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Abstract.  This paper presents the materials analysis for combination of working modes of 
Magnetorheological (MR) damper. The materials were selected based on the optimum magnetic field 
strength at the effective areas in order to obtain a better design of MR damper. The design of electromagnetic 
circuit is one of the critical criteria in designing MR dampers besides the working mechanism and the types 
of MR damper. The increase in the magnetic field strength is an indication of the improvement in the 
damping performance of the MR damper. Eventually, the experimental test was performed under quasi-static 
loading to observe the performances of MR damper in shear mode, squeeze mode and mixed mode. The 
results showed that the increment of forces was obtained with the increased current due to higher magnetic 
flux density generated by electromagnetic coils. In general, it can be summarized that the combination of 
modes generates higher forces than single mode for the same experimental parameters throughout the study. 
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1. Introduction 
 

Magnetorheological (MR) dampers have been very widely studied and developed for 
commercial applications (Imaduddin et al. 2013). One of the most popular application is the 
semi-active suspension that performs according to the strength of the magnetic field. The 
mechanical properties of the suspension can be altered by changing the yield stress of the MR fluid 
to allow the damping characteristics of the device to be continuously controlled by varying the 
power of the electromagnet (Ahmadian and Norris 2008). 

Recently, more MR dampers have been implemented successfully in various vibration control 
systems, such as vehicle suspension systems (Du et al. 2013, Bai et al. 2013, Choi et al. 2009), 
landing gear systems (Batterbee et al. 2007, Saxena and Rathore 2013), launcher vibration isolator 
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systems (Jean et al. 2005), seismic protection systems (Li et al. 2013, Cha et al. 2013), haptic 
device systems (Kikuchi et al. 2009, Yang et al. 2012) and advanced prosthetic systems (Xie et al. 
2013, Benoit and David 2012).  

Basically, the MR dampers could be designed with different structural functions and 
configurations in the following fundamental aspects depend on the applications. The basic design 
of MR dampers can be divided into three criteria; types of MR damper, working mechanism and 
magnetic circuit design configuration of MR damper. There are three types of MR damper; 
monotube, twin tube and double-ended. In the case of the monotube MR damper, the damper is 
based on a single-rod cylinder structure with only one reservoir for the MR fluid. For the twin-tube, 
the damper has two fluid reservoirs for the MR fluid, while, for a double-ended MR damper, the 
configuration of the damper is based on a monotube damper, but the piston rod, which has the 
same diameter, protrudes from both ends of the damper cylinder. The MR damper can be operated 
in flow mode, shear mode, squeeze mode or any combination of these three different working 
modes depending on the application of the damper.  

Electromagnetic circuit design is another important criteria in designing MR dampers. The 
electromagnetic coil in the MR damper is used to generate the magnetic circuits to control the 
damping forces by various input currents without mechanical moving parts. The increase in the 
magnetic field strength is an indication of the improvement in the damping performance of the MR 
damper. Sallom and Samad (2011) presented a new design of MR valve based on the simulation 
studies using Finite Element Method (FEM) to obtain a high value of magnetic field strength at the 
valve gap. They reported that the performance of the valve was dependent on the magnetic circuit 
design. Similarly, Yu et al. (2012) also studied the optimization of the magnetic circuit in MR 
dampers. They performed an analysis of the magnetic circuit model by adjusting the gap size in 
order to achieve a greater magnetic field strength. Moreover, Mei et al. (2005) developed a 
magnetic system in MR damper to obtain the high damping performance. They considered the 
parameter model of magnetic systems included radius of piston rod and piston, number of coil, 
thickness of piston cylinder, gap length of the annular orifice and effectual length of the annular 
orifice, in order to optimize the magnetic system in MR damper. Significant work has been done 
on the geometrical dimension optimization of MR damper to improve the damping performances 
by Yang et al. (2011).  

Nowadays, there are a lot of researches on the MR technology, however, the majority are 
limited in the development of high performance MR fluid, basic principle of MR damper and 
application of MR damper. The studies on the combination of the working mode of MR damper 
have not received much attention. In addition, a thorough study on magnetic field configurations in 
designing MR damper needs to be conducted.  

Consequently, this work presents a design analysis of a new MR damper with the combination 
of modes; shear and squeeze mode. The selection of materials were considered in order to obtain a 
better design of MR damper with high magnetic field strength at the shear and squeeze area. 

 
 

2. Simulation of magnetic circuit 
 

In this study, Finite Element Method Magnetics (FEMM) version 4.2 was utilized to perform 
the electromagnetic circuit design in the MR damper (Meeker 2013, Ismail et al. 2010). FEMM is 
a finite element software package for solving low frequency electromagnetic problems on 
two-dimensional planar and axisymmetric domains. The idea of having a finite element analysis is 
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Fig. 7 Force versus displacement for MR damper under different current supplied 
 
 
Fig. 8 shows the performance comparison of the damping force under different working modes. 

As seen from the figure, a high damping force was obtained in mixed modes compared to the shear 
and squeeze modes. The average increment of the damping forces in the mixed modes was 
increased by up to 53%. The results showed that under the mixed mode condition, with the same 
input current and test mode, the damping force could achieve up to 550 N. This proved that the 
mixed mode could produce a higher damping force than the single mode.  

 
 

 

Fig. 8 Force versus displacement for MR damper in different modes under compression test 
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Fig. 9 Force versus displacement for MR damper in different modes under tension test 
 
 
Fig. 9 shows the force versus displacement for the MR damper under tension mode. The 

tension test was carried out by moving the piston towards the top of the damper. In Fig. 10, the 
curves of the damping force under tension showed similar characteristics as in the compression 
mode, however, the curves were established in the opposite direction. This phenomenon was 
expected since a symmetrical design was constructed in the MR damper. In the tension process 
under the same applied current, piston speed and initial gap size, the forces were reduced as the 
piston move towards the top of the damper. From the results, the overall damping forces were 
increased with respect to the magnetic field strengths. 

 
 

5. Conclusions 
 
The selection of materials were considered and analyzed in order to obtain a better design of 

MR damper. From the simulation analysis, the final components of the mixed mode MR damper 
have seven parts consisted of three main categories which were magnetic materials, non-magnetic 
materials and electromagnetic circuit. A new mixed mode MR damper was designed and fabricated 
based on simulation studies. The experiment was performed to validate the performance of MR 
damper. Throughout this study, it was concluded that a mixed mode MR damper was capable of 
generating a higher damping force than a single mode MR damper. 
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