using any a priori 

knowledge of the value of any physical parameter (Mukhopadhyay 2014b). The remaining (N – 1) 

unknown j’s may be obtained by imposing any known topological requirements of the M and K 

matrices (Mukhopadhyay 2014b). Imposing the sparsity requirement of a diagonal M, one gets the 

following linear system of equations whose least squares solution gives the unknown j’s 

lilili

N

j jjlji  
 and   ,        S1,1,2 ,, 

                
 (3) 

where S  is the set of instrumented DOFs (a subset of all the N DOFs), where the output 

responses are measured. One can similarly obtain a least squares solution for the factors of the 

alternative system. To evaluate the ratio α
*
/α, one would need some assumption on the value of 

any physical parameter of the system. Assuming that the change in the total mass (= sum of all 

element masses) of the system in its transition from one state to another is minimum, this ratio 

may be estimated as 
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If the system is instrumented with Ns sensors, Eq. (3) will represent Ns(Ns – 1)/2 equations, 

leading to the minimal instrumentation requirement of Ns [1 + (8N – 7)]/2 for estimation of all 

the (N – 1) j’s. Even though the DSF in Eq. (2) is written for an identified complete spectrum, in 

situations where only Nm<N modes are identified from the data, the DSF may still be computed 

using only these Nm modes in the summation. However, in order to identify the normalizing factors 

through Eq. (3), all N modes need to be identified at the sensors locations; if Nm<N modes are 

identified, then other approaches (e.g., Parloo et al. 2002) may be used to compute the 

corresponding  factors. 

 

 

3. Empirical complementary cumulative distributions of SPDSF 
 

Unlike traditional DSFs, which represent a single state of the system, inherent in the definition 

of the DSFs in Section 2 is a comparison between two states of the system. For example, a change 

in the stiffness of an element connecting nodes i and l would be reflected in a change in the values 

of the ith and lth elements in the main diagonal of K, and this change would be captured by DSFi 

and DSFl. However, these DSFs, being dependent on the identified frequencies and mode shapes, 

will not only measure the change in the stiffness properties induced by structural damage, but will 

also measure stiffness changes induced by environmental and operational variability. Hence, it is 

pertinent that the damage detection procedure be able to distinguish between damage induced and 

non-damage induced fluctuations in the DSFs, so as to reduce instances of false alarms and false 

safety. This requirement defines an objective of the training phase: to define boundaries for the 

fluctuations of the DSFs that can be considered normal, and thereby define a reference zone 

against which new realizations of the DSFs, extracted from the system under unknown conditions, 

can be compared. To this end, we use the cumulative distribution functions (CDFs) of the DSFs, 

treating each DSF as a random variable. 

The SHM problem can be cast in a probabilistic framework by introducing the “probability of 

damage” assigned to any model parameter (Yuen et al. 2006). Such a probability can be assigned 

to each diagonal element of K, and be defined as the probability that the (i,i)th element of K
*
 be 

less than a prescribed fraction of the (i,i)th element of K 

       ))1(()( ,
*
,

damage
iiiii KdKPdP                     (5) 

where d is the fractional stiffness reduction (damage). Eq. (5) can be rewritten using Eq. (2) as 
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(6) 

The training procedure to build statistical models of the baseline state DSFs, encompassing the 

normal variability of the CDFs of the DSFs, can then be performed as discussed herein. Let ntr 

denote the number of measurement campaigns (i.e., number of sets of measured response data) 

that have been conducted on the monitored system under different healthy conditions; these 

different healthy conditions include different environmental and operational conditions of the 

healthy state of the system. With Ns sensors, located at the DOFs in S, in each measurement 

campaign, a set Y = {Λ
p
,

p
}, for p = 1, … ,ntr, of modal parameters may be identified, where Λ

p
 

and
p
 respectively contain the N eigenvalues and mode shapes at the Ns measured DOFs 
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identified from the pth set of measured response data. The set Y is then divided into two subsets 

YH and YV such that 

VH nn  VHVHVHVH Y;Y;Y,Y;YYY;YY                 
         

(7) 

Now, the modal parameters in YH are considered as reference, while those in YV are considered 

to come from an unknown state of the system, i.e., following the terminology used in Section 2, 

YH is treated as the set of modal characteristics identified from baseline states, while YV is treated 

as the set of modal properties identified from the system under unknown conditions. Then, each 

set of modal parameters in YV is compared with each and every set of modal parameters in YH 

using the DSF of Eq. (2); this results in a total of nV sets DSFi, iS, each set containing nH values. 

Empirical Cumulative Distribution Functions (ECDFs) of DSFi are then computed using Eq. (8) 

(Hanselmann et al. 2007), for each of these nV sets, treating the nH  DSFi values in each set as 

random realizations 

V

n

p

jp
i

H

j
DSF

njDSFdU
n

d
H

i
,...,1)(

1
)(ECDF

1

,   
             

(8) 

where U(z) is the Heaviside function: U(z) = {0, 0.5, 1} for z{< , =, >} 0. Eq. (8) is evaluated over 

a set of d values such that the computed ECDF(d)’s range from 0 to 1. )(ECDF d
j

DSFi
in Eq. (8) can 

be substituted in place of )(CDF d
iDSF in Eq. (6); the resulting )(

damage
dPi in Eq. (6), computed as 

1 – )(ECDF d
iDSF , is then referred to as the Empirical Complementary Cumulative Distribution 

Function (ECCDF) of DSFi. In this way, we get nV  curves representing )(ECDF d
iDSF , one for each 

data set in YV. The maximum and minimum bounds of these nV number of )(ECCDF d
iDSF are then 

computed, to estimate an acceptable range of d, denoting normal environmental/operational 

variability, and also to get lower and upper bound exceedance probabilities, given by the lower and 

upper bound ECCDFs, associated with each value of d in this range, for each DSFi. At the time of 

testing, a new set of response data is measured with the Ns sensors from the structure under 

unknown conditions, and a single set of modal parameters is identified from this data. This new set 

of modal parameters is compared, using Eq. (2), to each of the nH sets of parameters in YH 

obtained during the training stage. The resulting nH values of DSFi are then used to compute a 

single )(ECCDF d
iDSF following the same procedure as in the training stage. This single 

)(ECCDF d
iDSF is then compared with the lower and upper bounds of )(ECCDF d

iDSF obtained in the 

training stage for damage assessment. This comparison may be performed using different 

measures, as discussed in the next section with a numerical example. 
 

 

4. Different levels of damage assessment wıth numerical example 
 

4.1 Numerical example 
 

To test the validity of the proposed approach and to further define the procedures to identify, 

locate and define the extent of damage, we consider the simple lumped mass model of a bridge 

deck of Fig. 1. The model consists of 12 lumped masses and 20 flexural links, and is assumed to 

vibrate along the z direction. The energy dissipation characteristics of the system are modeled 

through proportional damping, by assigning 1% damping ratio to each mode.  

Table 1 lists the 10 different states considered here. States U1 to U5 represent different healthy 
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conditions: for example, state U2 may represent a scenario where only the –y side of the bridge 

deck is subjected to a temperature increase, while state U5 corresponds to a state where only the 

+y side of the deck is subjected to temperature decrease. States D1 to D4 represent different 

damage scenarios, with local damages defined with respect to different undamaged states, as may 

be expected in practice. State R1 represents the condition where a portion of the –y girder is 

retrofitted. 

To construct the training data sets, 50 tests are simulated on each of the five healthy states. 

Therefore, the set Y defined in Section 3 consists of 250 data sets. For a given test r, the value of 

the ith stiffness parameter, )(r
ik , is chosen as m

i
m

i kUk UU )01.0,01.0( , where m
ik U is the mean value 

of the flexural stiffness ki for the undamaged scenario Um, m=1,…,5 (Table 1), and )01.0,01.0(U

is the uniform probability distribution between the limits – 0.01 and 0.01. The variability of the 

stiffness parameters depicted in Table 1 is adopted to model systematic changes induced, for 

instance, by environmental effects, while the variability induced by the perturbation obtained via

)01.0,01.0(U is used to mimic the effects of operational and modeling assumptions. The ± 0.01 

limits are used as an example, but any range of values producing moderate changes to the 

structural properties would be similarly acceptable. It should be emphasized that, with the 

simulated environmental and operational variability, any (i,i)
th
 element of the healthy stiffness 

matrix has an approximately ±1.7% variability with respect to the baseline state, which is of the 

same order as the damage/retrofit induced mean changes (– 5% in states D2 and D4, +8.3% in 

R1,– 6.6% in D1 and D3); moreover, the difference between the stiffest and the most flexible 

healthy structure in terms of any (i,i)
th
 element of the stiffness matrix (approximately 3.3%) is 

higher than the difference between the most flexible healthy structure and the most stiff damaged 

structure (approximately 2.4%), thereby including the possibility of damage being masked by 

environmental/operational variability. Since such a possibility poses a pressing and relevant 

concern in SHM applications, the performance of the proposed approach is evaluated under such 

conditions.  
Each of the 250 sets of healthy structural parameters is used to simulate the response of the 

system to Gaussian white noise input force applied at all the DOFs. The resulting response 

accelerations are corrupted by adding 10% root mean square Gaussian white noise sequences, to 

represent measurement noise. In this example, only the response accelerations measured at DOFs 4 

to 9, 11 and 12 are considered, to represent a partial instrumentation set-up. The set of 250 

“measured” acceleration time histories is used to identify the modal frequencies and arbitrarily 

scaled mode shape components at the instrumented DOFs. In this numerical example, a stochastic 

subspace identification algorithm is used for this purpose, namely the Enhanced Canonical 

Correlation Analysis (ECCA) (Hong et al. 2013). The 250 sets of identified modal properties are 

then divided into the subsets YH and YV, each of cardinality 125 (nH  and nV  are both equal to 

125), both containing 25 realizations from each of the 5 undamaged scenarios. The methods 

discussed in Sections 2 and 3 are then employed to derive the SPDSFs for the instrumented 

degrees of freedom and the boundaries of the ECCDFs. 

To construct the testing ensemble, 30 tests are performed on each of the 10 states of Table 1, 

and the structural response is simulated adopting the same procedure used to construct the training 

data sample. The modal parameters identified through ECCA from each testing data set are 

compared to the nH  sets of training modal parameters in YH, and the resulting testing ECCDF at 

each measured DOF is constructed. 

Fig. 2 compares the 30 testing ECCDFs (thin black curves) in states U1, D1 and R1 with the 
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lower (dashed thick line) and upper (continuous thick line) bound training ECCDFs for DSF6. It 

may be noted that while the ECCDFs obtained from State U1 are contained within the training 

boundaries, the testing ECCDFs from State D1 are shifted to the right beyond the upper bound, 

indicating damage occurrence in one of the elements connected to mass 6 (see Table 1). On the 

contrary, the testing ECCDFs from State R1 are shifted to the left of the lower bound, validating a 

retrofitting operation to a portion of the structure in the proximity of sensor 6. Within a 

deterministic framework, a value of the SPDSF greater than 0 would indicate damage, as only one 

healthy state would be considered, and would have thus signaled the presence of damage in many 

of the tests performed on state U1. On the contrary, the initial training phase performed in the 

currently proposed approach enables us to set a reasonable range of values of d, within which the 

observation of a non-zero d can be attributed to the influence of external factors, e.g., temperature, 

traffic, wind, etc. 

 

 

Fig. 1 Bridge model and baseline parameters used in numerical example. Shaded lumped masses denote 

sensor locations in a partial instrumentation setup. 

 

 

Fig. 2 ECCDFs of SPDSFs at DOF 6 under States U1, D1 and R1 

 

Table 1 Different states of the bridge deck model considered for the numerical example 

State Condition Description Affected DOFs 

U1 Undamaged    20,...,1E1  ikk i
U
i  - 

U2 Undamaged    7,...,1E99.02  ikk i
U
i  1-6 

U3 Undamaged    7,...,1E01.13  ikk i
U
i  1-6 

U4 Undamaged    14,...,8E99.04  ikk i
U
i  7-12 

U5 Undamaged    14,...,8E01.15  ikk i
U
i  7-12 

D1 Damaged 1
6

1
6 80.0 UD kk   5 and 6 

D2 Damaged 2
6

2
6 85.0 UD kk   5 and 6 

D3 Damaged 3
18

3
18 80.0 UD kk   4 and 10 

D4 Damaged 4
18

4
18 85.0 UD kk   4and 10 

R1 Retrofitted 5
6

1
6 25.1 UR kk   5 and 6 
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4.2 Damage/retrofit detection and location 
 

In order to identify damage occurrence/retrofitting at a given location, it is necessary to 

compare the testing ECCDFs with the training boundaries. To fulfill this task, we explore here the 

use of the Lukaszyk-Karmowski metric (Lukaszyk 2004), which compares two probability 

distributions as 

yxygxfyxDD YXYXXY dd)()(||,, 










                   

(9) 

where )(xf X  and )(ygY  are the probability density functions of the random variables x and y. 

DX,Y is not a distance metric in the strict sense, as DX,X is equal to 0 only if x is an exact value. The 

property of the Lukaszyk-Karmowski metric that makes it appealing from our perspective is that it 

satisfies the triangle inequality as an equality: .,,, ZYYXZX DDD   This property may be exploited 

as follows: let fL(dL), fU(dU), and fT(dT) be the empirical probability density functions (epdfs) 

corresponding to the lower training bound, the upper training bound and the testing set of SPDSFs, 

respectively. Then, for example, when the testing ECCDF is obtained from data collected on the 

structure under undamaged conditions, the Lukaszyk-Karmowski distance of the lower training 

bound from the upper one satisfies the following relation 

1dd)()(||
,,

,
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(11) 

Similar relations hold when the system is damaged or retrofitted (Eqs. (12)) 

Damage
 




1
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D
; Retrofit

 



1
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,

TLUL

TU

DD

D

              

(12) 

In Eqs. (11) and (12) we use   to account for numerical errors introduced in the computation 

of the epdf from the ECCDF, and in the 2-D numerical integration necessary to compute the 

Lukaszyk-Karmowski metric, which in this paper is performed employing trapezoidal rule.  

Table 2 lists the results obtained by employing the said metric to detect and locate damage. In 

Table 2, for each state, the ratio n/30 indicates the number of tests, n, for which a change in the 

given diagonal term of the stiffness matrix is identified; the letter in parenthesis indicates whether 

that change is identified as due to damage (D) or retrofitting (R). Evidently, using said metric it is 

possible to correctly identify damage between degrees of freedom 5 and 6 (States D1 and D2), and 

damage around degree of freedom 4 (States D3 and D4), with reasonable accuracy. When dealing 

with damage scenarios D3 and D4 the detailed estimation of damage location is not possible, 

owing to incomplete instrumentation, specifically due to the absence of sensors at DOFs 3 and 10. 

Hence, for such states, we are only able to detect damage around DOF 4, but unable to exactly 

locate the damaged element. Note, however, that owing to the testing ECCDFs at DOF 5 falling 

within the training bounds, we can say k5 is not one of the damaged elements, so that States 3 and 

4 would be identified as damage scenarios where damage occurred on element(s) k4 and /or k18. 

In this example, Type II error, i.e. the percentage of damaged instances incorrectly identified as 

undamaged, is equal to 12.78% (23 out of 180 cases), and it is almost entirely due to missed 

damage identification of the milder damage conditions (States D2 and D4). Type I error, i.e. the 
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incorrect identification of an undamaged state as damaged, is much lower and equal to 0.81% (18 

out of 2220 cases). The retrofitting operation is correctly validated, with 100% accuracy, between 

degrees of freedom 5 and 6. The percentage of tests erroneously concluding that a certain area of 

the system has been retrofitted is 0.56% (13 out of 2340 cases). However, this latter error is of 

little concern, as the approach here proposed would be used only to verify that a given area of the 

system has been actually retrofitted. In practice, the retrofitted area is known a priori, and the use 

of the proposed structural health monitoring technique would only validate such an operation. An 

indication of retrofitting in a non-retrofitted area should be then judged as merely due to testing 

conditions slightly dissimilar to those attained during training. 

 

4.3 Stiffness change severity assessment 
 
Once changes in stiffness have been identified, it is important to quantify the extent of such 

changes to conclude whether the identified increase/decrease of the stiffness property is due to an 

actual change in the structural characteristics or is only due to healthy conditions slightly different 

from those learnt during training.  

At this point, it is important to emphasize the key premise the proposed structural health 

monitoring strategy is based on. In fact, it is recognized that thinking of the healthy system as 

represented by a single configuration of the structure is probably inappropriate, but it is rather 

more realistic to consider the healthy state as a variety of possible conditions where the structural 

properties might slightly change without leading the structure to perform differently from how it 

was originally designed. While by itself the testing ECCDF, here onwards denoted as )(dPT
DSFi

, 

gives a probabilistic representation of the damage severity, this representation does not account for 

the inherent variability in the healthy system’s ECCDFs. Hence, the damage severity obtained 

only using )(dPT
DSFi

may over/underestimate the actual damage severity. To account for the 

healthy system variability, the lower and upper training ECCDFs, denoted as )(dPL
DSFi

and 

)(dPU
DSFi

respectively, can be exploited as follows. We select a certain percentile from )(dPL
DSFi

, L, 

and another from )(dPU
DSFi

, U. The values of the stiffness change magnitude, d, corresponding to 

L and U should define a reasonable range of healthy system’s variability, i.e., a range which 

excludes extreme variations of the healthy system. Since )(dPL
DSFi

and )(dPU
DSFi

correspond 

respectively to the stiffest and softest healthy systems, such a reasonable range for d should 

correspond to a lower percentile from )(dPL
DSFi

and a higher percentile of )(dPU
DSFi

. Reasonable 

values for L would range between 1 and 5, while forU between 95 and 99, since such values 

conform to low and high percentiles, corresponding to a very stiff and a very soft healthy condition, 

respectively.  Here we select L equal to 5, and U equal to 95. Hence, we subtract the bound 

defined by the 5
th
 percentile of )(dPL

DSFi
, dL

5%
, and the 95

th
 percentile from )(dPU

DSFi
, dU

95% 
 (Fig. 

3(a)) from the testing d’s: the resulting first ECCDF, )( SLT

DSF
dP S

i

, gives the exceedance 

probabilities of damage with respect to the stiffest healthy condition, while the second, 

)( SUT

DSF
dP S

i

, quantifies the exceedance probability vs. the damage extent with respect to the softest 

healthy condition. 
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Table 2 Results for stiffness change occurrence identification and location 

State K4,4 K5,5 K6,6 K7,7 K8,8 K9,9 K11,11 K12,12 

U1 1/30 (D) 0/30 1/30 (R) 0/30 0/30 0/30 1/30 (R) 3/30 (D) 

U2 0/30 1/30 (D) 1/30 (D) 0/30 0/30 1/30 (D) 0/30 0/30 

U3 1/30 (R) 0/30 
1/30 (D) 

1/30 (R) 
1/30 (R) 0/30 0/30 1/30 (D) 2/30 (D) 

U4 0/30 0/30 1/30 (D) 0/30 0/30 0/30 
1/30 (D) 

1/30 (R) 
0/30 

U5 0/30 0/30 0/30 0/30 0/30 0/30 1/30 (R) 0/30 

D1 0/30 29/30 (D) 29/30 (D) 0/30 1/30 (R) 0/30 1/30 (R) 0/30 

D2 0/30 27/30 (D) 20/30 (D) 0/30 0/30 0/30 
1/30 (D) 

1/30 (R) 
0/30 

D3 30/30 (D) 0/30 0/30 0/30 0/30 0/30 1/30 (D) 0/30 

D4 22/30 (D) 0/30 0/30 0/30 0/30 0/30 0/30 0/30 

R1 1/30 (R) 30/30 (R) 30/30 (R) 2/30 (R) 0/30 0/30 0/30 3/30 (D) 

 

 

 
(a) (b) (c) 

(a) Definition of dL
5%

 anddU
95%

, (b) Estimation of damage severity (median) and (c) Estimation of damage 

severity (5
th

 and 95
th

 percentiles) 

Fig. 3 Estimation of damage severity 

 

 

Fig. 3(b) shows the ECCDFs obtained for a test under state D1 at DOF 6. In Figs. 3(b) and 3(c), 

the ordinate and abscissa labels display DSF
S 

and d
S 

in place of DSF and d, respectively, to 

emphasize that the values of the random variable are not those evaluated during testing, but those 

obtained by subtracting dU
95% 

and dL
5%

 from the testing values. The median amount of damage 

extent with respect to the stiffest healthy condition is equal to 0.08 (dashed thick red line in Fig. 

3(b)), while with respect to the softest healthy state is equal to 0.07 (continuous thick red line in 

Fig. 3(b)). From the previous results, we know that the element between DOFs 5 and 6 is damaged; 

if we assume that all spring elements connected to mass 6 have the same stiffness values, we can 

then estimate the amount of remaining stiffness, , of element k6 according to Eq. (14):  
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(14) 

It is important to note that, to perform damage severity assessment as in Eq. (14), one needs to 

know which are the stiffness elements connecting to the node under consideration, i.e., one needs 

to know the model class representing the system, which is a common assumption in most SHM 

techniques attempting to quantify damage severity. Using Eq. (14), it is possible to conclude that, 

under the damage scenario D1, there is 50% probability that the remaining stiffness of the 

damaged element between DOFs 5 and 6 be less than 0.79(= 1 - 3d = 1 - 3×0.07) when compared 

to the softest healthy system, and 0.76 (= 1 - 3×0.08) when compared to the stiffest healthy system 

(see Fig. 3(b)). Moreover, exploiting the 5
th
 and 95

th
 percentile of the ECCDFs of Fig. 3(c), it is 

possible to assess that there is only 5% probability that the remaining stiffness is lower than 0.67, 

but 95% probability that is lower than 0.91, with respect to the softest system. On the other hand, 

when considering the stiffest healthy condition, there is only 5% probability that the remaining 

stiffness of k6 be lower than 0.64, but 95% probability that be lower 0.88. Since the actual range of 

variability of the simulated k6 is within 0.73 and 0.82, the damage extent estimates are assumed to 

be reasonably accurate. Performing the same approach for all other tests under damaged cases D1 

and D2, and retrofitted case R1, the results are equally accurate. As mentioned in section 4.2, 

owing to partial instrumentation, it is not possible to estimate with comparable accuracy the 

damage extent for damage states D3 and D4. If we assume that both elements k4 and k18 are 

damaged and that the healthy counterparts share the same stiffness values, the stiffness retention of 

the two elements would range between 0.955 and 0.94; on the contrary, if we assume that only one 

element is damaged, values similar to those given for the state D1 are obtained. 

 

 

5. Shake table experımental applıcatıon 
 
For the experimental application of the proposed SHM approach, a 4-story singlebay laboratory 

scale A36 steel frame structural model is considered (Fig. 4).The frame has an inter-story height of 

533 mm, floor plate dimensions of 610 x 457 x 12.7 mm, and it is diagonally braced in one 

direction (North-South direction), from here onwards denoted as the strong direction, as opposed 

to the perpendicular direction (East-West direction), referred to as the weak direction. The 

columns and the diagonal braces have cross-sectional dimensions of 50.8 x 9.5mm and 50.8 x 6.4 

mm, respectively. All the structural connections are bolted using connection plates and angles. The 

frame is excited along the weak direction of bending. The base excitation is provided using the 1.5 

x 1.5 m platform uniaxial hydraulic shaking table facility available at the Carleton Laboratory of 

Columbia University, New York. The frame is mounted on the table and the structure-table 

connection is sufficiently bolted to reproduce a fixed-base behavior. The frame is instrumented 

with 8 piezoelectric accelerometers, located at the plate levels on the column to plate connections, 

measuring the acceleration along the weak direction of bending (Fig. 4).The sampling rate of all 

instruments is at least 200 Hz for all the experiments considered herein. In the ensuing discussion, 

we use the structural acceleration at the centroids of the floors, referred to as üi in the following, 

for i= 1,…,4, obtained by averaging the recorded acceleration time histories: ü1= (A1 + A8)/2, ü2= 

(A2 + A7)/2, ü3= (A3 + A6)/2 and ü4= (A4 + A5)/2. Using the assumption of rigid floors and the 

coincidence of floor centers of mass and centroids, the frame is modeled as a 1-D 4-DOF system. 

Six different types of input ground motions (band limited white noise, Eurocode 8 compatible, El 
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Centro, Hachinohe, Kobe and Northridge) are applied to the table. For this application, the 

OKID/ERA (Luş et al. 1999) algorithm is employed to identify the modal properties of the frame, 

by using the measured acceleration responses of the floors as outputs and of the table as input. 

To assess the applicability of the approaches discussed herein, in addition to the above frame, 

here onwards referred to as the “healthy” system (U1), an additional healthy condition U2 is 

considered, by adding two masses at the third floor: one on the south and the other on the north 

floor edge. The training data set is constituted by 89 input-output sets of acceleration histories. 

Four different “damaged” frames (D1 to D4) are also tested using the same set of 6 inputs. In these 

damaged frames, structural damage is simulated as stiffness reduction, by replacing one or more 

columns of the “healthy” frame with columns of reduced cross-sectional area (50.8 x 7 mm). The 

testing set consists of 144 data sets: 10 from state U1, 14 from state U2 and 30 from each of the 

four damaged states. The results of the stiffness change detection and location are presented in 

Table 4, using the same notation used to present the results for the numerical example. Type I error 

is again low and equal to 1.6% (5 out of 306 cases). Adversely, Type II error is equal to 25.6% (69 

out of 270 cases). In fact, while damage scenarios D2 and D3 are correctly identified and located 

with 100% accuracy, the method identifies the stiffness change at DOF 3, but fails at identifying 

such change at DOF 2 for the damage scenario D1; similarly, for state D4, stiffness change at the 

third inter-story is identified both at DOF 3 and 2, but the stiffness reduction at the second 

inter-story cannot be identified from these results. One possible reason behind this 

misidentification is that both damage scenarios D1 and D3 cause torsion in the system, which may 

not be captured well by the 4 DOFs 1-D model used. Nonetheless, even in these scenarios the 

overall system is identified as damaged, and the region containing the damaged elements is 

identified accurately as well.  

Fig. 5 shows the results of the stiffness change extent quantification. For any DOF, the plot in 

Fig. 5 is obtained as follows. Let dU
95% 

correspond to the 95
th
 percentile from the upper bound 

training ECCDF. Such dU
95% 

is subtracted from the d’s associated with the 144 testing ECCDFs. 

From the resulting new shifted 144 ECCDFs, the median d values, here onwards referred to as 

dUT
50%

, are obtained. Finally, for any given state, the average of such dUT
50%

 values are computed 

over all the tests performed on that state, e.g. over the 10 tests on State U1. Comparing the average 

estimated damage extent displayed in Fig. 5 with the theoretical values presented in the last 

column of Table 3, it is evident that the proposed approach is able to quantify the extent of 

stiffness change with reasonable accuracy. 

 

 

Fig. 4 Elevation views of the steel frame employed in the experimental application. Dimensions are in mm 
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Table 3 Different states of the steel frame considered for the experimental application 

State Condition Description Affected DOFs 
Stiffness Reduction at 

affected DOFs 

U1 Undamaged Baseline condition - - 

U2 Undamaged 40% mass addition to 3
rd

 floor - - 

D1 Damaged 15% stiffness reduction at 3
rd

 floor   2 and 3 7.5% at DOFs 2 and 3 

D2 Damaged 30% stiffness reduction at 3
rd

 floor   2 and 3 15% at DOFs 2 and 3 

D3 Damaged 60% stiffness reduction at 3
rd

 floor   2 and 3 30% at DOFs 2 and 3 

D4 Damaged 
15% stiffness reduction at 2

nd
 and 3

rd
 

floor   
1, 2 and 3 

7.5% at DOFs 1 and 3, 

15% at DOFs 2 

 

 

 
Table 4 Results for stiffness change identification and location 

State K1,1 K2,2 K3,3 K4,4 

U1 2/10 (D) 0/10 2/10 (R) 
1/10 (D) 

2/10 (R) 

U2 0/14 0/14 0/14 0/14 

D1 0/30 0/30 30/30 (D) 2/30 (D) 

D2 0/30 30/30 (D) 30/30 (D) 0/30 

D3 17/30 (R) 30/30 (D) 30/30 (D) 0/30 

D4 0/30 21/30 (D) 30/30 (D) 0/30 

 

 

An interesting observation from this experiment is the apparent increase in first-story stiffness 

with damage. The phenomenon may be appreciated in Table 4: at DOF1, for State D3, 17 out of 

the 30 tests identify an unexpected, systematic increase in stiffness at the first interstory. This is 

also observed in Fig. 5, which illustrates the estimated stiffness change extents in the different 

tested states. Such increase in stiffness is less marked for state D4, since the DOF 1 in this state 

also includes the effect of a damage in the second story; in fact, the average value of the estimated 

damage extent should be approximately equal to 0.075 in state D4 (Table 3). One possible 

explanation of the first story stiffness increase may be the activation of some strengthening 

mechanism (e.g., increased participation of the braces in load resistance, particularly strong 

torsional component, etc.) in the first story when there is damage at some other story. Such trend is 

more marked as the damage severity increases. In fact, while for damage scenarios D1 and D2 the 

average stiffness increase at the first interstory ranges between 4 and 6% (Fig. 5), for damage 

scenario D3 the increase in stiffness is nearly equal to 8%. This increase of the first interstory 

stiffness causes more than half of the tests performed on the frame under state D3 to be declared 

retrofitted at the first inter-story (Table 4). A similar unexpected increase in stiffness has been 

observed for the same structure also in (Fraraccio et al. 2008) where the stiffness properties of the 

frame structure have been identified using different approaches than the one presented in this 

paper. 
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Fig. 5 Average damage extent for the six states of the experimental application 

 

 

6. Conclusıons 
 

In this paper, a “mixed” approach for SHM using operational vibration response measurements 

is proposed. The DSFs, defined in a model based setting in terms of experimentally identified 

modal parameters, attempt to measure relative localized stiffness reductions. The health 

assessment is performed in a statistical pattern recognition framework using the DSFs extracted 

from response measurements. The features in the training stage, extracted from response 

measurements on the baseline structure in a wide variety of environmental/operational conditions, 

are used to compute a range of ECCDFs, from which lower and upper bound training ECCDFs are 

estimated. Such a training procedure intends to decouple the normal structural variations from 

damage induced changes, by defining a zone of normal variability of the baseline state through the 

estimated lower and upper bound training ECCDFs. The ECCDFs of DSFs extracted from the data 

collected in the testing stage are then compared against the lower and upper bound training 

ECCDFs to assess the presence, location and severity of any change in the structural stiffness 

parameters. To detect the existence of a stiffness change a method based on the 

Lukaszyk-Karmowski metric is exploited, which allows the user to also validate retrofitting 

operations. The results of a numerical example of ambient vibration testing of a bridge deck 

system illustrate that, with the localized definition of the DSF, using the aforementioned method, 

one may detect and locate the existence of any stiffness change with reasonable accuracy. After 

the existence and location of change detection, the severity of the change is also estimated using 

the testing and lower and upper bound training ECCDFs. The testing ECCDF is adjusted using 

different percentiles of the two training ECCDF bounds, resulting in a probability box model to 

represent the exceedance probability for different stiffness change severity levels. Such a model 

constitutes of a lower and an upper bound change probability vs. change severity curves, using 

which, for any given change severity, a lower and upper bound of the probability of exceedance 

can be estimated, and vice versa. The numerical example of the bridge deck shows that the 

severity of stiffness reduction/increase induced by damage/retrofitting may be estimated with 

reasonable accuracy using such curves. The two level uncertainty in the damage severity attempts 

to segregate: (a) the uncertainty from measurement noise, input variability, and 

environmental/operational variability in the training state, expressed through a single exceedance 

probability of change severity, and (b) the uncertainty from unknown environmental/operational 

conditions in the testing state, expressed through a range of possible values the exceedance 
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probability may take. If the monitored system is fully instrumented, then the proposed DSF and 

health assessment method allows also an accurate element level change localization and severity 

estimation, while for partially instrumented systems it successfully identifies a region within 

which damage is confined. The proposed health assessment procedure is also applied to 

experimental data from a 4-story steel frame under base excitation on a shake table and is proved 

to be capable of identifying the location and severity of stiffness reduction with reasonable 

accuracy. 
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