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Abstract.    Jacket-type offshore structures are always exposed to severe environmental conditions such as 
salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the 
importance of maintaining the structural integrity for an offshore structure, there are few cases to apply a 
structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM 
techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale 
structures. However, it still requires a significant challenge for practical applications to compensate 
unknown environmental effects and to extract only damage features from impedance signals. In this study, 
the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant 
structure in Korea under changes in temperature and transverse loadings. Principal component analysis 
(PCA)-based approach was applied with a conventional damage index to eliminate environmental changes 
by removing principal components sensitive to them. Experimental results showed that the proposed 
approach is an effective tool for long-term SHM under significant environmental changes. 
 

Keywords:    piezoelectric sensors; electromechanical impedance; temperature; load; structural health 
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1. Introduction 
 

Recently global warming is getting severe and natural disasters due to abnormal weather are 
successively threatening our lives and properties. It is a well-known that these problems are due to 
the excessive use of combustible fuel and excessive discharging of CO2. Therefore most of 
countries are trying to develop the renewable energies such as biomass, wind, and solar to cope 
with the global warming and to replace the drained combustible energy. Even though the biomass, 
wind and solar energies are sharing most part of renewable energy market, the marine energy is 
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certainly one of the most attractive and important energy sources in Korea because it is surrounded 
by the ocean on three sides. Korea especially has several potential sites where tidal current power 
plants can be constructed with the very high current speed of tides. Among them, Uldolmok strait 
is the most famous due to distinguish characteristics with high current speed and narrow and deep 
shape. Thus Korea Institute of Ocean Science and Technology (KIOST) constructed the Uldolmok 
Tidal Current Power Plant (TCPP) with funding of Ministry of Oceans and Fisheries since 2000, 
and the economic efficiency, construction, and maintenance of TCPP are going to be investigated 
after construction. 

TCPP generally consists of a power generating system and its supporting system. The power 
generating system includes marine hydrokinetic turbines, generators, and power converters. The 
supporting system fixes the location of the power generating system for operation of TCPP. For 
Uldolmok TCPP, a jacket-type supporting system was selected among various types considering 
the efficiency, safety, economic feasibility, and workability. To minimize the size of main jacket 
legs, jacket legs were designed just to meet the minimum design criteria, and the manufacturing, 
assembling, and installation were precisely controlled with dimension control/measuring system 
and nondestructive testing. Unfortunately the TCPP is sometimes exposed to unexpected 
environments such as excessively high tidal current loads and salt in the ocean during operation 
and these reduce the structural safety inducing structural damages in critical members of the 
structure even though the construction was carefully carried out. Therefore the structural health 
monitoring (SHM)is required to monitor structural conditions and to alarm undesirable structural 
damages. However, because access to the TCPP is difficult and maintenance and repair works are 
limited, there are very few cases that the SHM system was applied to the TCPP. Most researches 
utilized strain data at joint connection, acceleration data with eigenvalue analysis, or slope data for 
structural damage evaluation. Several techniques were also proposed for compensating 
temperature effects with the ARX model and the cross-correlation coefficient. Actually 
deformations and damages can be occurred by environmental factors on seawater and atmosphere, 
boat collisions, current loads, corrosion, and fatigue so that it is critical to monitor and evaluate the 
structural condition with careful consideration for both temperature and external load variations 
for safe and efficient operation of whole TCPP system. 

The SHM may be broadly categorized into two approaches by inspection domain: global SHM 
and local SHM. Global SHM focuses on the all-round health condition of structure using structural 
deformations such as deflections and inclinations or low frequency dynamic responses such as 
modal properties. This approach is mainly applied to explore the state of whole structure but poses 
a challenge to localize occurred abnormalities. On the other hand, local SHM mainly assesses 
regional damages near sensors with high frequency features like electromechanical impedance, 
elastic waves, and acoustics. It allows easier access to investigate damages occurred on structural 
members including failure critical members (Park et al. 2003, Min et al. 2010, Min et al. 2012).  

KIOST is carrying out extensive studies of the health monitoring of the supporting system of 
Uldolmok TCPP and making an effort to construct its safety decision algorithm and monitoring 
system. For this, KIOST fabricated a 1/20 scaled model and various types of SHM approaches and 
signal processing algorithms were applied on this model. This study proposes a new diagnosis 
algorithm using the electromechanical impedance as part of this research and this algorithm is also 
validated on this model. Environmental effects induced by temperature and external loading are 
real-time compensated with a simple signal processing technique. 
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2. Theoretical backgrounds 
 
2.1 Impedance-based SHM 
 
The electromechanical impedance method utilizes high-frequency structural excitations of 

surface-bonded piezoelectric patches monitoring changes in structural mechanical impedance. The 
term of ‘electromechanical impedance’ stems from two primary properties, i.e., electrical and 
mechanical impedance. A piezoelectric patch provides a means of coupling the electrical and 
mechanical impedance, which form a collocated sensor and actuator. There are several types of 
piezoelectric patches and, among them, MFC (macro fiber composite) patches and PZT 
(lead(Pb)-zirconate-titanate) ceramic patches are mainly used in the fields of civil, mechanical, and 
aerospace. Liang et al. (1996) performed a one-dimensional coupled electromechanical impedance 
analysis of an adaptive system driven by a surface-attached piezoelectric patch. Their research first 
conceptualized that the electromechanical admittance at the terminal of piezoelectric patch reflects 
the coupled-system dynamics, that is, the electrical admittance )(Y , as measured at the terminals 
of a piezoelectric patch, is directly correlated to the local mechanical impedance of the host 
structure, )(sZ , and that of a patch, )(aZ . 
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where G is the conductance (real part); B is the susceptance (imaginary part); C is the zero-load 

capacitance of a patch; and 31  is the electromechanical coupling coefficient of a patch. Given 

that the mechanical impedance and the material properties of the patch stay constant, the equation 
shows that a change in the structure’s mechanical impedance directly results in a change in the 
electrical impedance measured by the patch. Since damages cause a change in the structure’s local 
mass, stiffness, or damping properties and consequently its mechanical impedance, the structure’s 
mechanical integrity can be assessed by monitoring the patch’s electrical impedance. It should be 
noted that the admittance function, )(Y , is a complex number. Bhalla et al. (2002) demonstrated 
that the conductance is more sensitively changed due to the structural damage condition as 
compared to the susceptance. On the other hand, Park et al. (2006) found out that the susceptance 
can be more effectively used for piezoelectric sensor self-diagnosis.  

 
2.2 Statistical damage indices for damage detection  
 
By observing some changes of the electromechanical impedance acquired from a piezoelectric 

patch attached on a host structure, assessments can be made about the integrity of the host 
structure. Since the impedance changes provide only a qualitative assessment for damage detection, 
several scalar damage metrics have been used for quantitative measure of structural damages. 
Peairs et al. (2006) compares several damage metrics, while the most commonly used indices for 
the impedance method are the root mean square deviation (RMSD) and the cross-correlation 
coefficient (CC) as 
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where )(0 Z is the impedance of the PZT measured in the healthy condition (baseline); )(1 Z is 

the impedance in the concurrent condition; n is the number of frequency points; 0Z and 1Z  are 

the mean values of the real parts of )(0 Z and )(1 Z ;and 
0Z and

1Z are the standard deviations 

of the real parts of )(0 Z and )(1 Z . These metrics are scaled by the baseline measurement,

)(0 Z , and are corrected for the vertical shift between measurements by subtracting mean values. 
Upper equations yield a scalar number, which presents the relationship between compared signals. 
Thus, it is expected that the frequency shift, the peaks splitting, and the appearance of new peaks 
that appear in the signal will alter the damage metric values and thus alarm the presence of damage 
(Giurgiutiu 2008). Greater numerical value of the RMSD metric indicates larger difference 
between the baseline reading and the subsequent reading, which indicates clearer presence of 
damage in the structure. On the other hand, smaller value of the CC metric indicates larger 
difference between the impedances and clearer presence of damage. 

 
2.3 Effects of temperature and external loading 
 
Temperature variations due to surrounding changes should be considered with careful attention 

because the temperature variation causes a marked severe change in the structural dynamic 
response and also piezoelectric materials exhibit the strong temperature dependency, which may 
lead to erroneous diagnostic results of real structures(Park et al., 1999). To date, several studies 
have been reported to avoid the temperature variation effects on the impedance measurement. 
Krishnamurthy et al. (1996) demonstrated the effect of temperature on a free piezoceramic patch 
and found that an increase in the temperature leads to a decrease in the impedance amplitude. Park 
et al. (1999) proposed a compensation technique to minimize the effect of temperature on the 
impedance of piezoelectric sensor attached on the structure in the range of 26-70°C. Bhalla et al. 
(2002) investigated the influence of the structure-actuator interactions and temperature variation 
on the impedance signatures. A concept of active component of admittance signatures was 
introduced to utilize the direct interactive component after filtering the inert component. The 
active signatures were extracted from the real (resistance) and imaginary (reactance) parts of 
impedances to reduce the influence of temperature fluctuations on impedances. Koo et al. (2009) 
proposed the effective frequency shift (EFS;~ ) method in order to compensate temperature 
effects on impedances, which is based on the frequency shift giving the maximum 
cross-correlation coefficient between the baseline impedance data, )(0 Z , and the concurrent 

impedance data, )(1 Z , as 
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This proposed index was validated through experimental studies under temperature variations 
in the range of 16.1 to 28.5°C. Kim et al. (2010) proposed a data normalization technique using 
the kernel principal component analysis (KPCA), which is known as unsupervised least-square 
support vector machine. Experimental studies on a full-scale aircraft wing section showed that the 
proposed approach was well-operated under temperature and static loading variations. 

Structural components such as slabs, beams, and columns are practically subjected to some 
form of external loading. It is known that the electromechanical impedance signature obtained on a 
loaded structure is different from the one without the load. Thus, the influence of external loading 
on the electromechanical impedance has been examined by several researchers. Abe et al. (2000) 
first proposed a technique to identify in situ stresses in thin structural members through 
experimental studies. Ong et al. (2000) investigated the effects of stresses on the frequency 
response functions of structures through the 1-D and 2-D simulations. The simulated results 
showed that when a structure is axially loaded, lateral shifts toward right took place in local 
natural frequencies of structure (i.e., increases of resonance frequencies) and these shifts were 
reflected in the electromechanical admittance spectrum. Annamdas et al. (2007) presented the 
influence of loading on electromechanical admittance signatures by experimental and statistical 
investigations. When a bending moment was applied to both a structure and a PZT by an external 
static line load, conductance and susceptance signatures shifted upwards from baseline signature. 
The amount of upward shift seemed to increase with both the increase in magnitude of load and 
the increase in frequency range. And lateral movements on conductance and susceptance 
signatures were also observed, which could be explained by a relationship with the structural 
stiffness of the specimen. They explained this phenomenon occurred because the applied external 
load acted as interference in the wave propagation. The change of signature due to the external 
load was observed in the susceptance much clearly than in conductance, and they concluded that 
the susceptance signature is a better indicator than the conductance signature for detecting stress in 
the structure. They also investigated the effect of boundary condition. Various boundary conditions 
were applied to the beam-type specimen. Results showed that there was not much difference 
between the signature for the simply supported condition and that for the free-end condition. 
However, the signature for the fixed-fixed condition showed differences from those two signatures. 
They supposed it occurred because stresses were built in the specimen due to end restrains. Lim et 
al. (2011) proposed a new data normalization technique using KPCA to improve damage detect 
ability under varying temperature and external loading conditions and to minimize false alarms 
due to these variations. Experimental studies were carried out on a lab-scale metal fitting lug and 
applied to a full-scale composite wing specimen with a complex geometry. Results of the proposed 
method were compared with those of conventional methods and showed that it could correctly 
detect damages under various environmental conditions including temperature variations and 
static/dynamic loadings. 

 
 

3. Conventional SHM for lab-scale tidal current power plant structure 
 
3.1 Experimental setup 
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Table 1 Experimental damage scenarios 

Index 
Period 
(days) 

Temperature 
change (°C) 

Loading 
(cycle) 

Damage type 
Measurem
ent point 

Baseline 1 5.4 0.8 2 None 518 
Baseline 2 1.5 7.4 1 None 144 

Intact 1 1.0 7.7 0 None 96 

Intact 2 4.5 8.0 3 None 432 
Damage 1-1 1.1 1.4 0 D1(near L3) 105 

Damage 1-2 4.1 9.3 1 D1(near L3) 393 

Damage 2 4.3 8.3 1 D2(near L6) 412 
Damage 3 4.2 1.3 1 D3(near L6) 400 

 
 
The long-term performance of MFC patches attached on the structure was investigated in 

detecting crack and cutting damage at structural members or welded joints under various 
environmental conditions. Artificial damage (D1~D3) was induced at a height of 340 mm above 
the support slab as shown in Table 1. Here, D1 is 20 % cross-section cut at welded joints between 
L3 and diagonal bracing member which is 10 cm from S3, D2 is 20% cross-section cut at welded 
joints between L6 and diagonal bracing member which is 5 cm from S6, andD3 is 40% 
cross-section cut at the same location with D2.Note that the damage severity was calculated by the 
loss rate of cross-sectional area. Damage was induced. Experiments were performed in various 
scenarios with changes in temperature and loading conditions and different damage cases and it 
was summarized in Table 1. 

 
3.2 Measured impedance signatures 
 
Impedance signals were measured through 6 MFC patches in frequency ranges of 28.5~48.5 

kHz every 15 minutes and monitored during around 26 days. The frequency range was chosen as it 
includes several resonant peaks related to the dynamic interaction between the piezoelectric patch 
and the structure (Park et al. 2003). Once about 662 impedance signatures were obtained during 
6.9 days for baseline when no damage was induced in order to investigate only environmental 
effects. Baseline 1 is case of only loading under constant temperature, and Baseline 2 is case of 
changes in both loading and temperature. After baselines were build up, actual tests started and 
impedance signals were measured according to the scenarios in Table 1 as inducing damages under 
temperature and loading control. Fig. 3(a) shows resistance signals measured through S1 in 
baseline, which changed largely purely due to environmental conditions, especially temperature 
variations. From this figure, it was found that the signal shifts rightwards with a small variation in 
magnitude as the temperature increases. It should be noted that vertical shifts of signatures may be 
caused by a change in environmental conditions or a piezoelectric patch itself which can be easily 
corrected by subtracting mean values from the interrogation impedance (Park et al. 2003). 

When 20% and 40% section cut at welded joints between L6 and diagonal bracing member (D2 
and D3), the resistance signal from S6 was displayed in Fig. 3(b). The induced damage in the same 
temperature condition of 25.4°C mainly affected on the signal magnitude depending on the 
damage severity while the change in temperature of 5.4 °C was closely related to the signal shift 
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where }{x  is the mean of }{x . Then a singular value decomposition of ][C  is 

TAAC ]][][[][                               (6) 

where ][A  is the eigen-matrix, and ][  is the diagonal matrix with the eigen-values. The 
transformation to the principal component }{z  is then accomplished as 

    xxAz j
T

j  ][}{                            (7) 

This study applied this PCA to eliminate environmental effects on damage indices calculated 
from impedance signals, especially temperature, as well as unwanted noises and to reduce the data 
dimensionality which can be used usefully in wired/wireless data communication. A damage index 
matrix, )6,,2,1;,,2,1(][   jNiDIDI ij , which consists of N  damage index values from 

6 MFC patches, can be expressed the linear combination of the principal component vectors 

(eigen-vectors), )6,,2,1(},,,{}{ 621   jzzzz T
jjjj , and their coefficient vectors, 

)6,,2,1(},,,{}{ 21   jaaaa T
jNjjj  as 





M

i

T
jj zaDI

1

][                            (8) 

Since the principal component vectors are orthogonal each other, the ja}{  can be obtained as 

  jj zDIa ][                             (9) 

If unknown unwanted components such as environmental effects are mainly included in the i
-th PC, those can be eliminated from ][DI by using the i -th principal component vector and its 

coefficient vector. Then, a ]'[DI  index is drawn as a new damage index as in Eq. (10). It is noted 
that great care is required in order to determine the number of PCs which has to be eliminated 
from data. 

T
ii zzDIDIDI ][][]'[                        (10) 

Both 1-CC and 1-maxCC indices were used for ][DI in this study and critical PCs governed by 
temperature and external loading effects were investigate and then eliminated from original data to 
long-term monitor the target structure with reliable evaluation. 

 
4.2 Proposed SHM approach for long-term SHM 
 
The PCA was first performed using baseline signals (Baseline 1 and 2) obtained from six MFC 

patches and then six PC vectors, )6,,2,1(}{ jz j , were extracted. Since temperature and 
external loading effects were included in each PC with different contributions, it might be very 
critical to obtain lots of baseline data as well as to select PCs for damage diagnosis. Here, it should 
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Jiyoung Min, Jin-Hak Yi and Chung-Bang Yun 

 

5. Conclusions 
 
This study proposed a PCA-based method to compensate unknown environmental effects, 

especially temperature effects, and to provide only damage-sensitive features in the long-term 
SHM using impedance signals. A 1/20-scaled model of an Uldolmok current power plant structure 
in South Korea was made and monitored during around 26 days inducing several cut damages 
under varying temperature and transverse loadings. Impedance signals were measured periodically 
and conventional damage indices such as CC and max CC were calculated. However they showed 
large fluctuations in spite of no damage cases and provided lots of false alarms especially with 
temperature changes. To tackle this problem, components sensitive to these environmental changes 
were first separated from the damage index values through PCA and then eliminated. In this study, 
they were the first and second PCs. The final calibrated results showed that the environmental 
effects diminished clearly showing a potential of the proposed approach as a tool for long-term 
SHM under significant environmental changes, although there are problems to be ironed out 
further including the sensor calibration with different bonding condition for damage quantification.  

 
 

Acknowledgements 
 
This research was a part of the project titled “Development of active-controlled tidal stream 

generation technology” funded by the Ministry of Oceans and Fisheries, Korea (20110171) and 
KIOST research program (PE99322). The authors would like to express their appreciation for the 
financial support. 

 
 

References 
 
Abe, M., Park, G. and Inman, D.J. (2000), “Impedance-based monitoring of stress in thin structural 

members”, Proceedings of the 11th International Conference on Adaptive Structures and Technologies, 
Nagoya, Japan. 

Annamdas, V.G.M., Yang, Y. and Soh, C.K. (2007), “Influence of loading on the electromechanical 
admittance of piezoceramic transducers”, Smart Mater. Struct., 16(5), 1888-1897. 

Bhalla, S., Naidu, A.S.K. and Soh, C.K. (2002), “Influence of structure-actuator interactions and temperature 
on piezoelectric mechatronic signatures for NDE”, Proceedings of the ISSS-SPIE Int'l Conferences on 
Smart Materials Structures and Systems, Bangalore, India. 

Dunteman, G.H. (1989), Principal Components Analysis, Sage Publications, London. 
Giurgiutiu, V. (2008), Structural Health Monitoring With Piezoelectric Wafer Active Sensors, Academic 

Press, USA. 
Jlooiffe, I.T. (1986), Principal Component Analysis, Springer, New York. 
Kim, M.K., Lim, H.J., Sohn, H. and Park, C.Y. (2010), “Impedance-based bolt loosening detection under 

varying temperature and loading”, Proceedings of the Asian Pacific Workshop on Structural Health 
Monitoring, Tokyo, Japan.  

Koo, K.Y., Park, S., Lee, J.J. and Yun, C.B. (2009), “Automated impedance-based structural health 
monitoring incorporating effective frequency shift for compensating temperature effects”, J. Intel. Mat. 
Syst. Str., 20, 367-377. 

Krishnamurthy, K., Lalande, F. and Rogers, C.A. (1996), “Effects of temperature on the electrical impedance 
of piezoelectric sensors”, Proceedings of the SPIE Smart Structures and Materials: Smart Structures and 

296



 
 
 
 
 
 

Electromechanical impedance-based long-term SHM for jacket-type tidal current power… 

 

Integrated Systems, 2717, 302-310. 
Liang, C., Sun, F.P. and Rogers, C.A. (1996), “Electro-mechanical impedance modeling of active material 

systems”, Smart Mater. Struct., 5(2), 171-186. 
Lim, H.J., Kim, M.K., Sohn, H. and Park, C.Y. (2011), “Impedance based damage detection under varying 

temperature and loading conditions”, NDT & E Int., 44(8), 740-750. 
Min, J., Yun, C.B., Park, S., Lee, C.G. and Lee, C. (2012), “Impedance-based structural health monitoring 

incorporating neural network technique for identification of damage type and severity”, Eng. Struct., 39, 
210-220. 

Min, J., Park, S., Yun, C.B. and Song, B. (2010), “Development of a low-cost multifunctional wireless 
impedance sensor node”, Smart Struct. Syst., 6(5-6), 689-709. 

Ong, C.W., Yang, Y.W., Naidu, A.S.K., Lu, Y. and Soh, C.K. (2002), “Application of the electro-mechanical 
impedance method for the identification of in situ stress in structures”, Proceedings of the SPIE 
Conference on Smart Structures, Devices, and Systems. 4935, San Diego, CA. 

Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999), “Impedance-based structural health monitoring 
for temperature varying applications”, JSME Int. J. Series A, 42(2), 249-258. 

Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), “Overview of piezoelectric impedance-based health 
monitoring and path forward”, Shock Vib. Digest, 35(6), 451-463. 

Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006), “Piezoelectric active sensor 
self-diagnostics using electrical admittance measurements”, J. Vib. Acoust., 128(4), 469-476. 

Peairs, D.M., Tarazaga, P.A. and Inman, D.J. (2006), “A study of the correlation between PZT and MFC 
resonance peaks and damage detection frequency intervals using the impedance method”, Proceedings of 
the International Conference on Noise and Vibration Engineering, Leuven, Belgium.  

Puskar, F.J., Spong, R.E. and Ku, A. (2006), “Assessment of fixed offshore platform performance in 
hurricane ivan”, Proceedings of the Offshore Technology Conference, Houston, Texas, USA. 

Spong, R.E. and Puskar, F. (2006), Assessment of fixed offshore platform performance in hurricanes andrew, 
Liliand Ivan, Report. MMS Project No. 549, Energy Engineering Inc., Houston,Texas. 

Wintle, J.B. and Pargeter, R.J. (2005), “Technical failure investigation of welded structures (or how to get 
the most out of failures)”, Eng. Fail. Anal., 12(6), 1027-1037. 

Yi, J.H., Park, W.S., Park, J.S. and Lee, K.S. (2009), “Structural health monitoring system for ‘Uldolmok’ 
tidal current power pilot plant and its applications”, Proceedings of the ASME International Conference 
on Ocean, Offshore and Arctic Engineering, Hawaii, USA. 

 
 

297




