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Abstract.    Parametric identification of structures is one of the important aspects of structural health 
monitoring. Most of the techniques available in the literature have been proved to be effective for structures 
with small degree of freedoms. However, the problem becomes challenging when the structure system is 
large, such as bridge structures. Therefore, it is highly desirable to develop parametric identification methods 
that are applicable to complex structures. In this paper, the LSE based techniques will be combined with the 
substructure approach for identifying the parameters of a cable-stayed bridge with large degree of freedoms. 
Numerical analysis has been carried out for substructures extracted from the 2-dimentional (2D) finite 
element model of a cable-stayed bridge. Only vertical white noise excitations are applied to the structure, 
and two different cases are considered where the structural damping is not included or included. Simulation 
results demonstrate that the proposed approach is capable of identifying the structural parameters with high 
accuracy without measurement noises. 
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1. Introduction 
 

Parametric identification based on vibration characteristics provides useful information for both 
real-time online monitoring and overall offline evaluation of structures. The modal parameters 
(such as damping and frequency) of structure vibrations are dependent variables that relate to 
physical parameters (such as mass and stiffness). Therefore, accurate identification of structure 
parameters is the premise of a reasonable structure health monitoring system. Various analysis 
methodologies for parametric identifications have been derived (e.g., Bernal and Beck 2004, Lin et 
al. 2005, Zhou and Yan 2006, Lei et al. 2012). However, the problem becomes challenging when 
the structure system is large and complex, for example, bridge structures where the number of 
degree of freedom (DOF) is huge, because most of the identification methods available in the 
literature have better accuracy and adaptability for relatively small DOF structural systems (e.g., 
Caravani et al. 1977, Yang and Lin 2004, 2005, Yang et al. 2007).   

Therefore, in order to ensure accurate identification of structural parameters of bridges, 
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different approaches have been proposed. For example, the integration of GPS technology and 
accelerometers has been shown to be effective in characterizing the dynamic behavior of bridge 
structures (Yi et al. 2010, 2013a), the multi-stage structural damage diagnosis method is proved to 
be computational efficient in assessing damages in large structures (Yi et al. 2013b), and 
substructure approach can be used to decompose the complex structure having multiple DOFs into 
smaller parts such that the number of unknowns is limited within a certain range (Koh et al. 1991, 
2003, Law and Yong 2011, Wen et al. 2012, Lei et al. 2013). In particular, Koh et al. (1991, 2003) 
conducted systematic studies on the parametric identification of structures with different scales 
and conditions using genetic algorithm and found that the accuracy of substructure identification 
approach is higher than full structure identification method and requires much less computational 
time.  

In this paper, the substructure approach proposed in Koh et al. (2003) will be combined with 
the least square estimation (LSE) method given in Yang and Lin (2004, 2005) for identifying the 
parameters of a cable-stayed bridge with large DOFs. Numerical analysis has been carried out for 
substructures extracted from the 2-dimentional (2D) finite element model of a cable-stayed bridge. 
Only vertical white noise excitations are applied to the structure, and two different cases are 
considered where the structural damping is not included or included. Simulation results 
demonstrate that the proposed approach is capable of identifying the structural parameters with 
high accuracy without measurement noises. 

 
 

2. Fundamental theory 
 
2.1 Substructure approach 

 
The equation of motion (EOM) for a complete structural system can be written as 

        t t t t   Mx Cx Kx F   (1) 

where M , C , K are the mass, damping and stiffness matrices, respectively,  tx  is the 
displacement vector and  tF  is the excitation force vector. 

Consider a complex structure and suppose we are interested in monitoring some critical areas 
where damages may occur. A substructure containing that critical area can be extracted from the 
full structure, the corresponding EOM may be written by partitioning the original matrices and 
vectors as follows 

 

 
 
 

 
 
 

 
 
 

 
 
 

ff fr f ff fr f

rf rr rg r rf rr rg r

gr gg g gr gg g

ff fr f f

rf rr rg r r

gr gg g g

t t

t t

t t

t t

t t

t t

       
            
             

     
           
          

0 0

0 0

0

0

 

 

 

M M x C C x

M M M x C C C x

M M x C C x

K K x F

K K K x F

K K x F

    (2) 

426



 
 
 
 
 
 

Parametric identification of a cable-stayed bridge using least square estimation… 

 

where subscripts ‘ f ’ and ‘ g ’ denote the interface DOFs at the two ends of the substructure and 
subscript ‘ r ’ denotes the internal DOFs (Koh et al. 1991). Since we are interested in identifying 
the parameters within the substructure, only the second equation of Eq. (2) will be used, i.e. 

 
           

       
rf f rr r rg g rf f rr r rg g

rf f rr r rg g r

t t t t t t

t t t t

    

   

     M x M x M x C x C x C x

K x K x K x F
       (3) 

For parametric identification, we can rearrange all the interface DOFs to the right hand side of 
the above equation and treat them as inputs (excitations) to the substructure. Then, Eq. (3) can be 
expressed as 

        rr r rr r rr r eqt t t t  M x C x K x = F   (4) 
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where  r tx ,  r tx ,  r tx  are the output (measured) acceleration, velocity and displacement 

responses, respectively (Koh et al. 1991). 
 
2.2 Least square estimation (LSE) 

 
Supposed  t  is an n -parametric vector consisting of n  unknown parameters, including 

damping, stiffness, and nonlinear parameters, i.e., 

        1 2=
T

nt t t t       (6) 

The observation equation associated with the EOM of Eq. (1) can be written as 

            , , ;t t t t t t t    x x x y     (7) 

where  tx ,  tx ,  tx  are m -measured acceleration, velocity, displacement response vectors; 
 ty  is m -measured output vector;  t  is m -model noise vector contributed by the 

measurement noise and possible model errors; and    is  m n  observation matrix. 

At each time instant  1 1kt t k t    , Eq. (7) can be discretized as 

 1 1 1 1k k k k     y     (8) 

Combining all equations in Eq. (8) for 1k   time instants, and assuming that 1k  is a 

constant vector, one obtains 

 1 1 1 1k k k k      E Y                            (9) 

Where 
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Let 1k̂  be the estimate of 1k  at  1 1kt k t    , the recursive solution for 1k̂  can be 

obtained as 

  1 1 1 1
ˆ ˆ ˆ= +k k k k k k   G y                          (11) 

in which 

   1

1 1 1 1
T T

k k k k k k



    G P I P                     (12) 

  1 1 1k k k k   P I G P                       (13) 

where 1kG  is the LSE gain matrix, Eqs. (10)-(12) are the recursive solution of classic LSE 

method (Yang and Lin 2005). 
 
2.3 Combination of substructure and LSE methods 

 
In order to identify unknown structural parameters using both methods in the numerical study, 

Rayleigh damping is assumed for the substructure as 

  sb sb sb Gsb   C M K K                     (14) 

where subscripts ‘sb’ denotes substructure;   and   are the mass and stiffness damping 
coefficient respectively; sbK and GsbK  are the substructure stiffness and geometric stiffness 
matrices respectively; sbM  is the substructure mass matrix. For time instant kt , the EOM can be 
presented as 

            sb Gsb k sb sb Gsb k sb k eq kt t t t          K K x M K K x M x F   (15) 

In the finite element modeling, the substructure stiffness matrix sbK  is assembled from 
element stiffness matrix e

iK , in which i  denotes the element number, and Eq. (15) can be 
transformed to 
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  (16) 

where n denotes total number of elements. Since GsbK and sbM  are regarded as known value 
and  eq ktF ,  ktx  and  ktx  are measured vectors, the right hand side of the above equation 
corresponds to  ty  while the left hand side corresponds to  t  in Eq. (7). Let the stiffness 
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 i
EI  of each element be the unknown parameter to be identified, the stiffness matrix of beam 

element without axial deformation can be written as 

  
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where  =i i
k EI . After expanding e

iK  to the global coordinate system as sbK , one has 

        e e e
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in which  e
i kt  S x  is a vector whose dimension is the same as  eq ktF . Similar expansion 

applies to  i
EA , , and  . Then, the left hand side of Eq. (16) can be transformed to 

 
 

 

Fig. 1 Program flow chart 
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    1 2 1 2, , ,e e e e e e
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    1 2 1 2, , ,
T

k n nt k k k k k k         (21) 

Hence, the observation equation and the corresponding matrices and vectors for substructure 
identification can be summarized as follows 

      k k kt t t y                            (22) 

   1 2 1 2, , ,e e e e e e
k n n Gsb sbt        S x S x S x S x S x S x K x M x      (23) 

    1 2 1 2, , ,
T

k n nt k k k k k k         (24) 

        +k eq k Gsb k sb kt t t t  y F K x M x   (25) 

Fig. 1 shows the flow chart for carrying out the parametric identification using LSE method 
combined with substructure approach. 

 
 

3. Numerical model of a cable-stayed bridge 
 

In this paper, the Kezhushan Bridge which is one of the main navigation channels of Donghai 
bridge located in Shanghai, China will be studied using numerical simulation. The bridge is 710 
meters long with a main span of 332 meters and two side spans of 139 meters each and the full 
wide is 35 meters. It is a steel-concrete composite beam structure with two pylons and double 
cable planes. Each of the pylons is a reinforced concrete structure of 105 meters high. Cables are 
shaped into sectors and disposed symmetrically and each cable plane has 64 (2×32) cables. The 
general layout of the bridge is shown in Fig. 2.  
 
 

 

Fig. 2 The general layout of Kezhushan Bridge 
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Number of elements Number of nodes 

Fig. 3 Numbering of elements and nodes of half model 
 

 
3.1 Simplified model 

 
As this paper focuses on the vibrations of bridge under vertical excitations such as traffic loads, 

for the simplification of analysis, a 2-dimensioanl (2D) model is established in the numerical study, 
consisting of a beam, two towers and 64 cables. The cross section of a tower or a cable is two 
times of the original ones, since parallel cables or towers are combined into one. The axial 
deformation of beam and tower elements is ignored.  

The finite element model of the bridge is set up with numbering of nodes and elements shown 
in Fig. 3. The beam element is chosen between adjacent cable nodes and numbered from left to 
right as 1-67 where the nodes are numbered as 1-68. On the upper tower, the elements are selected 
between adjacent cable nodes, while on the middle and lower tower, it is divided into 14 elements 
equally. Therefore, the entire tower has 30 elements and 31 nodes numbered as 68-97 and 69-99 
respectively for the left tower, and as 98-127 and 100-130 respectively for the right tower. Each 
cable is taken as one element numbered from left to right as 128-191.  

Since only vertical excitations are considered, the beam node has just vertical DOF while the 
tower node has horizontal DOF, and all the nodes at the boundaries are constrained. 

In summary, the entire model has 191 elements, 130 nodes and 252 DOFs. 
 
3.2 Element matrices 

 
Beam and tower element stiffness matrix    
The geometric stiffness should be considered for element stiffness matrix if considering the 

axial forces, one has 

 
e e e

G K K K                           (26) 

in which 
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where E , I , N  and l  are the modulus of elasticity, moment of inertia, axial force of length 
of the element, respectively. 

 
Beam and tower element mass matrix    
Suppose mass is distributed evenly along the length of element, a consistent element mass 

matrix can be written as follows 

 
2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

e

l l

l l l lml

l l

l l l l
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 
 
   

M                    (29) 

where m  is the linear density of element. 
 
Cable element stiffness matrix    
A cable element only has two DOFs, a vertical DOF at the beam side and a horizontal DOF at 

the tower side, and its stiffness matrix can be written as follows 
 

 
2

2

sin sin cos

sin cos cos
ege E A a a a

l a a a

 
  

 
K   (30) 

where egE  is the modulus of elasticity modified by Ernst equation given in Eq. (31), A  is the 

cross sectional area, and a  is the horizontal angle of the cable. 

 
2 2

31
12

eg
h

E
E

l E





  (31) 

where   is the initial tension stress,   is the bulk density, and hl  is the horizontal length of 

the cable, respectively. 
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Table 1 Frequencies of the first six modes of the bridge 

mode Simplified model ANSYS 3D model error 

1 0.4018 Hz 0.3979 Hz 0.98% 

2 0.5403 Hz 0.5079 Hz 6.38% 

3 0.7985 Hz 0.8124 Hz 1.71% 

4 0.9832 Hz 0.9215 Hz 6.70% 

5 1.1104 Hz 1.0320 Hz 7.60% 

6 1.3027 Hz 1.2253 Hz 6.32% 

 
 
Cable element mass matrix    
The mass matrix of cable element can be obtained based on linear interpolation as follows 

 

2

2

1 1
sin sin cos

3 6
1 1

sin cos cos
6 3

e

ml a ml a a

ml a a ml a

 
 

  
  
 

M   (32) 

After establishing the mass and stiffness matrices, the frequencies of the first six modes of the 
simplified 2D bridge model can be computed. The results are compared with the frequencies 
obtained from the 3-dimensional (3D) model in Dong (2010), as summarized in Table 1. It shows 
that the 2D model can be used to represent the dynamic characteristics of the bridge with 
reasonable accuracy. 

 
 

4. Identification of structural parameters 
  

Because of the symmetry of the cable-stayed bridge, only the parameters of half of the model 
need to be identified and the structure is divided into three substructures. A vertical white noise 
excitation is applied at each beam node as shown in Fig. 4, with loading period of 10 seconds, and 
the corresponding responses are measured with sampling frequency of 1000 Hz. 

The parameters to be identified are the stiffness of all elements, namely EI  for beam and 
tower elements and EA  for cable elements.  

Two different cases are studied in the numerical simulation, i.e., the structure with no damping 
and with Rayleigh damping.  

 
4.1 Structure without damping 
 
Substructure 1    
The beam of the left span of the bridge model and the cables attached to it are considered as 

substructure 1 as shown in Fig. 5. 
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Fig. 4 Loading pattern of the bridge model 
 
 

Fig. 5 Substructure 1 
 
 
Substructure 1 contains NO.1-17 beam elements and NO.128-143 cable elements. The 

responses at the beam nodes and the cable nodes on the tower are considered as interface DOFs. 
There are 33 stiffness parameters to be identified for this substructure and the corresponding 
displacement vectors, parametric vectors, measurement vectors and observation matrices used in 
the LSE method are as follows 

  1 2 34 135 136 165,
T

x x x x x x  x   (33) 

  1 2 17 128 129 143,
T          (34) 

  1 2 33

T
y y y y   (35) 

  1 2 17 128 129 143,e e e e e e  S x S x S x S x S x S x   (36) 

The results of identified structural parameters are presented in Table 2, where NO.1-17 lists the 
stiffness EI  ( 11 210 N m ) of beam elements and NO.18-33 gives the stiffness EA  ( 910 N ) of 
cable elements. 
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Table 2 Identification parameters of substructure 1 (without damping) 

Beam Theoretical  Estimated  Error(%) Cable Theoretical Estimated Error(%)

1 1.1508 1.1508 0.000 18 2.2100 2.2100 0.000 

2 1.1508 1.1508 0.000 19 1.9900 1.9900 0.000 

3 1.1508 1.1508 0.000 20 2.0000 2.0000 0.000 

4 1.1508 1.1508 0.000 21 1.7600 1.7600 0.000 

5 1.1508 1.1508 0.000 22 2.4200 2.4200 0.000 

6 1.1508 1.1508 0.000 23 2.4500 2.4500 0.000 

7 1.1508 1.1508 0.000 24 2.5000 2.5000 0.000 

8 1.1508 1.1508 0.000 25 2.5400 2.5400 0.000 

9 1.1508 1.1508 0.000 26 2.6500 2.6500 0.000 

10 1.1508 1.1508 0.000 27 2.6300 2.6300 0.000 

11 1.1508 1.1508 0.000 28 2.6900 2.6900 0.000 

12 1.1508 1.1508 0.000 29 2.6000 2.6000 0.000 

13 1.1508 1.1508 0.000 30 2.6100 2.6100 0.000 

14 1.1508 1.1508 0.000 31 2.3700 2.3700 0.000 

15 1.1508 1.1508 0.000 32 2.4000 2.4000 0.000 

16 1.1508 1.1508 0.000 33 4.0200 4.0200 0.000 

17 1.1508 1.1508 0.000     

 
The time tracking of the identification processes of NO.1 beam element and NO.128 cable 

element are shown in Figs. 6 (a) and 6(b) respectively for illustration. 
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Fig. 6 The time tracking of the identification processes of substructure 1 (without damping) 
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Fig. 7 Substructure 2 
 

 
Substructure 2    
The beam of the right span of the bridge model and the cables attached to it are considered as 

substructure 2 as shown in Fig. 7. 
Substructure 2 contains NO.18-34 beam elements and NO.144-159 cable elements. Similar to 

substructure 1, the responses at the beam nodes and the cable nodes on the tower are considered as 
interface DOFs. Again, there are 33 stiffness parameters to identify and the corresponding 
displacement vectors, parametric vectors, measurement vectors and observation matrices used in 
the LSE method are as follows 

  34 35 68 135 136 165,
T

x x x x x x  x   (37) 

  18 19 34 144 145 159,
T          (38) 

  35 36 66

T
y y y y   (39) 

  18 19 34 144 145 159,e e e e e e  S x S x S x S x S x S x   (40) 

The results of identified structural parameters of substructure 2 are shown in Table 3, where the 
numbering and units of parameters are the same as those in Table 2. 

For illustration, the time tracking of the identification processes of NO.18 beam element and 
NO.144 cable element are shown in Figs. 8 (a) and 8(b) respectively. 

 

Substructure 3    

The tower and all the cables attached to it are extracted as substructure 3 shown in Fig. 9. 

 

436



 
 
 
 
 
 

Parametric identification of a cable-stayed bridge using least square estimation… 

 

 
Table 3 Identification parameters of substructure 2 (without damping) 

Beam Theoretical  Estimated  Error(%) Cable Theoretical Estimated Error(%)

1 1.1508 1.1508 0.000 18 2.6000 2.2100 0.000 

2 1.1508 1.1508 0.000 19 1.9700 1.9900 0.000 

3 1.1508 1.1508 0.000 20 1.7200 2.0000 0.000 

4 1.1508 1.1508 0.000 21 1.5600 1.7600 0.000 

5 1.1508 1.1508 0.000 22 1.4000 2.4200 0.000 

6 1.1508 1.1508 0.000 23 1.6100 2.4500 0.000 

7 1.1508 1.1508 0.000 24 1.8000 2.5000 0.000 

8 1.1508 1.1508 0.000 25 1.7000 2.5400 0.000 

9 1.1508 1.1508 0.000 26 1.6700 2.6500 0.000 

10 1.1508 1.1508 0.000 27 1.3900 2.6300 0.000 

11 1.1508 1.1508 0.000 28 1.1900 2.6900 0.000 

12 1.1508 1.1508 0.000 29 1.1300 2.6000 0.000 

13 1.1508 1.1508 0.000 30 1.6300 2.6100 0.000 

14 1.1508 1.1508 0.000 31 1.5000 2.3700 0.000 

15 1.1508 1.1508 0.000 32 1.1900 2.4000 0.000 

16 1.1508 1.1508 0.000 33 1.0200 4.0200 0.000 

17 1.1508 1.1508 0.000     
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Fig. 8 The time tracking of the identification processes of substructure 2 (without damping) 
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Fig. 9 Substructure 3 

 
Substructure 3 contains NO.68-97 tower elements and NO.128-159 cable elements. The cable 

elements EA  can be regarded as known quantities since they have already been obtained in 
substructure1 and 2. Therefore, in this substructure, there are only 30 stiffness parameters to be 
identified and the corresponding displacement vectors, parametric vectors, measurement vectors 
and observation matrices used in the LSE method are as follows 

  1 33 35 66 133 192, ,
T

x x x x x x   x   (41) 

  68 69 97

T      (42) 

     133 192 128 129 159 128 129 159

T Te e ey y      y S x S x S x   (43) 

  68 69 97
e e e S x S x S x   (44) 

where  68 69 97

T    denote the parameters of tower elements to be identified while 
 128 129 159

T    denote the parameters of cable elements that have already been 
estimated.  

Table 4 presents the identified structural parameters EI  (
12 210 N m ) of substructure 3 and 

Fig. 10 plots the time tracking of the identification process of NO.68 tower element. 
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Fig. 10 The time tracking of the identification processes of substructure 3 (without damping) 
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Table 4 Identification parameters of substructure 3 (without damping) 

Tower Theoretical  Estimated  Error(%) Tower Theoretical Estimated Error(%)

1 3.2362 3.2362 0.000 16 3.2362 3.2362 0.000 

2 3.2362 3.2362 0.000 17 7.7504 7.7504 0.000 

3 3.2362 3.2362 0.000 18 7.7504 7.7504 0.000 

4 3.2362 3.2362 0.000 19 7.7504 7.7504 0.000 

5 3.2362 3.2362 0.000 20 7.7504 7.7504 0.000 

6 3.2362 3.2362 0.000 21 7.7504 7.7504 0.000 

7 3.2362 3.2362 0.000 22 7.7504 7.7504 0.000 

8 3.2362 3.2362 0.000 23 7.7504 7.7504 0.000 

9 3.2362 3.2362 0.000 24 7.7504 7.7504 0.000 

10 3.2362 3.2362 0.000 25 7.7504 7.7504 0.000 

11 3.2362 3.2362 0.000 26 7.7504 7.7504 0.000 

12 3.2362 3.2362 0.000 27 10.981 10.981 0.000 

13 3.2362 3.2362 0.000 28 10.981 10.981 0.000 

14 3.2362 3.2362 0.000 29 10.981 10.981 0.000 

15 3.2362 3.2362 0.000 30 10.981 10.981 0.000 

 
 
4.2 Structure with damping 

 
As structural damping can only be obtained experimental, in the numerical study, Rayleigh 

damping will be assumed with mass damping coefficient α=0.001 and stiffness damping 
coefficient β=0.002. The parametric identification is carried out using the same substructures as 
in session 4.1. In addition to stiffness, the damping coefficients  ,   will also be estimated 
compared to the case of structure without damping. 

 
Substructure 1    
There are 35 parameters to be identified in substructure 1. The corresponding displacement 

vectors, parametric vectors, measurement vectors and observation matrices used in the LSE 
method are as follows 

  1 2 34 135 136 165,
T

x x x x x x  x   (45) 

  1 17 128 143 1 17 128 143, , , ,
T                (46) 
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  1 2 33

T
y y y y   (47) 

  1 17 128 143 1 17 128 143, , , ,e e e e e e e e
G         S x S x S x S x S x S x S x S x K x Mx   (48) 

Table 5 presents the identified structural parameters of substructure 1 with damping, where 
NO.1-17 parameters represent the stiffness EI  ( 11 210 N m ) of beam elements, NO.18-33 

parameters represent the stiffness EA  ( 910 N ) of cable elements, NO.34-35 parameters 
represent the damping coefficients   and  . 

The time tracking of the identification processes of the stiffness of NO.1 beam element and 
NO.128 cable element as well as the damping coefficients  and  are shown in Figs. 11 (a) - 
11(d) respectively for illustration. 

 
 
 

Table 5 Identification parameters of substructure 1 (with damping) 

Beam Theoretical Estimated  Error(%) Cable Theoretical Estimated Error(%)

1 1.151 1.151 0.000 18 2.210 2.210 0.000 

2 1.151 1.151 0.000 19 1.990 1.990 0.000 

3 1.151 1.151 0.000 20 2.000 2.000 0.000 

4 1.151 1.151 0.000 21 1.760 1.760 0.000 

5 1.151 1.151 0.000 22 2.420 2.420 0.000 

6 1.151 1.151 0.000 23 2.450 2.450 0.000 

7 1.151 1.151 0.000 24 2.500 2.500 0.000 

8 1.151 1.151 0.000 25 2.540 2.540 0.000 

9 1.151 1.151 0.000 26 2.650 2.650 0.000 

10 1.151 1.151 0.000 27 2.630 2.630 0.000 

11 1.151 1.151 0.000 28 2.690 2.690 0.000 

12 1.151 1.151 0.000 29 2.600 2.600 0.000 

13 1.151 1.151 0.000 30 2.610 2.610 0.000 

14 1.151 1.151 0.000 31 2.370 2.370 0.000 

15 1.151 1.151 0.000 32 2.400 2.400 0.000 

16 1.151 1.151 0.000 33 2.210 2.210 0.000 

17 1.151 1.151 0.000 34 0.001 0.001 0.007 

    35 0.002 0.002 0.001 

 
 

440



 
 
 
 
 
 

Parametric identification of a cable-stayed bridge using least square estimation… 

 

 

0 5 10 15 20 25 30
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Substructure 1 with damping 

 

 



Steps (n)

 Estimated value
 Theoretical value

 
0 5 10 15 20 25 30

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

(d) Substructure 1 with damping 



Steps (n)

 Estimated value
 Theoretical value

Fig. 11 The time tracking of the identification processes of substructure 1 (with damping) 
 
 
Substructure 2    
There are 35 parameters to be identified. The corresponding displacement vectors, parametric 

vectors, measurement vectors and observation matrices used in the LSE method are as follows 

  34 35 68 135 136 165,
T

x x x x x x  x   (49) 

  18 34 144 159 18 34 144 159, , , ,
T                (50) 

  35 36 66

T
y y y y   (51) 

  18 34 144 159 18 34 144 159= , , , ,e e e e e e e e
G        S x S x S x S x S x S x S x S x K x Mx   (52) 

The results of identified structural parameters of substructure 2 are shown in Table 6, where the 
numbering and units of parameters are the same as those in Table 5. 

The time tracking of the identification processes of the stiffness of NO.18 beam element and 
NO.144 cable element as well as the damping coefficients  and  are shown in Figs. 12(a) - 
12(d) respectively. 

 
Substructure 3    
There are 32 parameters to be identified. The corresponding displacement vectors, parametric 

vectors, measurement vectors and observation matrices used in the LSE method are as follows 

  1 33 35 66 133 192, ,
T

x x x x x x   x   (53) 

  68 69 97 68 69 97, ,
T            (54) 

    

  
133 192 128 129 159 128 129 159

128 129 159 128 129 159

T Te e e

Te e e

y y   

  

 



  

   

y S x S x S x

S x S x S x
  (55) 
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  68 69 97 68 69 97, ,e e e e e e
G      S x S x S x S x S x S x K x Mx   (56) 

where  128 129 159

T    and  128 129 159

T   denote the cable elements 

parameters EA  and EA  that have already been obtained in substructures 1 and 2.  
The identification results of structural parameters of substructure 3 are summarized in Table 7, 

where NO.1-30 parameters represent the stiffness EI ( 12 210 N m ) of tower elements and 
NO.31-32 parameters represent the damping coefficients   and  . 

The time tracking of the identification processes of the stiffness of NO.68 tower element, as 
well as the damping coefficients  and  are shown in Figs. 13 (a) - 13(c) respectively. 

 
 
 

Table 6 Identification parameters of substructure 2 (with damping) 

Beam Theoretical  Estimated  Error(%) Cable Theoretical Estimated Error(%)

1 1.151 1.151 0.000 18 2.600 2.600 0.000 

2 1.151 1.151 0.000 19 1.970 1.970 0.000 

3 1.151 1.151 0.000 20 1.720 1.720 0.000 

4 1.151 1.151 0.000 21 1.560 1.560 0.000 

5 1.151 1.151 0.000 22 1.400 1.400 0.000 

6 1.151 1.151 0.000 23 1.610 1.610 0.000 

7 1.151 1.151 0.000 24 1.800 1.800 0.000 

8 1.151 1.151 0.000 25 1.700 1.700 0.000 

9 1.151 1.151 0.000 26 1.670 1.670 0.000 

10 1.151 1.151 0.000 27 1.390 1.390 0.000 

11 1.151 1.151 0.000 28 1.190 1.190 0.000 

12 1.151 1.151 0.000 29 1.130 1.130 0.000 

13 1.151 1.151 0.000 30 1.630 1.630 0.000 

14 1.151 1.151 0.000 31 1.500 1.500 0.000 

15 1.151 1.151 0.000 32 1.190 1.190 0.000 

16 1.151 1.151 0.000 33 1.020 1.020 0.000 

17 1.151 1.151 0.000 34 0.001 0.001 0.001 

    35 0.002 0.002 0.001 

 
 
 

442



 
 
 
 
 
 

Parametric identification of a cable-stayed bridge using least square estimation… 

 

 

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Substructure 2 with damping K1

 

 

E
I 

(N
m

2 )

Steps (n)

 Estimated value
 Theoretical value



 

0 5 10 15 20
-1

0

1

2

3

4

5

6

7
 

 

E
I 

(N
m

2 )

Steps (n)

 Estimated value
 Theoretical value



(b) Substructure 2 with damping K18

0 5 10 15 20 25 30
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

(c) Substructure 2 with damping 

 

 

 

Steps (n)

 Estimated value
 Theoretical value

0 5 10 15 20 25 30

0.000

0.005

0.010

0.015

0.020

0.025

(d) Substructure 2 with damping 

 

 



Steps (n)

 Estimated value
 Theoretical value

Fig. 12 The time tracking of the identification processes of substructure 2 (with damping) 
 
 

Table 7 Identification results of Substructure 3 with damping 

Tower Theoretical  Estimated  Error(%) Tower Theoretical Estimated Error(%)
1 3.236 3.236 0.000 17 7.750 7.750 0.000 
2 3.236 3.236 0.000 18 7.750 7.750 0.000 
3 3.236 3.236 0.000 19 7.750 7.750 0.000 
4 3.236 3.236 0.000 20 7.750 7.750 0.000 
5 3.236 3.236 0.000 21 7.750 7.750 0.000 
6 3.236 3.236 0.000 22 7.750 7.750 0.000 
7 3.236 3.236 0.000 23 7.750 7.750 0.000 
8 3.236 3.236 0.000 24 7.750 7.750 0.000 
9 3.236 3.236 0.000 25 7.750 7.750 0.000 

10 3.236 3.236 0.000 26 7.750 7.750 0.000 
11 3.236 3.236 0.000 27 10.981 10.981 0.000 
12 3.236 3.236 0.000 28 10.981 10.981 0.000 
13 3.236 3.236 0.000 29 10.981 10.981 0.000 
14 3.236 3.236 0.000 30 10.981 10.981 0.000 
15 3.236 3.236 0.000 31 0.001 9.99e-4 -0.006 
16 3.236 3.236 0.000 32 0.002 0.002 0.000 
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Fig. 13 The time tracking of identification processes of substructure 3 (with damping) 
 
 
4.3 Summary 

 
It can be seen from the simulation results given in Tables 2-7 that using the proposed LSE 

method combined with substructure approach, the parameters of all the elements of the entire 
bridge model can be computed progressively from substructure to substructure. Also, the identified 
structural parameters can be tracked real-time or online as shown in Figs. 6, 8 and 10-13. Finally, 
it proves that without measurement noises, the proposed method can estimate structural parameters 
with very high accuracy, no matter whether the structure is without or with damping.  

 
 

5. Conclusions 
 
In this paper, the LSE method has been used combined with a substructure approach for the 

identification of structural parameters of a cable-stay bridge with large DOFs. Numerical analysis 
has been carried out based on the simplified 2D model of the bridge under vertical white noise 
excitations. Three substructures are extracted from the full finite element model of the bridge and 
the parameters of each substructure are estimated. The simulation results show that the proposed 
identification method has a high accuracy without measurement noises, and it is especially suitable 
for large structures with repeated patterns where the substructure approach can reduce the 
complexity of the problem and the LSE method can efficiently compute the structural parameters. 
However, the classic LSE method requires full measurements at every DOF which is usually not 
possible in real practice. Therefore, further studies have to be carried out to extend the LSE 
method to cover the case of incomplete measurement, and also the effect of different external 
excitations and measurement noises have to be investigated. 

 
 

Acknowledgments 
 
This research is partially supported by the Science and Technology Commission of Shanghai 

Municipality (Grant Nos. 13ZR1443400) and the National Basic Research Program of China (973 
Program) (Grant Nos. 2013CB036300). 

 

444



 
 
 
 
 
 

Parametric identification of a cable-stayed bridge using least square estimation… 

 

References 
 

Bernal, D., and Beck, J. (2004), “Special section: Phase I of the IASC-ASCE structural health monitoring 
benchmark”, J. Eng. Mech. - ASCE, 130(1), 1-127. 

Caravani, P., Watson, M.L. and Thomson, W.T. (1977), “Recursive least-squares time domain identification 
of structural parameters”, J. Appl. Mech. - T ASME, 44(1), 135-140. 

Dong, S. and Sun, L.M. (2010), Extreme load identification and early warning research of cable-stayed 
bridge based on monitoring data, Master Thesis, Tongji University, Shanghai, China. 

Koh, C.G., Hong, B. and Liaw, C.Y. (2003), “Substructural and progressive structural identification 
methods”, Eng. Struct., 25(12), 1551-1563. 

Koh, C.G., See, L.M. and Balendra, T. (1991), “Estimation of structural parameters in time domain: a 
substructure approach”, Earthq. Eng. Struct. D., 20(8), 787-801. 

Law, S.S. and Yong, D. (2011), “Substructure methods for structural condition assessment”, J. Sound Vib., 
330(15), 3606-3619. 

Lei, Y, Jiang, Y.Q. and Xu, Z.Q. (2012), “Structural damage detection With limited input and output 
measurement signals”, Mech. Syst. Signal Pr., 28, 229-243. 

Lei, Y., Liu, C., Jiang, Y.Q. and Mao, Y.K. (2013), “Substructure based structural damage detection with 
limited input and output measurements”, Smart Struct. Syst., 12(6), 619-640. 

Lin, S., Yang, J.N. and Zhou, L. (2005), “Damage identification of a benchmark problem for structural 
health monitoring”, J. Smart Mater. Struct., 14, S162-S169. 

Weng, S., Xia, Y. and Zhou, X.Q. (2012), “Inverse substructure method for model updating of structures”, J. 
Sound Vib., 331(25), 5449-5468. 

Yang, J.N. and Lin, S. (2004), “On-line identification of nonlinear hysteretic structures using an adaptive 
tracking technique”, Int. J. Nonlinear Mech., 39, 1481-1491. 

Yang, J.N. and Lin, S. (2005), “Identification of parametric variations of structures based on least squares 
estimation and adaptive tracking technique”, J. Eng. Mech.- ASCE, 131(3), 290-298. 

Yang, J.N., Pan, S. and Lin, S. (2007a), “Least squares estimation with unknown excitations for damage 
identification of structures”, J. Eng. Mech.- ASCE, 133(1), 12-21. 

Yi, T.H., Li, H.N. and Gu, M. (2010), “Full-scale measurement of dynamic response of a suspension bridge 
subjected to environmental loads using GPS technology”, Science China: Technol. Sci., 53(2), 469-479. 

Yi, T.H., Li, H.N. and Gu, M. (2013a), “Wavelet based multi-step filtering method for bridge health 
monitoring using GPS and accelerometer”, Smart Struct. Syst., 11(4), 331-348. 

Yi, T.H., Li, H.N. and Sun, H.M. (2013b), “Multi-stage structural damage diagnosis method based on 
“Energy-Damage” theory”, Smart Struct. Syst., 12(3-4), 345-361. 

Zhou, L. and Yan, G. (2006), “HHT method for system identification and damage detection: an experimental 
study”, Smart Struct. Syst., 2(2), 141-154.  

 

445




