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Abstract.   Convergence difficulty and available complete measurement information have been considered 
as two primary challenges for the identification of large-scale engineering structures. In this paper, a time 
domain substructural identification approach by combining a weighted adaptive iteration (WAI) algorithm 
and an extended Kalman filter method with a weighted global iteration (EFK-WGI) algorithm was proposed 
for simultaneous identification of physical parameters of concerned substructures and unknown external 
excitations applied on it with limited response measurements. In the proposed approach, according to the 
location of the unknown dynamic loadings and the partially available structural response measurements, part 
of structural parameters of the concerned substructure and the unknown loadings were first identified with 
the WAI approach. The remaining physical parameters of the concerned substructure were then determined 
by EFK-WGI basing on the previously identified loadings and substructural parameters. The efficiency and 
accuracy of the proposed approach was demonstrated via a 20-story shear building structure and 23 degrees 
of freedom (DOFs) planar truss model with unknown external excitation and limited observations. Results 
show that the proposed approach is capable of satisfactorily identifying both the substructural parameters 
and unknown loading within limited iterations when both the excitation and dynamic response are partially 
unknown. 
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1. Introduction 
 

Detecting structural damage or fault for large scale infrastructures is an important but still 
challenging task because damage/fault is an intrinsically local phenomenon and the response 
measurement is usually limited. The research interests on the damage detection (DD), system 
identification (SI) and structural health monitoring (SHM) have steadily increased and extensive 
literature reviews can be found (Chang et al. 2003, Carden and Fanning 2004, Fan and Qiao 2011). 
In many practical situations, it is usually difficult to install sensors at all of the interested part of a 
structure for identification because of the complexity of the structure itself, the limitation number 
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of available sensors as well as the accessibility of instrument installation. Hence, many 

investigators also focused on the development of SI and DD methods with incomplete 

measurements in time domain and/or modal domain (Yi et al. 2011, Lu et al. 2011, Park et al. 

2011, Rahmatalla et al. 2012, Lei et al. 2012a, Xu et al. 2012, Yi et al. 2013a-b). Another widely 

encountered challenge for SI and DD could be ill-conditioned problem and convergence difficulty 

especially for large-scale structures with many unknowns involved. In practice, in many cases, 

only critical parts or hotspots of engineering structures, where damage is most likely to occur, need 

to be concerned firstly. Therefore, substructural identification (SSI) method by dividing a large 

structure into several smaller substructures and identifying each substructure independently has 

been proposed to address the aforementioned challenges (Koh et al. 1991, Koh et al. 2003, Tee et 

al. 2005, Xu 2005, Park et al. 2010, Law and Yong 2011).  

For the purpose of possible application of the SI and DD methods in real situations, the 

simultaneous consideration on the aforementioned two aspects of the identification problem for 

large scale infrastructures would be necessary. Consequently, many researchers have contributed 

their efforts to develop efficient SSI approaches with incomplete measurement information. A 

novel substructural strategy was presented by Tee et al. (2009) for stiffness matrices identification 

and damage assessment with incomplete measurement in a divide-and-conquer manner. Lei et al. 

(2012b) proposed a damage detection method with limited input and output measurement signals 

and extended it for large scale structural system by employing the idea of SSI. By employing 

genetic algorithm (GA), Trinh and Koh (2012) presented an improved SSI strategy for large 

structural systems using incomplete acceleration measurements. Based on the finite element model 

of the intact substructure and the dynamic response reconstruction in frequency domain (Li et al. 

2012) or wavelet domain (Li and Law 2012), two types of substructural DD approaches were 

proposed with incomplete measurement information. By using the Fourier transforms of two or 

three floor accelerations, an innovative SSI method for shear structures was proposed by Zhang 

and Johnson (2013), and then a modified approach, basing on the cross-power spectral densities of 

structural responses, was proposed by the authors (Zhang and Johnson 2012) to improve the 

reliability of the method when large measurement noise was involved.    

 In this paper, an alternative substructural identification approach by the combination of a 

weighted adaptive iteration (WAI) approach and an extended Kalman filter method with a 

weighted global iteration (EFK-WGI) was proposed for simultaneous identification of 

substructural physical parameters as well as the unknown external excitations applied on the 

concerned substructure with limited output information. In the proposed approach, according to 

the location of the unknown dynamic loadings and the partially available structural response 

measurements, part of structural parameters of the concerned substructure and the unknown 

loadings were first identified by using the WAI approach proposed by the authors. Subsequently, 

the remaining physical parameters of the concerned substructure were identified by EKF-WGI 

method basing on the identified loadings and substructural parameters in the previous step. The 

feasibility and reliability of the proposed approach was demonstrated via a 20-story shear building 

structure and a 23 degrees of freedom (DOFs) planar truss model with unknown external 

excitation and partially known response measurements. Results show that the proposed approach 

is capable of satisfactorily identifying both the substructural parameters and unknown loading 

within limited iterations when both the excitation and dynamic response are partially unknown. 
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2. Formulation of the proposed SSI approach with WAI and EKF-WGI 

 
2.1 Basic idea of the SSI method 
 

The equation of motion of a MDOFs structural system can be expressed as  

  )()()()( tftKxtxCtxM                             (1) 

where M, C, and K are the mass, damping, and stiffness matrix, respectively; )(tx , )(tx , and

( )x t  are the corresponding structural acceleration, velocity, and displacement response vectors; f(t) 

is the external excitation vector. According to the concept of substructuring, Eq. (1) can be 

rearranged using partitioned matrices, 
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(2) 

where the subscript i denotes interior DOFs of a concerned substructure, the subscript s denotes 

interface DOFs of the substructure with adjacent parts of the structure, and the subscript r denotes 

the remaining DOFs outside the substructure. Then, the equation of motion for the concerned 

substructure can be extracted from the full system as 
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Assuming the mass distribution is known, Eq. (3) can be rewritten as 
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This equation can be also represented as follows 

1)(1)(   nmLLnm PH                              (5) 

where H is the response matrix composed of the velocity and displacement measurements of the 

concerned substructure and the interfacial DOFs;  is the physical parameters to be identified, i.e., 

damping and stiffness coefficients; m is the number of sample points for structural dynamic 

response measurements; n is the total number of the DOFs including the DOFs in the concerned 

substructure and the associated interfaces; L is the total number of the physical parameters to be 

identified; and P is an (m×n)×1 vector composed of the external excitations and inertia forces at 

time t. Here, the force vector P can be expressed as 

 TmtPtPtPP )(...)()( 21                      (6) 
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in which  Tlsisliiilil txMtxMtftP )()()()(   (l = 1, 2,…, m). 

It is obvious from Eq. (5) that the parameters of the concerned substructure can be easily 

determined by any available optimization algorithms while the response measurement and the 

external excitation are both available. Though the input and output information of the substructure 

is rather reduced as compared with the whole structure, it’s not always possible to obtain the 

complete information for SSI, e.g., only partial response of the concerned substructure is known. 

The approach proposed in this paper is employed to handle the structural parameters and 

excitation identification problems when the dynamic response measurement of a substructure is 

partially unknown. Firstly, a part of a substructure with the known responses, referred to as “sub1” 

in the following sections, is further separated from the concerned substructure and used to 

simultaneously identify the unknown dynamic loading as well as the corresponding physical 

parameters in a priority. Subsequently, the remaining parameters of the concerned substructure are 

determined based on the identified parameters and the external excitation in the previous step. The 

details are discussed in the following sections. 

 

2.2 WAI approach for identifying physical parameter and unknown loadings in the sub1 
 
In practice, the force vector and the response measurement are not always completely available 

for identification, which means Eq. (5) cannot be directly employed for the identification. 

However, in some cases, it is still possible to obtain the responses of partial DOFs of the 

concerned substructure. Consequently, a partial substructure with known measurement information, 

referred to as sub1 in this study, is first separated from the concerned substructure. Similar to Eq. 

(5), the expression for the identification of the sub1 can be given as   

1 1 1

( ) 1 ( )

sub sub sub

m n L L m n LH P                                 (7) 

The force vector 
1subP herein is assumed to be composed of two part, i.e., the known part 

(
1sub

knP ) and unknown part (
1sub

unP )  

1 1 1
T

sub sub sub

kn unP P P                               (8) 

where the subscript kn and un = subset consisting of the DOFs of the sub1 on which the known 

excitations are applied, and the DOFs on which the unknown excitations are applied, respectively. 

Moreover, it can be found from Eq. (7) that the estimated force vector of the sub1 on the j-th 

iteration can be determined while the estimated parameters are obtained before. Obviously, the 

estimated force vector on the j-th iteration should be composed of two corresponding parts and be 

shown below 
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                           (9) 

where the symbol ’~’ indicates estimated values, subscript j means the j-th iteration, and subscript 

kn and un are defined before. Here, the above estimated force vector is firstly updated by replacing 
1

,

~sub

jknP with the known part 
1sub

knP as shown in Eq. (10) 
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where the symbol ’^’ indicates the updated values at the j-th iteration. In order to accelerate the 

convergence of the unknown excitations, the increment of the unknown external excitation 

identification results at the previous two iterations is employed to re-update the unknown part 

(
1

,

~sub

junP ) as shown below 

1 1 1

, ,

T
sub sub sub

j kn j un jP P P                               (11) 

in which  1

2,

1

1,

1

,

1

,

~~~ sub

jun

sub

jun

sub

jun

sub

jun PPPP    , the symbol ’-’ indicates the re-updated values, and

 is a learning coefficient taking the value )1,0[ . To avoid the ultra-iteration, the learning 

coefficient  employed here can be variable values. The estimated unknown excitations are getting 

close to the actual values when the iteration process is carried out, and then the learning coefficient 

should take smaller values accordingly. For simplicity,  takes the value of j/ in this paper. 

Since the re-updated force vector 
1sub

jP is obtained and the response measurements are available, 

the physical parameters of the sub1 in the j-th iteration can be determined by the least-square 

estimation (LSE) method, 

                 11
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j PHHH
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Here, to improve the convergence behavior of LSE and the accuracy of the identification results, 

a positive definite weight matrix defined in the following equation is introduced 

1
0

0

sub
aI

W
bI
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  
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                            (13) 

in which I = identity matrix, and a, b = weight coefficients ( ),1[ a , ]1,0(b ). The dimension 

of aI and bI depends on the dimension of 
1sub

knP and 
1sub

unP defined before, respectively. By 

introducing the weight matrix to the objective function of LSE, Eq. (12) can be updated as follows  

      111
1

1111~ sub

j

subTsubsubsubTsubsub

j PWHHWH


              (14) 

It can be seen that the parameters of the sub1 are identified during the iteration, and according 

to Eq. (7) the unknown excitations are finally determined as well in the last iteration with the 

identified parameters. 

The basic procedure of the identification of the sub1 can be described in the following steps in 

which the symbol ’~’, ’^’, and ’-’, and superscript j are defined before.   

(a) Form the response matrix 
1subH basing on the response measurements. 

(b) Set the values of weight coefficients and learning coefficient, arbitrarily assign the initial 

value of the unknown excitation force for all time steps, and form the initial P vector named
1sub

jP . 

(c) According to Eq. (14) and the force vector
1sub

jP , estimate the system parameters
1~sub

j . 

(d) Using the estimated system parameters
1~sub

j  found in step (c), solve for the estimated force 

vector named
1

1

~sub

jP  herein according to Eq. (7). 
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(e) According to Eq. (10), obtain the updated force vector
1

1
ˆ sub

jP 
by using the partially known 

external excitations. 

(f) If j > 2, based on
1

1
ˆ sub
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, obtain 

1

1

sub

jP 
through Eq. (11); if 2j , it’s unnecessary to 

re-updated, hence, let
1 1

1 1
ˆsub sub

j jP P  directly.  

(g) Calculate the error between
1

1
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jP 
and

1sub

jP as 1 1 1

1 1

sub sub sub

j j je P P  which 
1

  is the 

1-norm. If the error is below an acceptable threshold, i.e. je , the procedure is complete; 

otherwise let
1 1

1

sub sub

j jP P  , and repeat steps (c-g). 

The flowchart of the WAI approach shown in Fig. 1 helps to illustrate the procedure of the 

parameter and excitation identification for the sub1. 

 

2.3 EFK-WGI algorithm for identifying the remaining parameters of the concerned 
substructure 

 
Since the parameters of the sub1 and the unknown excitations applied on it are identified before, 

the remaining parameters of the concerned substructure can be then determined by the EKF-WGI 

method. For the concerned substructure, define the state vector as  

 

 

Fig. 1 Flowchart for WAI method for the parameter and loading identification of the sub1 
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 Tii CKtxtxt '')()()(Z                          (15) 

where Z(t) is the state vector at time t, xi(t) and )(txi
 is respectively the displacement and velocity 

response of the concerned substructure as mentioned in Eq. (2), K’ and C’ is the remaining 

stiffness and damping parameters, respectively, to be identified in the concerned substructure. 

Then, the state equation of the concerned substructure can be given as follows 

 ttZgtZ ),()(                                (16) 

Suppose the observation vector at time 
kt k t  , where t  is the time interval, can be given 

as 

 ( ) ( ), ( )k k ky k h Z t t v t                           (17) 

where y(k) is the observational vector at time tk,  ( ),k kh Z t t can be considered as a function 

involving the state vector in accordance with the observations at time tk, v(tk) is the observational 

noise vector with the covariance of  . 

Since the state equation and the observation equation are respectively defined in Eqs. (16) and 

(17), a recursive process of the EKF technique can be carried out in the following steps, starting 

from time tk. 

(a) Start with ( / )Z k k  and its error covariance matrix ( / )Q k k , 

(b) Evaluate the predicted state ( / 1)Z k k   and its corresponding error covariance matrix

( / 1)Q k k  by 

( 1)
ˆ ˆ ˆ( 1 ) ( ) [ ( ), ]

k t

k t
Z k k Z k k g Z k k t dt

 
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                     (18) 

( 1 ) ( 1 ) ( ) ( 1 )TQ k k k k Q k k k k                       (19) 

where ( 1/ )k k  is state transition matrix and can be found as follows 

ˆ( ) ( )

[ ( ), ]
( 1 ) i

j Z t Z k k

g Z t t
k k I t

Z


 
        

               (20) 

(c) Estimate the Kalman gain matrix ( 1)G k  by  

1( 1) ( 1 ) ( 1 )[ ( 1 ) ( 1 ) ( 1 ) ( 1)]T TG k Q k k k k k k Q k k k k k                  (21) 

where ( 1/ )k k  can be viewed as observation matrix and can be found as 

ˆ( ) ( 1 )

( ( ), )
( 1 ) i

j Z t Z k k

h Z t t
k k

Z
 

 
     

                   (22) 

(d) Estimate the filtered state ( 1/ 1)Z k k  and its error covariance matrix ( 1/ 1)Q k k  by 

  1
ˆ ˆ ˆ( 1 1) ( 1 ) ( 1) ( 1) ( 1 ), kZ k k Z k k G k y k h Z k k t                     (23) 
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   ( 1 1) ( 1) ( 1/ ) ( 1 ) ( 1) ( 1/ )

( 1) ( 1) ( 1)
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T

Q k k I G k k k Q k k I G k k k
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      (24) 

(e) Take the increment k = k+1, and return to step (1) until k = m, where m represents the 

sample point.  

Here, steps (a) to (e) mentioned before, from k = 0 to m, is defined as a local iteration. After this 

local iteration procedure is completed, a weighted global iterative procedure with an objective 

function is incorporated into the local EKF to obtain the stable and convergent solutions. Notably, 

the initial values of the state vector and the error covariance matrix in the first global iteration are 

the same as the local iteration, namely Z
1
(0/0) and Q

1
(0/0), where superscript 1 represents the first 

global iteration. However, in the second global iteration, the corresponding initial values could be 

2 1ˆ ˆ(0 0) ( / )Z Z m m                           (25) 
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(0 0)

0 ( )K C

I
Q
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 

                      (26) 

where 1ˆ ( / )Z m m is the estimation of state vector at 
mt m t   in the first local iteration, 

1

, ( / )K CQ m m 
is error covariance matrix corresponding to the parameters to be identified, w is 

weight used to accelerate the local iteration. 

The function defined in the following equations is used to as a criterion for the termination of 

the global iteration. 
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 ˆ( ) ( ) ( / ),i i kk y k h Z k k t                       (30) 

where subscript i herein denotes the i-th observation, and  denotes the dimension of the 

observations. When the values of   is within the pre-determined threshold, the global iteration 

would be finished. 
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3. Numerical validation of the proposed SSI approach with limited observations 
 

3.1 A 20-story shear building model 
 
To demonstrate the efficiency and accuracy of the proposed SSI approach for simultaneous 

identification of the concerned substructural parameters and dynamic loadings with limited 

observations, a 20-story shear building model as shown in Fig. 2(a) is taken into consideration 

herein. The exact value of the mass distribution, inter-story stiffness, and damping coefficient 

corresponding to each story is set to be 100 kg, 7×10
4
 N/m, and 1500 Ns/m, respectively. Without 

loss of the generality, a normally distributed random external excitation is assumed to be applied to 

the eleventh floor, and the corresponding structural response is calculated by Newmark method 

with a time interval of 0.001s.  

Here, the concerned substructure is composed of the top ten floors, i.e., from the 10th floor to 

the 20th floor with the lower boundary of the 9th floor as shown in Fig. 2(b). The sub1 is selected 

to be from the 10th floor to 12th floor as shown in Fig. 2(c), and the lower boundary and upper 

boundary of the sub1 are respectively the 9th floor and 13th floor. The structural responses of the 

sub1 and the corresponding boundary are assumed to be available for the identification, and the 

external excitation applied on the 11th floor (i.e.,  f11 as shown in Fig. 2) is assumed to be 

unknown. The initial values of f11 are assumed to be zero which is rather different from the actual 

values. In the proposed SSI approach, the parameters of the sub1 and unknown loading f11 are 

firstly identified by using WAI method. The values of the weight coefficient a and b are 

respectively set to 10 and 0.1, and the learning coefficient  is set to 0.8. Notably, though f11 is 

assumed to be unknown, the excitations applied on the 10th floor and 12th floor are zero and then 

can be considered as known information for updating the estimated input vector as shown in Eqs. 

(9) and (10). Here, all the responses are initially assumed to be noise-free.  

 

 

 

  

 

(a) The whole 20-stories structure (b) The concerned substructure (c) The sub1 

Fig. 2 The 20-stories shear building structure for the numerical example 
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To consider the influence of the noise for the identification results, the structural response 

measurements in this example are also simulated by the theoretically computed responses 

superimposed with the corresponding white noise respectively with 3% and 5% noise-to-signal 

ratio in root mean square (RMS). 

The structural parameters identification results of the sub1 under different noise level are 

shown in Table 1. It can be found from Table 1 that when the signal is noise-free, the proposed 

approach is capable of precisely identifying the physical parameters of the sub1. Though the 

identified errors are increasing as the noise level increases, the stiffness and damping coefficients 

can be still obtained with minor errors. The maximum identification error for stiffness is 0.29% 

while 3% noise is involved and 0.24% while 5% noise is involved. The maximum error for 

damping coefficients is a little larger, but even in the case of 5% noise level, the maximum value 

of errors is still only 0.66%. Fig. 3 gives the performance of the convergence during the iteration 

for the identification of the parameters of the sub1 when the signal is contaminated by 5% noise. 

Though the initial values of the unknown loadings are significantly different from the actual ones, 

it can be found from Fig. 3 that the estimated parameters can stably converge to their theoretical 

values through very limited iterations. Similar results can be obtained when the signal is noise-free 

and 3% noise contaminated. 

Moreover, in the proposed approach, the time series of the unknown external excitation f11 can 

also be identified for the example given. The identified dynamic loading on the 11th floor of the 

building structure, when the response is polluted by 5% noise, is plotted in Fig. 4(a) as dashed 

curve, whereas the solid curve is the corresponding actual one for comparison. For clarity, only the 

time segment from 1s to 1.2s is plotted herein and the relative error between the identified 

excitation and the actual one during the whole time series is plotted in Fig. 4(b). It is obvious from 

Fig. 4 that the identified excitation f11 has a good agreement with the actual one, and similar results 

in the case of noise-free and 3% noise can be obtained. 

 

 
Table 1 The identification results of the sub1 in the shear building structure 

Parameters 
Noise-free 3% noise 5% noise 

Identified Error (%) Identified Error (%) Identified Error (%) 

k10  7.00×10
4
 0.00 6.99×10

4
 0.14 6.98×10

4
 0.29 

k11  7.00×10
4
 0.00 6.99×10

4
 0.14 6.98×10

4
 0.29 

k12 7.00×10
4
 0.00 6.98×10

4
 0.29 6.97×10

4
 0.43 

k13 7.00×10
4
 0.00 6.98×10

4
 0.29 6.97×10

4
 0.43 

c10  1500.00 0.00 1497.98 0.13 1497.26 0.18 

c11  1500.00 0.00 1500.26 0.02 1503.68 0.25 

c12  1500.00 0.00 1500.63 0.04 1505.29 0.35 

c13  1500.00 0.00 1496.22 0.25 1490.07 0.66 
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Substructural parameters and dynamic loading identification with limited observations 

 

 

  
(a) The iteration for stiffness coefficients (a) The iteration for damping coefficients 

Fig. 3 The convergence performance of iteration in the sub1 (5% noise) 

 

 

  
(a) Time segment of the loading (b) The relative identified error 

Fig. 4 The comparison of the identified dynamic loading in the shear building structure (5% noise) 

 

 

 

Since the parameters of the sub1 and the unknown excitation f11 are identified, the remaining 

coefficients of the concerned substructure can be obtained by the EKF-WGI method. The state 

vector in this numerical example can be given as, 

 TccckkkxxxxxxZ
136201514201514201110201110 ............


  (31) 

where
ix and ix respectively denotes the displacement and velocity of the i-th floor; ki and ci 

respectively are the stiffness and damping coefficients of the i-th floor to be identified in the 

concerned substructure. 

As mentioned before, only the responses of the sub1 and the associated interface are assumed 

to be available for the identification. Consequently, in this example these measurements are 

considered as the observations resulting in the following observation equation, 
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Table 2 The identified results of the remaining parameters of the concerned substructure 

Parameters 
Noise-free 3% noise 5% noise 

Identified Error (%) Identified Error (%) Identified Error (%) 

k14  6.95×10
4
 0.77 6.85×10

4
 2.06 6.81×10

4
 2.69 

k15  7.02×10
4
 0.34 6.98×10

4
 0.27 6.89×10

4
 1.49 

k16 6.99×10
4
 0.13 7.01×10

4
 0.15 6.91×10

4
 1.16 

k17 6.99×10
4
 0.13 6.98×10

4
 0.28 6.89×10

4
 1.44 

k18  6.98×10
4
 0.28 6.99×10

4
 0.14 6.92×10

4
 1.11 

k19 6.97×10
4
 0.42 6.99×10

4
 0.14 6.94×10

4
 0.79 

k20 6.95×10
4
 0.77 6.97×10

4
 0.43 6.92×10

4
 1.11 

c14  1516.65 1.11 1463.31 2.45 1399.16 6.72 

c15  1528.27 1.88 1558.85 3.92 1550.49 3.37 

c16 1524.66 1.64 1519.59 1.31 1485.78 0.95 

c17 1482.75 1.15 1508.81 0.59 1518.36 1.22 

c18  1480.15 1.32 1521.32 1.42 1548.39 3.23 

c19 1485.16 0.99 1517.58 1.17 1537.01 2.47 

c20 1481.77 1.22 1507.91 0.53 1507.91 1.28 

 

 

 Ttxtxtxtxtxtxty )(...)()(...)()(...)()( 131013101310
          (32) 

The identified partial stiffness and damping coefficients of the concerned substructure (i.e., the 

coefficients in the sub1 identified before) provide a convenient reference for the determination of 

the initial value of the remaining parameters when using EKF-WGI method. Consequently, it is 

reasonable to assume that the initial values of the inter-story stiffness and damping are chosen to 

be 80% of the corresponding identified one. Moreover, to implement the EKF-WGI procedure, the 

error covariance matrix is Q = 0.1×I, and the weight w is set to be 1000.  

Similarly, three cases of noise level, saying noise-free, 3% noise and 5% noise are considered 

for the identification of the remaining parameters. Based on the state vector shown in Eq. (31) and 

the observation equation shown in Eq. (32), the remaining inter-story stiffness and damping 

coefficients of the concerned substructure under various noise levels are identified and shown in 

Table 2. It can be easily found from Table 2 that the remaining parameters of the concerned 

substructure can be identified with acceptable accuracy. The maximum identified errors for 

stiffness in the cases of the noise-free, 3% noise and 5% noise are respectively 0.77%, 2.06% and 

2.69, whereas the identified errors for the damping coefficients are relatively larger with the 

maximum error of 1.88%, 3.92% and 6.72% in these three cases. 
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Substructural parameters and dynamic loading identification with limited observations 

 

  

(a) The identified stiffness in the first local iteration 
(b) The identified stiffness in the final local 

iteration 

Fig. 5 The identified stiffness in the local iteration (5% noise) 

 
 

  
(a) The identified damping in the first local 

iteration 

(b) The identified damping in the final local 

iteration 

Fig. 6 The identified damping in the local iteration (5% noise) 

 
 
Moreover, to investigate the changes of the identified parameters during the local iteration, Figs. 

5 and 6 respectively give the performance of the first local iteration and the final local iteration on 

the identification of the stiffness and damping coefficients in the EKF-WGI procedure. Due to the 

length limitation of the paper and in order to avoid the redundant comparison, only the identified 

stiffness and damping coefficients of the 14th floor in the case of 5% noise are shown in Figs. 5 

and 6. The dashed line represents the actual value whereas the solid line is the corresponding 

estimated one. For ease and clarity of the comparison of the identification results, the same scale 

of the coordinate is employed in both plots. It can be found from Figs. 5 and 6 that in the first local 

iteration the identified parameters are not correct and unstable whereas in the final local iteration 

the parameters are stably converged to the actual ones with acceptable accuracy. From this point of 

view, the EKF-WGI procedure rather than the direct employment of EKF is necessary. 

Furthermore, the identified results of all these remaining parameters in the global iteration are 

plotted in Fig. 7 to show the efficiency of the EKF-WGI method. It can be seen that though the 
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results in the first several global iterations are not correct, the identified parameters could be still 

converged to the actual one within limited global iterations. 

 
3.2 A planar truss model with 23 members 
 

To further investigate the reliability and applicability of the proposed approach for the 

simultaneous identification of the physical parameters of the concerned substructure and the 

dynamic loading applied on it, a planar truss model with 23 members as shown in Fig. 8(a) is 

introduced herein. The parameters of the truss model are given in Table 3. Similarly, a random 

excitation is assumed to be applied on the 8th node in the direction of DOF14 as shown in Fig. 

8(a), and the corresponding structural responses are calculated by Newmark method with the time 

interval of 0.001s. 
The concerned substructure in this example consists of truss members from No. 12 to No. 23 

with the boundary on the 6th and 7th nodes as shown in Fig. 8(b). The sub1 is chosen to be 

composed of the members from No. 12 to No. 18 with the boundary on the 6th, 7th, 10th and 11th 

nodes as plotted in Fig. 8(c). Only the structural responses of the sub1 and the corresponding 

boundary are assumed to be available for the identification. The external excitation f14 is assumed 

to be unknown, and its initial values are also assumed to be zero herein. The values of the weight 

coefficient a and b for WAI approach are respectively set to be 10 and 0.1, and the learning 

coefficient  is set to 0.8. It should be noted that though f14 is assumed to be unknown, the 

excitations applied on the 8th and 9th nodes in the direction of DOF13, DOF15 and DOF16 are 

zero. This implicit information can be used to update the estimated input vector as shown in Eqs. 

(9)-(10). Here, all the responses are initially assumed to be noise-free. For practical consideration, 

the theoretically computed responses are also superimposed with the corresponding white noise 

respectively with 3% and 5% noise-to-signal ratio in RMS. 

 

 
 

  
(a) The identified stiffness in the global iteration (b) The identified damping in the global iteration 

Fig. 7 All the identified remaining parameters in the global iteration (5% noise) 
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Substructural parameters and dynamic loading identification with limited observations 

 

 
Table 3 The parameters of the planar truss model 

Element  

number 

m 

(kg) 

k 

(N/m) 

c 

(N.s/m) 
  

Element  

number 

m 

(kg) 

c 

(N/m) 

c 

(N.s/m) 
  

1 96.0 8.0×10
4
 1250.0 4  13 115.2 9.0×10

4
 1500.0 4  

2 103.2 8.4×10
4
 1300.0 0 14 98.4 9.2×10

4
 1400.0 0 

3 108.0 7.2×10
4
 1200.0 43  15 100.8 8.4×10

4
 1600.0 43  

4 105.6 9.0×10
4
 1500.0 0 16 117.6 7.6×10

4
 1450.0 0 

5 110.4 8.8×10
4
 1400.0 4  17 108.0 7.6×10

4
 1550.0 4  

6 112.8 8.6×10
4
 1350.0 0 18 112.8 8.6×10

4
 1350.0 0 

7 108.0 7.6×10
4
 1550.0 43  19 110.1 8.8×10

4
 1400.0 43  

8 117.6 7.6×10
4
 1450.0 0 20 105.6 9.0×10

4
 1500.0 0 

9 100.8 8.4×10
4
 1600.0 4  21 108.0 7.2×10

4
 1200.0 4  

10 98.4 9.2×10
4
 1400.0 0 22 103.2 8.4×10

4
 1300.0 0 

11 115.2 9.0×10
4
 1500.0 43  23 96.0 8.0×10

4
 1250.0 43  

12 103.2 9.6×10
4
 1700.0 0 -- -- -- -- -- 

 

 
(a) The complete truss model with 23 members 

 
(b) The concerned substructure 

 
(c) The sub1 

Fig. 8 The planar truss model for the numerical example 
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Table 4 gives the identification results of the corresponding parameters of the sub1 under the 

various noise levels. It is obvious that as the noise level increases, the identified errors increase as 

well. However, even the signal is contaminated by 5% noise, the maximum errors for stiffness and 

damping are respectively 3.27% and 4.56%. The convergence performance for the identification of 

the parameters of sub1 when the signal is contaminated by 5% noise is shown in Fig. 9 as an 

example. It can be seen from Fig. 9 that the parameters can be identified through very limited 

iteration. Moreover, the unknown dynamic loadings applied on the 8th node in this case can be 

simultaneously identified as well. For the sake of ease and clarity comparison, the time segment of 

the identified loading from 1s to 1.2s and the relative error during the whole time series are plotted 

in Fig. 10. It can be easily found that the identified force satisfactorily match with the actual one.  

Based on the identified parameters of the sub1 and the dynamic loading mentioned before, the 

remaining coefficients of the concerned substructure can be then obtained. The state vector for the 

SSI in this numerical example can be given as, 

 TccckkkxxxxxxZ
132232019232019231413231413 ............


 
 
(33) 

where
ix and

ix respectively denotes the displacement and velocity of the i-th DOF; ki and ci 

respectively are the stiffness and damping coefficients of the i-th member to be identified in the 

concerned substructure. 

 
Table 4 The identified results of the sub1 in the truss model 

Parameters 
Noise-free 3% noise 5% noise 

Identified Error (%) Identified Error (%) Identified Error (%) 

k12 9.60×10
4
 0.00 9.47×10

4
 1.33 9.37×10

4
 2.42 

k13 9.00×10
4
 0.00 9.02×10

4
 0.25 9.04×10

4
 0.44 

k14 9.20×10
4
 0.00 9.17×10

4
 0.37 9.14×10

4
 0.62 

k15 8.40×10
4
 0.00 8.41×10

4
 0.13 8.42×10

4
 0.22 

k16 7.60×10
4
 0.00 7.46×10

4
 1.85 7.35×10

4
 3.27 

k17 7.60×10
4
 0.00 7.55×10

4
 0.70 7.51×10

4
 1.13 

k18 8.60×10
4
 0.00 8.64×10

4
 0.47 8.65×10

4
 0.61 

c12 1700.00 0.00 1653.38 2.74 1622.55 4.56 

c13 1500.00 0.00 1492.38 0.51 1486.65 0.90 

c14 1400.00 0.00 1415.51 1.11 1452.17 3.73 

c15 1600.00 0.00 1601.27 0.08 1602.25 0.14 

c16 1450.00 0.00 1436.77 0.91 1419.08 2.13 

c17 1550.00 0.00 1545.51 0.29 1540.74 0.60 

c18 1350.00 0.00 1319.66 2.25 1299.71 3.72 
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Substructural parameters and dynamic loading identification with limited observations 

 

 

  
(a) The iteration for identifying stiffness of sub1  (b) The iteration for identifying damping of sub1 

Fig. 9 The convergence performance for the parameter identification of the sub1 (5% noise) 

 
 

  
(a) Time segment of the loading (b) The relative identified error  

Fig. 10 The comparison of the identified dynamic loading in the truss model (5% noise) 

 
 

As mentioned before, the responses of the sub1 as well as the boundary are known for the 

identification. For simplicity, only the displacement and velocity are employed here and the 

observation equation for the identification of the remaining substructural parameters can be shown 

as follows 

    Ttxtxtxtxty )(. . .)()(. . .)()( 209209
               (34) 

Similarly, the initial values of the stiffness and damping are chosen to be 80% of the previously 

identified one. Moreover, the error covariance matrix is Q = 0.1×I, and the weight w is set to be 

1000 as well. Three noise levels, i.e. noise-free, 3% noise and 5% noise are considered for the 

identification of the remaining parameters. Based on the state vector shown in Eq. (33) and the 

observation equation shown in Eq. (34), the remaining parameters of the concerned substructure 

under those three noise levels are identified and shown in Table 5. The maximum identified errors 
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for stiffness in the cases of noise-free, 3% noise, and 5% noise are respectively 1.26%, 3.05% and 

4.76%. The identified errors for damping are relatively larger with the maximum values of 2.77%, 

3.35% and 5.61% in the corresponding three cases. 

Moreover, the performance of the first local iteration and the final local iteration on the 

identification of the stiffness and damping coefficients are respectively shown in Figs. 11 and 12. 

To avoid redundant comparison, only the identified stiffness and damping coefficients of the 19th 

truss member when noise level is 5% noise are shown in Figs. 11 and 12. The dashed line 

represents the actual value whereas the solid line is the corresponding estimated one. For ease and 

clarity of the comparison, the same scale of the coordinate is employed in both plots. It can be 

found from Figs. 11 and 12 that in the first local iteration the identified parameters are not correct 

but seem to be stable. However, as the implementation of the global iteration, the identified 

parameters are finally close to the actual ones in the last local iteration. Furthermore, the identified 

results of all these remaining parameters in the global iteration are plotted in Fig. 13 as well. It can 

be seen that the results in the first several global iterations are not correct, but the identified 

parameters could be finally converged to the actual one with limited global iterations. 
 

 

  
(a) The identified k19 in the first local iteration (b) The identified k19 in the final local iteration 

Fig. 11 The identified (EA/L)19 in the local iteration (5% noise) 

 

  

(a) The identified c19 in the first local iteration (b) The identified c19 in the final local iteration 

Fig. 12 The identified c19 in the local iteration (5% noise) 
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Substructural parameters and dynamic loading identification with limited observations 

 

 

Table 5 The identified remaining parameters of the concerned substructure in the truss model 

Parameters 
Noise-free 3% noise 5% noise 

Identified Error (%) Identified Error (%) Identified Error (%) 

(EA/L)19 8.82×10
4
 0.21 8.94×10

4
 1.54 8.78×10

4
 0.22 

(EA/L)20 9.01×10
4
 0.05 9.27×10

4
 3.05 9.24×10

4
 2.69 

(EA/L)21 7.11×10
4
 1.26 7.18×10

4
 0.21 7.06×10

4
 1.90 

(EA/L)22 8.45×10
4
 0.66 8.56×10

4
 1.88 8.01×10

4
 4.76 

(EA/L)23 7.99×10
4
 0.09 8.15×10

4
 1.83 8.06×10

4
 0.70 

c19 1396.67 0.26 1377.58 1.60 1367.31 2.33 

c20 1515.52 1.03 1534.86 2.32 1566.25 4.42 

c21 1210.96 0.91 1222.22 1.85 1227.55 2.30 

c22 1264.03 2.77 1343.59 3.35 1360.91 4.68 

c23 1254.12 0.33 1254.12 2.64 1320.11 5.61 

 

 

  
(a) The identified stiffness in the global iteration (b) The identified damping in the global iteration 

Fig. 13 All the identified remaining parameters in the global iteration (5% noise) 

 

 
5. Conclusions 

 

In this paper, an alternative substructural identification approach by the combination of 

weighted adaptive iteration (WAI) approach and an extended Kalman filter method with a 

weighted global iteration (EFK-WGI) was proposed for simultaneous identification of 

substructural parameters as well as the unknown external excitations applied on the concerned 

substructure with limited observations.  
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In the proposed approach, based on the location of the unknown dynamic loadings and the 

partially available structural response measurements, a part of structural parameters of the 

concerned substructure and the unknown loadings were first identified by using the proposed WAI 

approach. Subsequently, the remaining physical parameters of the concerned substructure were 

identified by EKF-WGI method using the previously identified loadings and substructural 

parameters. The feasibility and reliability of the proposed approach was demonstrated via a 

20-story shear building structure and a 23 degrees of freedom (DOFs) planar truss model with unknown 

external excitation and partially known response measurements. Results show that the proposed 

approach is capable of satisfactorily identifying both the substructural parameters and unknown 

loading within limited iterations when both the excitation and dynamic response are partially 

unknown.  

Only the structural responses of the DOFs in the sub1 and its interface in terms of acceleration, 

velocity and displacement are required for the identification of the concerned substructure. Notably, 

to implement the proposed approach for the identification of the concerned substructure, the 

selection of the sub1 should be carefully considered to make sure the unknown loadings are 

applied on it. It can be also seen from the two numerical examples when the complicated boundary 

involved, for example the boundary of the sub1 in the truss model, the requirement of the 

measurements for the identification of the concerned substructure are significantly increased. 

Consequently, for the purpose of the possible real application, the extension and development of 

the proposed approach for the SSI without the interfacial information could be further carried out. 

Moreover, it could be found that since the standard least-square estimation algorithm is employed 

for the identification of the structural parameters, the proposed approach would be impossible to 

identify the time-variant parameters. However, for practical structural health monitoring, the 

on-line identification is usually desired. From this point of view, the development of the proposed 

approach for the identification of time-dependent parameters should be considered in the future.  
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