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Abstract.    This paper proposes a structural damage identification approach based on the power spectral 
density transmissibility (PSDT), which is developed to formulate the relationship between two sets of 
auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is 
investigated and the damage identification in structures is conducted with measured acceleration responses 
from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to 
investigate the performance of the proposed damage identification approach. The initial finite element model 
of the structure and measured acceleration measurements from the damaged structure are used for the 
identification with a dynamic response sensitivity-based model updating method. The simulated damages 
can be identified accurately without and with a 5% noise effect included in the simulated responses. 
Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the 
accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. 
The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged 
elements are identified close to the true values. The identification results demonstrated the accuracy of 
response reconstruction as well as the correctness and efficiency of the proposed damage identification 
approach. 
 

Keywords:  damage identification; response reconstruction; power spectral density transmissibility; 
frequency domain; model updating 
 
 
1. Introduction 
 

Vibration responses, i.e., accelerations, measured from structures are widely used for structural 
condition assessment with damage identification algorithms. The identification results can support 
structural health monitoring, service life prediction and reliability updating of structures. 
Numerous studies are conducted to perform the structural damage assessment by using modal 
information, e.g. frequencies, mode shapes, flexibility, frequency response function, and mode 
shape curvature, etc. Yan et al. (2007) summarized the recent development in the vibration-based 
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structural damage detection techniques. Features of traditional damage detection methods based on 
those vibration properties listed above and modern methods based on wavelet analysis (Li et al. 
2009), neural network and genetic algorithms are discussed.  

Many available system identification techniques require both the measured input excitation and 
output responses. However, it is difficult to accurately measure the input excitations under 
operation conditions, such as winds, thermo and traffic loads. Therefore the desirable damage 
identification approaches are to estimate structure parameters only based on measured responses 
without measuring the input excitations. Wang and Haldar (1997) proposed an iterative 
least-squares procedure for system identification with unknown input excitation based on the 
extended Kalman filter method. Yang et al. (2007) performed least-squares estimation with 
unknown excitations for damage identification of structures. Perry and Koh (2008) proposed an 
output only structural identification strategy to identify the unknown stiffness and damping 
parameters. Yi et al. (2013) presented a multi-stage structural damage diagnosis method based on 
"energy-damage" theory. Studies on the simultaneous identification of structural parameters and 
input excitations have also been explored (Law and Li 2010, Huang et al. 2010, Lu et al. 2011, Xu 
et al. 2012, Lei et al. 2012, Lei et al. 2013). The computational effort of such methods may be 
significantly intensive due to a large number of unknown parameters, and the accuracy of damage 
identification results is dependent on the identified forces.   

Transmissibility, which defines the output-to-output relationship, is receiving increased 
attention due to the independence on input excitations and its high sensitivity to local structural 
changes. Recently, the transmissibility in the frequency domain has been used for structural 
response reconstruction (Law et al. 2011) and damage identification of a substructure (Li et al. 
2012). Yan and Ren (2012) proposed an operational modal identification approach based on the 
power spectrum density transmissibility from measured accelerations to a reference measurement 
for extracting frequencies and mode shapes of structures.  

In this paper, the relationship between two sets of auto-spectral density functions of output 
responses is formulated and no reference point is required. This relationship is explored for 
structural response reconstruction, and a damage identification approach based on the power 
spectral density transmissibility (PSDT) is developed without measuring the input excitations. The 
damage identification is performed with a limited number of measured accelerations from 
structures. The accuracy of response reconstruction with PSDT is also investigated and the 
reliability and effectiveness of the proposed damage identification approach are validated. 
Numerical and experimental studies on a seven-storey plane frame structure are conducted to 
demonstrate the performance of the proposed response reconstruction and damage identification 
approach. 

 
 

2. Response reconstruction with PSDT 
 
The response reconstruction in a structure has been developed with the transmissibility in the 

frequency domain (Law et al. 2011). This paper further develops the response reconstruction by 
using auto-spectral density functions of two sets of output responses without the reference 
measurement. The power spectral density denotes the vibration energy of signals in the frequency 
domain and could increase the sensitivity to identify local damage. The formulation of PSDT will 
be developed, and structural damage identification is conducted from the measured acceleration 
responses based on the response reconstruction with PSDT and structural model updating.   
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2.1 Frequency response function 
 
The general equation of motion of a damped structure with n  Degrees-of-Freedom (DOFs) 

can be written as 

          )()()()( tFtxKtxCtxM                      (1) 

where  M ,  C  and  K  are the nn  mass, damping and stiffness matrices of the 

structure respectively;   tx ,   tx  and   tx  are respectively the nodal acceleration, velocity 

and displacement vectors of the structure;   tF  is a vector of applied forces at the associated 

DOFs of the structure. Rayleigh damping      KaMaC 21   is assumed in this study, where 1a  

and 2a  are the Rayleigh damping coefficients.  

The Fourier transform of Eq. (1) gives 

                   FXKCjM  2                   (2) 

Therefore, the displacement response in the frequency domain is given as 

                   FKCjMFHX d

12 
            (3) 

in which,           12 
 KCjMHd   is the displacement frequency response function 

(FRF) matrix. The FRF matrix represents the inherent system frequency response characteristics 

and it can be measured experimentally, reconstructed from an experimental modal analysis, or 

obtained from finite element analysis of the structure.  

The acceleration response in the frequency domain could be obtained from Eq. (2) as 

                  FHFHXX da
22             (4) 

where       da HH 2  is the acceleration FRF matrix. 

 
2.2 Formulation of PSDT in the frequency domain 
 
Assuming that there are two sets of responses: the First-set and the Second-set, which are also 

considered as the Known-set and Unknown-set response vectors  kX  and  uX  
respectively, the following equation will be obtained in terms of Eq. (4)  

     
     










FHX

FHX
u
au

k
ak




                          (5) 
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where  k
aH  and  u

aH  are the FRFs of the Known-set and Unknown-set, respectively. The 

dimensions of  k
aH  and  u

aH  matrices are    nfftqnfftl   and    nfftqnfftm   

respectively assuming l , m , q  and nfft  are the numbers of responses in the Known-set and  

Unknown-set, the number of external forces and the number of frequency lines in Fourier 

spectrum, respectively. 

Define  FFG  as the auto-spectral density function of the input excitations on the structure, 

and  
kk XXG   and  

uu XXG   the auto-spectral density functions of output acceleration 

responses of Known- and Unknown-sets, respectively, the following equation can be obtained 
(Bendat and Piersol 1980) 

     
     













FF
u
aXX

FF
k
aXX

GHG

GHG

uu

kk

2

2




                       (6) 

When two or more responses are involved in the response vector, they will be assembled in a 
vector with one sensor data followed by those from other sensors. The response reconstruction 
equation between two auto-spectral density functions can be derived as 

     
kkuu XXrXX

GPSDTG                         (7) 

in which  PSDT  is the PSDT from the auto-spectral density  
kk XXG   at the Known-set to 

predict the auto-spectral density  rXX uu
G   at the Unknown-set.  PSDT  can be expressed as 

     









22
 k

a
u
a HHPSDT                      (8) 

where ‘+’ denotes the pseudo-inverse of a matrix. The number of measurements in the Known-set 
response vector should be at least equal or larger than the number of excitation forces on the 

structure so that the pseudo-inverse of matrix  







 2

k
aH  may exist. For the possible cases if 

have when the pseudo-inverse does not exist, the Damped Singular Value Decomposition (CSVD) 
or Truncated Singular Value Decomposition (TSVD) can be employed by eliminating those very 
small singular values to calculate the pseudo-inverse. Eq. (7) can be used for the structural 
response reconstruction with the available measured Known-set response to predict the response at 
the Unknown-set. PSDT can be computed with the FRFs calculated from the finite element model 
of the structure with Eq. (8). 

The auto-correlation of a response  pR  can be obtained from the statistical definition as 

  ( ) ( ) ( )p p pR E x t x t                             (9) 
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where  tx p  denotes the response at the p-th DOF, and  E  indicates the expectation operator. 

Eq. (9) can further be written as 

 

     

    
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0

0

1
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1
lim









 (10) 

where NN is the number of data point within the duration T under studied. 

 
2.3 First-Order-Hold input force approximation 
 
In the structural dynamic response analysis, methods of discretising the continuous dynamic 

system model are applied. The model was discretised with the Zero-Order-Hold (ZOH) and 
First-Order-Hold (FOH) input discrete approximations, respectively. The ZOH discrete method 
generates a continuous input signal by holding each sample value constant over a sample interval, 
which is a normal discrete approach used in structural analysis. Whereas the FOH method uses 
linear interpolation between each sample interval to generate a continuous input sample as shown 
in Fig. 1. Previous studies have proven that FOH input force approximation can enhance the 
accuracy of the dynamic response analysis results compared with ZOH input force approximation 
(Darby et al. 2001) due to the smoothed input approximation generated for dynamic analysis. 

 
 
 

 

Fig. 1 ZOH and FOH input force approximations 
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2.4 Computational procedure for response reconstruction 
 

If the initial finite element model of the structure in the undamaged state can be created, 
the information of time-histories of the applied force is not required in the response 
reconstruction process, but the locations of the applied forces should be known. Following 
describes the steps for response reconstruction: 

 
Step 1: The dynamic acceleration response  tx  of the structure is computed from Eq. (1) using 

numerical integration methods. The analytical Known-set and Unknown-set response 
vectors of the structure are obtained as the “measured” responses. 

Step 2: These two sets of responses are transformed from the time domain into the frequency 
domain and then the auto-spectral density functions of responses are calculated as 

 
kk XX

G   and  
uu XXG  .  

Step 3: FRF matrices  k
aH  and   u

aH  in Eq. (5) corresponding to the Known-set and 
Unknown-set at measurement DOFs are obtained from the finite element model of the 
structure. 

Step 4: The obtained  k
aH  and  u

aH  matrices are then used to calculate the PSDT in Eq. (8) 
and the response reconstruction is performed with Eq. (7).  

Step 5: Compare the reconstructed power spectral density  rXX uu
G   with the analytical one 

 
uu XXG  . The relative error will be obtained by comparing these two spectra as 

   
 

2

2error Relative




uu

uuuu

XX

XXrXX

G

GG



 
                       (11) 

 
 

3. Structural damage detection 
 

The parametric model updating method for damage identification is popular as they keep the 
connectivity and physical meaning of structures (Brownjohn et al. 2001). In this study, a dynamic 
response sensitivity-based finite element model updating method is used for the identification. The 
damage is assumed to be only related to a stiffness reduction such as a change in the elastic 
modulus. The mass matrix is assumed to be unchanged before and after the damage. The elemental 
stiffness factors in the initial intact structural finite element model are iteratively updated to have 
the reconstructed responses matching those measurements from the damaged state. 

 
3.1 Damage model  
 
Linear structural damage is assumed in this study, which means the initially linear structure is 

assumed to remain linear after the damage. The damaged system stiffness matrix dK  of the 
structure can be denoted as 
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     



n

i
ii

n

i
iid KKK

11

)1(                     (12) 

where  iK  and i  are the i th elemental stiffness matrix of the undamaged structure and the i
th elemental stiffness factor in the damage state, respectively. i  represents the stiffness 

reduction of the i th element, and it is a positive value.  
 
3.2 Damage identification algorithm 
 
The objective function of the damage identification algorithm is defined as the difference 

between two sets of auto-spectral density functions  

   
2


uuuu XXrXXobj GGf                     (13) 

where  
uu XXG   is the calculated auto-spectral power density of the measured Second-set 

response vector from the damaged structure.  rXX uu
G   is the reconstructed auto-spectral power 

density of the Second-set response vector from Eq. (7) with the measured First-set response vector 
 

kk XXG  . Structural elemental stiffness factors are then iteratively updated by minimizing the 

objective function in Eq. (13) to make these two auto-spectral density functions as close as 
possible.   

The dynamic response sensitivity-based model updating method (Lu and Law 2007) has been 
used to perform the damage identification and it is adopted here to identify the damage in the 
structure  

        rm xxxS 22                           (14) 

where,    is the perturbation of the vector of structural elemental stiffness factors,  S  is the 

sensitivity matrix of  
rXX uu

G   with respect to the elemental stiffness factors. The objective 

function in Eq. (13) is an implicit function with respect to the elemental stiffness factors. The 
sensitivity matrix  S  is obtained using numerical finite difference method (Zivanovic et al. 2007, 
Morton and Mayers 2005). It is noted that the number of equations in Eq. (14) should be larger 
than the number of unknown elemental stiffness parameters to make sure that the identification is 
over-determined. The adaptive Tikhonov regularization method (Li and Law 2010) is used to 
obtain the solution of Eq. (14) to improve identification results with noisy measurements. The 
L-curve method (Hansen 1992) is used to obtain the regularization parameter. 

 
3.3 Sensitivity matrix computation 
 
The sensitivity matrix is a rectangular matrix of order Uq , where q  and U  are the 

number of target responses in Eq. (13) and system parameters to be identified, respectively  
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      
 


















 Uj

rXX
U P

G
SSSS uu

,,2,1
21 ,,,







                    (15) 

 UjS j ,,2,1   is the sensitivity of the target auto-spectral density function to a certain 

change in parameter jP . Elements of the sensitivity matrix can be calculated numerically using, 

for example, the forward finite difference approach  

   
j

jrXXjjrXX
j P

PGPPG
S uuuu







                   (16) 

where  jrXX PG
uu
  is the reconstructed power spectral density at the current state of the parameter 

jP , while  jjrXX PPG
uu

  is the reconstructed power spectral density when the parameter jP  

is increased by an increment jP . The selection of jP  may have a effect on the identification 

accuracy, however, based on authors' experiences with many trails with different values of 
increments, the identification results are converged if a relatively small increment is used such as 
0.001 or 0.0001. 

  
3.4 Iterative damage identification procedure 
 
Acceleration measurements from the structure in the damaged state will be used to identify the 

elemental stiffness factors iteratively. Initially the elemental stiffness factor of every element in the 
finite element model is set as unity. An updated finite element model is assumed to be available as 
a reference model for the following iterative procedure of damage identification. 

 
Step 1: Measure the dynamic acceleration responses   txk  and   txu  from the damaged 

structure and transform them into the frequency domain to calculate the auto-spectral 
density functions  

kk XXG   and  
uu XXG   with Eq. (10), respectively.  

Step 2: Compute the FRF matrices  k
aH  and  u

aH  from the finite element model of the 
initial structure. PSDT is then calculated with Eq. (8).  

Step 3: Perform the response reconstruction with Eq. (7) and calculate the difference vector 
between the auto-spectral density function  

uu XXG   in Step 1 and the reconstructed one 

 rXX uu
G  . The sensitivity matrix  S  of  rXX uu

G   with respect to structural elemental 

stiffness factors is obtained by using the numerical finite difference method. 
Step 4: Obtain the perturbation vector of elemental stiffness factors    from Eq. (14) with the 

adaptive Tikhonov regularization technique. 
Step 5: The vector of structural elemental stiffness factors is iteratively updated with 

  ii 1  for the next iteration. Repeat Steps 2 to 4 until the following convergence 

criterion is satisfied 
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Tolerance
i

ii 


2

21




                        (17) 

where i  denotes the i th iteration. The tolerance value is taken as 1.0×10-4 in the numerical 
study and 1.0×10-3 in experimental study.  

It should be noted that the finite element model updating could be performed by directly 
matching the analytical power spectral density function with the measured ones to identify the 
damage in structures. However, this requires information of the input excitation in the finite 
element analysis to obtain the analytical power spectral density functions. In real situations, the 
input excitations are often not easy to be measured. One main and significant advantage of the 
proposed damage identification approach is that the excitation is not required in the identification 
process, and therefore only the structural parameters are formulated in the iterative identification 
procedure. 

 
 

4. Numerical studies 
 

Numerical studies on a seven-storey plane frame structure are conducted to demonstrate the 
accuracy of the proposed approach for structural response reconstruction and damage 
identification with PSDT. Fig. 2 shows the finite element model of the frame structure. The 
cross-sectional area and moment of inertia of the frame element are 0.32 m2 and 0.017 m4 
respectively. The finite element model consists of 49 planar frame elements and 44 nodes with 3 
DOFs for each node. Nodes 1 and 44 are fixed supports. Hence, the model has a total of 126 DOFs. 

The Young’s modulus and mass density of material are respectively MPa4105.3   and 2500 
kg/m3. The first seven natural frequencies of the structure are 2.43, 7.82, 14.72, 22.56, 23.94, 
31.42 and 33.93 Hz, respectively. Rayleigh damping is assumed and the damping ratios for the 
first two modes are defined as 012.0 . Two forces F1 and F2 with multiple sine excitations are 
applied on the structure as shown in Fig. 2. These two forces are 

      200 sin 30 0.5sin 15 0.2sin 60 , 1
1

0, 1

t t t t s
F

t s

      


 and 

      200 sin 50 0.6sin 75 0.2sin 100 , 1
2

0, 1

t t t t s
F

t s

      


 

In order to obtain the frequency domain analysis results under the excitation forces accurately, 
the following parameters are defined as shown in Fig. 3: the duration of the excitation force dt , 
the duration of free vibration ft  and the total sampling time 0T . Since the peak response of the 
system may be obtained after the excitation has ended, the analysis is carried out over a time 
duration 0T  which is much longer than dt . Furthermore, it has been reported (Chopra 2007) that 
the classical discrete Fourier transform solution will become increasingly accurate as the duration 

ft  of free vibration becomes longer because 0T  should be long enough for the free vibration of 
the system to damp out to small motion at the end of the period 0T . On the other hand, in order to 
obtain the frequency domain responses accurately, the sampling interval t  should be short 
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enough compared both to the periods of significant harmonics in the excitation and to the natural 
period of the structure.  

Therefore in this study the duration dt  of the above excitation forces is limited to the first one 
second and the duration of measurement is taken as 16.384s to ensure that 0T  is long enough for 
the system responses to decay to zero and the number of sampling points is a power of two for the 
Fourier transform. The sampling rate is set at 1000 Hz to ensure a good accuracy of discrete Fast 
Fourier Transform (FFT) for the frequency domain response analysis. Studies under seismic 
excitations (Li and Law 2012) and moving load excitations (Li et al. 2013) are explored in 
previous works, however, it should be noted that multi-sine excitation is used in this simulation 
study to reduce the leakage effects and to produce responses that are of better quality as compared 
with the random noise excitation, especially when only short time sequences can be recorded from 
the structure (Verboven et al. 2004). 
 
 
 
 

Fig. 2 Finite element model of the frame structure in numerical study 
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Fig. 3 A schematic excitation force and sampling duration 

 
 

4.1 Structural response reconstruction 
 
Dynamic analysis of the frame model is performed, and response reconstruction with PSDT is 

conducted to investigate the accuracy of the proposed approach. Six sensors are placed arbitrarily 
on this structure and their locations are Node 11(x), 13(y), 15(x), 30(y), 32(x) and 35(y) where 
“11(x)” denotes that the sensor is placed along the x direction at Node 11. The response calculation 
is conducted using ZOH and FOH input force approximations, respectively. The responses from 
these six sensor locations are simulated (measured) and they are taken as the Known-set response 
vector. The responses from the remaining DOFs are considered as the Unknown-set which will be 
reconstructed with Eq. (7). The relative error is calculated between the analytical and reconstructed 
power spectral density functions. 

Fig. 4 shows the relative errors of the response reconstruction results at all the remaining DOFs. 
The response reconstruction errors from FOH responses are generally less than those from ZOH 
responses indicating that accurate input approximate for dynamic analysis can provide more 
accurate response analysis results with a closer discrete form of input forces. The maximum errors 
under ZOH and FOH force approximations are observed both at the 60th DOF and their errors are 
6.66% and 1.45%, respectively. Figs. 5(a) and 5(b) show the true and reconstructed responses at 
the 60th DOF with ZOH and FOH approximations, respectively. It is demonstrated that the 
response reconstruction with PSDT can achieve a good accuracy, and the reconstruction with FOH 
has a better accuracy than with ZOH. 

 
4.1.1 Effect of sampling duration and sampling rate 
The sampling duration and sampling rate have been considered as two significant factors that 

could influence the accuracy of frequency domain analysis and the subsequent response 
reconstruction. In order to study how these two factors affect the response reconstruction accuracy, 
the sampling duration is considered varying from 4.192s to 32.768s and the sampling rate varies 
from 250 Hz to 2000 Hz in this study. When the sampling time varies, the sampling rate is kept 
constant at 1000 Hz. When the sampling rate varies, the sampling time is set equal to 16.384s. 
Table 1 lists the average relative errors of the response reconstruction results in the auto-spectral 
density functions with different sampling duration and sampling rate settings. Note that the 
average error denotes the mean values of relative errors from all the DOFs in the Unknown-set. It 
may be concluded from Table 1 that when a longer sampling time or a higher sampling rate is used, 

t 

P

dt  ft  

0T

 t )(tp  

25



 
 
 
 
 
 

Jun Li, Hong Hao and Juin Voon Lo 

 

more accurate response reconstruction results can be obtained since more number of sampling 
points are recorded for FFT. 

 
 

 

Fig. 4 Relative errors of response reconstruction results 
 
 

 
(a) 

 
(b) 

Fig. 5 Analytical and reconstructed responses at the 60th DOF. (a) ZOH input force approximation; (b) 
FOH input force approximation 
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Table 1 Errors (%) in the response reconstruction with different sampling duration and rate 

Sampling Time (s) 
(Sampling rate=1kHz) 

4.096 8.192 16.384 32.768 

Average error (%) 
ZOH 0.62 0.56 0.55 0.55 
FOH 0.22 0.15 0.14 0.14 

Sampling Rate (Hz) 
(Sampling time = 16.384s) 

250 500 1000 2000 

Average error (%) 
ZOH 11.9 2.30 0.55 0.20 
FOH 0.84 0.25 0.14 0.13 

 
 
4.1.2 Effect of noise in measured responses  
To simulate the effect of measurement noise, a normally distributed random noise with zero 

mean and unit standard deviation is added to the calculated dynamic response as, 

)( caloisepcaln xstdNExx                          (18) 

where nx  and calx  are simulated noisy response and original calculated response, respectively; 

pE  is the noise level; oiseN  is a standard normal distribution vector with zero mean and unit 

standard deviation and )( calxstd   denotes the standard deviation of the original calculated 

response. pE  equals to 0.1 when the noise level is 10%. 

The response analysis under ZOH and FOH approximations is performed respectively and 10% 
noise effect is added in the measurements. Fig. 6 shows the simulated acceleration responses at 
sensor location Node 15(x) under FOH without noise and with 10% noise. Designed filters and 
wavelet techniques can be used to reduce the noise effect and smooth signals (Yi et al. 2012). 
Since the first seven natural frequencies of the structure are lower than 50 Hz and therefore the 
“polluted” measured responses are then filtered using a low-pass filter with a cutoff frequency of 
100 Hz which is much higher than the frequency of interest in this study. These filtered data are 
then used for response reconstruction. Table 2 shows the relative errors in the response 
reconstruction results with different sampling duration and sampling rates and 10% noise effect. 
The comparison between Tables 1 and 2 shows that the noise effect would increase the 
reconstruction error, especially for the case with a lower sampling rate and shorter sampling 
duration. Table 2 also demonstrates that a higher sampling rate and longer sampling duration such 
as 1000 Hz and 16.384s for the example in this study lead to a good reconstruction under noise 
effect. 

 
Table 2 Errors (%) in the response reconstruction with different sampling duration and rate under noise 

effect 

Sampling Time (s) 
(Sampling rate=1kHz) 

4.096 8.192 16.384 32.768 

Average error (%) 
ZOH 1.51 1.51 0.18 0.56 
FOH 1.25 1.17 0.88 0.15 

Sampling Rate (Hz) 
(Sampling time = 16.384s) 

250 500 1000 2000 

Average error (%) 
ZOH 22.7 4.69 1.69 1.38 
FOH 4.31 2.43 1.67 1.20 
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Fig. 6 Accelerations at Node 15(x) under FOH without and with noise 

 
 
4.2 Structural damage identification 
 
The response reconstruction accuracy with PSDT has been verified in the above sections. 

Several parameters that are considered potentially to affect the accuracy of the reconstruction 
process have been investigated. It has been demonstrated that response reconstruction under FOH 
discrete has a better accuracy than that under ZOH, and therefore the damage identification will be 
conducted by using response calculated from FOH approximations to simulate a realistic input to 
the structures. In this study damage is introduced into the structure as a reduction of elastic 
modulus in a specific element. 10% damage is introduced into the 3rd and the 10th element of the 
structure as an example. Eight sensors are placed on the structure and they are divided into two 
sets, as shown in Table 3. Acceleration responses in these two sets from the damaged structure are 
measured and transformed into the frequency domain to calculate the auto-spectral density 
functions. The sampling duration and sampling rate of the used data are 16.384s and 1000 Hz, 
respectively. With the available finite element model of the initial intact structure, the FRF matrix 
can be computed and used to obtain the PSDT. The response difference between the measured and 
reconstructed Second-set auto-spectral density functions is obtained. The sensitivity-based finite 
element model updating is then used to conduct the damage identification with an iterative 
procedure described above in Section 3.4. The identification is performed with measured 
responses without and with 5% noise, respectively.  

Fig. 7 shows the damage identification results for the cases without and with noise effect in the 
measured responses. For the noise-free case, the identified damage extents in the 3rd and 10th 
elements are 9% and 10.37%, respectively. For the case with 5% noise, the identified damages are 
8.07% and 11.85% respectively at the two elements. The identified results from both cases are 
close to the true introduced damage values at the correct damage locations. It should be noted that 
several false identifications exist in the results for the case with noise, especially in the elements 
which are adjacent to the true damaged elements, e.g., 2nd and 4th elements, due to the smearing 
effect. Nonetheless, the identification results demonstrate that the introduced damages are 
identified effectively with a close damage level estimation to the true values. 
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Table 3 Sensor locations for damage identification 

Sensor set Sensor locations 

First-set (Known-set) Node 3(x), 5(x), 7(x), 9(x), 11(x), 13(x) 

Second-set (Unknown-set) 8(x), 14(x) 

 
 

 

Fig. 7 Damage identification results without and with noise effect 
 
 

5. Experimental verification 
 

5.1 Experimental setup 
 
Experimental studies on a seven-storey steel plane frame are conducted to validate the 

reliability and effectiveness of the proposed approach. Measured acceleration responses with 
measurement and environmental noise are used for the structural response reconstruction and 
damage identification. The dimensions of the frame are shown in Fig. 8. The column of the frame 
has a total height of 2.1 m with 0.3 m for each storey. The length of the beam is 0.5 m. The 
cross-sections of the column and beam elements are measured as 49.98 mm 4.85 mm and 49.89 
mm   8.92 mm, respectively. The mass densities of the column and beam elements are measured 
as 7850 kg/m3 and 7734.2 kg/m3, respectively. Fig. 9 shows the constructed steel frame building in 
the laboratory. The initial Young’s modulus of the steel frame is taken as 210GPa for all elements. 
The connections between column and beam elements are continuously welded at the top and 
bottom of the beam section. Two pairs of mass blocks with approximately 4 kg weight each, are 
fixed at the quarter and three-quarter length of the beam in each storey to simulate the mass from 
the floor of a building structure. The bottoms of two columns of the frame are welded onto a thick 
and solid steel plate which is fixed to the ground as the boundary conditions of the frame. 
B&K3023 and KD1010 accelerometers and B&K signal conditioner are employed to measure the 
accelerations of the frame structure in dynamic tests. A SINOCERA LC-04A hammer is used to 
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apply an impact excitation to the frame. A National Instruments data acquisition box is used to 
communicate with sensors and record the signals. The data recording computer and data 
acquisition board are electrically grounded to reduce the disturbance of AC power effect on the 
measured signals. 

 
 
 

 

Fig. 8 Dimensions of the steel frame structure 
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Fig. 9 The laboratory steel frame model 
 
 
5.2 Finite element model updating 
 
An initial finite element model is built with planar elements to match the experimental model. 

Fig. 10 shows the finite element model of the frame structure, which includes 65 nodes and 70 
planar frame elements. The weights of steel blocks are added at the corresponding nodes of the 
finite element model as concentrated masses. Each node has three DOFs (two translational 
displacements x , y  and a rotational displacement  ), and the system has 195 DOFs in total. 
The translational and rotational restraints at the supports, which are Nodes 1 and 65, are 
represented initially by a large stiffness of 3×109 N/m and 3×109 N·m/rad, respectively.  

 Experimental modal analysis is performed to extract the natural frequencies and mode shapes 
of the frame structure from the measured acceleration responses by using peak-picking method and 
frequency domain decomposition method. Eight sensors were deployed in the hammer tests with 
one defined as the reference sensor and the others as moving sensors and placed at all the joints 
between the columns and beams. Repeated tests with the moving sensors placed at all 
beam-column joints were conducted. The first seven modes are significant as this is a seven-storey 
frame similar to a shear-type building, and higher modes are local modes. Fig. 11 shows the 
natural frequencies and mode shapes of the first seven modes. Rayleigh damping is assumed in 
this study. The first two damping ratios of the intact frame structure are obtained from the 
half-power bandwidth method as 0.0017 and 0.0012, respectively. 
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Fig. 10 Finite element model of the planar frame structure 
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Model updating is required to match the analytical finite element model to the experimental 
frame model for investigating the accuracy of the proposed response reconstruction and damage 
identification approach with PSDT. The discrepancies between the experimental model and the 
created analytical finite element model are minimized by performing a two-stage model updating 
scheme. In the first-stage of model updating, the elastic modulus of each element and stiffness of 
restraints are selected as updating parameters. Modal information, such as measured frequencies 
and mode shapes are used for updating with the first-order modal sensitivity method (Friswell and 
Mottershead 1995). Based on the updated results obtained above, the second-stage model updating 
further refines the updated model by using the dynamic response sensitivity method (Lu and Law 
2007), which is targeted to have the dynamic responses calculated from the finite element model 
matching those measured ones as closely as possible. The elastic modulus of all the elements of 
the frame is selected in the second-round updating. Finally, an accurate updated finite element 
model which matches the experimental model well in both the modal information and the vibration 
responses is obtained (Li et al. 2012). This updated finite element model is then used as the 
baseline model in this paper for the following studies of dynamic response reconstruction and 
damage identification. 

 
5.3 Verification on structural response reconstruction 
 
The accuracy of forward structural response reconstruction will be investigated with the 

measured responses from impact tests on the intact frame structure. The impact was applied at 
Node 44, which is the beam-column joint at the 7th floor of the right column as shown in Fig. 10. 
Eight sensors were employed to measure the responses of the frame structure. Measured responses 
from six sensor locations at Node 4(x), 10(x), 13(x), 19(x), 22(x) and 59(x) are taken as the 
First-set response to predict responses at other two sensor locations at Node 7(x) and 16(x) as the 
Second-set response. The baseline model is used to calculate the frequency response function and 
then PSDT with Eq. (8). The sampling rate is 1000 Hz and the sampled data within the first 
16.384s are used to make sure the number of data points is a power of two. It may be noted that 
the reconstruction with Eq. (7) is conducted with measured acceleration responses only, and the 
hammer impact force is not required. Fig. 12 shows the measured and reconstructed responses at 
Node 16(x). The reconstructed response matches well with the measured one, which indicates the 
response reconstruction is accurate. The relative errors between the measured and reconstructed 
responses at Node 16(x) and 7(x) are 2.97% and 1.03%, respectively. 

 
 

 

Fig. 11 Measured frequencies and mode shapes of the initial laboratory frame structure 
 

Mode 1 - 2.54Hz Mode 2 - 7.66Hz Mode 3 - 12.86Hz Mode 4 - 18.03Hz Mode 5 - 22.96Hz Mode 6 - 26.99Hz Mode 7 - 29.91Hz
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Fig. 12 Measured and reconstructed responses at Node 16(x) 

 
 

Table 4 Errors (%) in the response reconstruction with different sampling durations and rates 

Sampling Time (s) 
(Sampling rate=1kHz) 

8.192 16.384 32.768 

Sensor location 
7(x) 1.58 1.03 1.03 
16(x) 3.35 2.97 2.50 

Sampling Rate (Hz) 
(Sampling time = 16.384s) 

250 500 1000 

Sensor location 
7(x) 1.04 1.03 1.03 
16(x) 2.97 2.97 2.97 

 
 
In order to investigate the effect of the sampling duration on the response reconstruction 

accuracy, the sampling rate is kept as 1000 Hz while the sampling duration varies from 8.192s to 
32.768s. Similarly to study the effect of the sampling rate, the sampling duration is set as a 
constant of 16.384s and the sampling rate is varied from 250 Hz to 2000 Hz. Table 4 lists the 
relative errors with different sampling duration and rates. Generally longer sampling duration 
gives more accurate response reconstruction accuracy. However, the accuracy of response 
reconstruction is not affected by the sampling rate. It can be seen from Table 4 that response 
reconstruction with sampling duration 32.684s and sampling rate 1000 Hz gives a better result and 
these settings will be used for the subsequent damage identification. 

 
5.4 Damage identification  
 
The length of each finite element in the frame structure is 100 mm. The damage was introduced 

as two cuts with width b = 30 mm and depth d = 10 mm, as shown in Fig. 13. A damage scenario 
with a single damage in element No. 12 is defined. Fig. 14 shows the damage scenario introduced 
in the frame structure. The equivalent stiffness reduction in the damaged element can be 
approximately obtained from the displacement method in the finite element analysis (Zhu and Xu 
2005). The required force to produce a unit displacement at a specific DOF can be represented as 
the stiffness value. The analytical stiffness reduction in the damaged element is derived as 12.5% 
and considered as the true damage extent. Hammer impact excitation was applied at Node 44(x) of 
the frame structure, as shown in Fig. 10. Hammer impact tests were conducted in the damaged 
state and acceleration response data from the structure were recorded for damage identification. 
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The stiffness reduction in a specific element can be identified as the change in the elemental 
stiffness factors with respect to the baseline model. 

In order to provide the spatial information and improve the robustness of the damage 
identification approach with experimental data, the first seven measured mode shapes are 
additionally included in the objective function as 

      
2

, amXXrXXobj ModeModeGGf
uuuu

                (19) 

where mMode  and aMode  are measured and analytical mode shape values of the frame, 

respectively. The same iterative damage identification procedure in Section 3.4 will be followed to 
identify the damage locations and extents.   

 
 

 
Fig. 13 Width and depth of the cut in the damaged element 

 
 

Table 5 Identified frequencies of the frame structure 

Frequency (Hz) Undamaged Damaged Reduction (%) 

Mode 1 2.54 2.526 0.55 

Mode 2 7.66 7.658 0.03 

Mode 3 12.86 12.816 0.34 

Mode 4 18.03 18 0.17 

Mode 5 22.96 22.842 0.51 

Mode 6 26.99 26.974 0.06 

Mode 7 29.91 29.73 0.6 
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Fig. 14 Introduced damage scenario in the frame structure 
 
 
After the single damage is introduced, an impact test with sensors placed at beam-column joints 

Node 4(x), 7(x), 10(x), 13(x), 16(x), 19(x), 47(x), 50(x), 53(x) and 56(x) was performed to extract 
the frequencies and mode shapes. The obtained frequencies are listed in Table 5 and compared 
with those in the undamaged state. The maximum reduction in the frequency is 0.6% in the 
seventh mode. Such a small change in the frequency means a very minor damage is introduced 
into the frame, which is not easy to be confidently identified with traditional modal information 
based methods. 

Another sensor placement is used, as shown in Table 6, and the measured responses from the 
damaged structure are used for the damage identification. The measurements are divided into two 
sets, in which the First-set response is used to predict the Second-set response with PSDT. The first 
two damping ratios are computed as 0.0019 and 0.0013 for the first two modes with the half-power 
bandwidth method. Rayleigh damping is assumed in this study and the experimental Rayleigh 
damping coefficients are computed with measured frequencies and damping ratios. The measured 
responses in both the First- and Second-set are low-pass filtered with a cutoff frequency of 36 Hz. 
Fig. 15 shows the calculated power spectral density function of the measured response at Node 
7(x). The data points around the frequency peaks in the power spectrum and measured seven mode 
shapes are included in the objective function for the damage identification.  

The iterative identification procedure is converged after 6 iterations. Fig. 16 shows the damage 
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identification results without and with including measured mode shapes after 5 and 6 iterations, 
respectively. The identified damage extents in the introduced damaged 12th element are 17.76% 
and 13.36% without and with modal information, respectively. Identification including modal 
information gives improved results with a closer damage level estimation, which indicates that the 
damage can be identified effectively with the proposed approach. 

 
 

 
Fig. 15 Measured power spectral density at Node 7(x) 

 
 

 
Fig. 16 Damage identification results in experimental study 

 
 

Table6 Sensor placement configurations of Scenario A 

Sensor Placement Configuration Sensor Locations 

First-set Node 4(x), 7(x), 11(x), 15(x), 17(x), 47(x), 53(x) 

Second-set 50(x), 56(x) 
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6. Conclusions 
 

This paper proposes a structural damage identification approach without the information of the 
input excitations applied to the structure. The response reconstruction based on PSDT is performed 
in the frequency domain to reconstruct the auto-spectral density functions at locations without 
measured responses. The damage identification is conducted by minimizing the difference between 
the measured and the reconstructed power spectral density functions. The dynamic response 
sensitivity-based model updating method is used to formulate the damage identification algorithm. 
Measured acceleration responses from the damaged substructure and the initial finite element 
model of the intact frame are used for identification analysis.  

Numerical and experimental studies on a seven-storey plane frame are conducted to investigate 
the performance of the damage identification approach. In numerical studies, the accuracy of the 
proposed response reconstruction technique is demonstrated and the effects of sampling duration, 
sampling rate and measurement noise are investigated. Two damages are introduced into the 
structure, and measured acceleration responses from the damaged structure without and with noise 
effect are used for damage identification. The damage locations and extents can be identified 
effectively for both the noise-free and noisy cases. Experimental studies on a steel frame model are 
conducted to validate the proposed response reconstruction and damage identification approach. 
Measured responses from hammer excitation are used for the initial finite element model updating, 
and the updated finite element model is taken as the baseline model for the damage identification. 
Measured responses from the intact frame are used to investigate the accuracy of response 
reconstruction with different sampling duration and rates. Good response reconstruction accuracy 
is achieved. Acceleration measurements from hammer tests on the damaged frame are used for the 
damage identification. The identification results demonstrate that the proposed damage 
identification approach can identify the location of the damage level accurately. 
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