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Abstract.    A visually servoed paired structured light system (ViSP) was recently proposed as a novel 
estimation method of the 6-DOF (Degree-Of-Freedom) relative displacement in civil structures. In order to 
apply the ViSP to massive structures, multiple ViSP modules should be installed in a cascaded manner. In 
this configuration, the estimation errors are propagated through the ViSP modules. In order to resolve this 
problem, a displacement estimation error back-propagation (DEEP) method was proposed. However, the 
DEEP method has some disadvantages: the displacement range of each ViSP module must be constrained 
and displacement errors are corrected sequentially, and thus the entire estimation errors are not considered 
concurrently. To address this problem, a pose-graph optimized displacement estimation (PODE) method is 
proposed in this paper. The PODE method is based on a graph-based optimization technique that considers 
entire errors at the same time. Moreover, this method does not require any constraints on the movement of 
the ViSP modules. Simulations and experiments are conducted to validate the performance of the proposed 
method. The results show that the PODE method reduces the propagation errors in comparison with a 
previous work. 
 

Keywords:  structural health monitoring (SHM); displacement measurement; pose-graph optimized 
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1. Introduction 
 

Structural health monitoring (SHM) is an essential component in civil engineering for safety 
and integrity of civil structures such as buildings, bridges, and tunnels (Balageas et al. 2006). 
There are many kinds of disturbances in the structures from natural or artificial origin. Structural 
displacement measurement is one of the descriptors in evaluating deformation and variation from 
such disturbances effectively. Therefore, displacement monitoring is an important indicator for 
SHM (Ji and Chang 2008, Ni et al. 2011). Accordingly, many studies have been carried out in this 
area in conjunction with conventional sensors such as accelerometers, global positioning system 
(GPS), and Laser Doppler Vibrometers (LVDs). However, each of these sensors has shortcomings. 
Accelerometers measure the displacement indirectly and are neither stable nor accurate due to 
signal drift (Park et al. 2005). In GPS-based systems, costly RTK (Real Time Kinematics)-GPS 
(more than $20,000 USD) is needed for centimeter-level accuracy (Casciati and Fuggini 2011, 
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Psimoulis et al. 2008, Xu et al. 2009). LDVs are also very expensive and present difficulties when 
used in massive structures such as long-span bridges because the sensors should be installed in a 
fixed location such as on the ground (Nassif et al. 2005). 

Due to these restrictions of previous approaches, vision-based methods that directly measure 
structural displacement have been studied as a possible alternative (Chang and Xiao 2009, Lee et 
al. 2012c, Lee and Shinozuka 2006, Leith et al. 1989, Marecos et al. 1969, Olaszek 1999, Park et 
al. 2010, Wahbeh et al. 2003). These vision-based systems use cameras and targets such as planar 
markers that have a simple black and white pattern. After capturing images of targets installed on a 
structure to be measured, the displacements are estimated in real-time through image processing 
algorithms. However, these systems are sensitive to environmental variations such as weather 
conditions since the cameras can see distant targets only in clean air. 

In order to overcome the limitations of vision-based systems, Myung et al. proposed a paired 
structured light (SL) system based on lasers and cameras (Myung et al. 2011, Myung et al. 2012). 
The system consists of two sides facing each other; each side has a camera, a screen, and one or 
two lasers. The lasers are projected to the opposite side and the camera captures its own screen. 
The 6-DOF (Degree-Of-Freedom) relative displacement between the two sides is estimated from 
the positions of the projected laser beams. Since the distance between the cameras and the screens 
of this system is very short, this system robustly estimates the displacement. A visually servoed 
paired SL system (ViSP) was subsequently introduced to measure a wide range of displacement by 
using 2-DOF manipulators that control the pose of the lasers (Jeon et al. 2011). Therefore, in the 
ViSP, the projected laser beams can avoid the problem of travelling outside the opposite screen’s 
boundary. 

Since far distance displacement should be measured in massive structures, a single ViSP 
module is insufficient and hence multiple modules should be installed in a cascaded manner. In 
this case, the movement of the structure is estimated by combining the relative displacements of 
the multiple ViSPs, and hence each measurement error of the displacement is propagated along the 
ViSP modules. In order to solve this problem, a displacement estimation error back-propagation 
(DEEP) method was proposed (Jeon et al. 2013). Inspired by the error back-propagation algorithm 
used in neural networks, the DEEP minimizes estimation errors by using the Newton-Raphson or 
the gradient descent method. However, in the DEEP method, the displacement range of each ViSP 
module should be given to derive a solution. Furthermore, the DEEP corrects the displacement 
errors sequentially, and thus the entire estimation errors are not considered concurrently. 

In this paper, we propose a pose-graph optimized displacement estimation (PODE) method for 
a multiple structural displacement monitoring system. The PODE method is based on a 
graph-based optimization technique. Graph-based optimization techniques are popularly used for 
solving SLAM (Simultaneous Localization And Mapping) problems in the robotics community 
(Dellaert and Kaess 2006, Grisetti et al. 2010, Kaess et al. 2008, Kaess et al. 2012, Lee et al. 
2012a, Lee et al. 2012b, Lu and Milios 1997, Olson et al. 2006). The positions of the modules and 
the relative measurements build a graph structure. Next, the measurement noises are assumed as 
Gaussian distributions, and then the graph is iteratively optimized by a maximum likelihood 
method. This method considers the entire errors in each iteration step and does not require any 
constraints on the movement of the ViSP modules. 

The remainder of this paper is organized as follows. In the second section, the ViSP and the 
DEEP method are briefly reviewed. Next, the PODE method is proposed in the third section. In the 
fourth section, the performance of the proposed method is validated with simulations and 
experiments. Finally, the last section offers concluding remarks. 
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The procedure of the displacement estimation is shown in Fig. 2 (Jeon et al. 2011). First, the 
camera on each side captures the image of its own screen from close proximity. Since the distance 
between the camera and the screen is short, such as less than 20 cm, it is robust to environmental 
changes such as weather or illumination. Therefore, if the lasers are successfully projected on each 
side, the ViSPs can be operated in the order of tens, or more, of meters without additional cost. 
Next, the lens distortion is corrected based on previously calculated distortion parameters. 
Afterwards, the screen boundary and the positions of the projected laser beams are calculated. If 
one of the laser beams travels outside the screen boundary, the manipulator forces the laser beam 
or the mid-point of the laser beam projected on side A or B, respectively, to remain inside the 
screen. The relative translational and rotational displacement between two sides is estimated by 
using the positions of the projected laser beams and rotation angles of the manipulators. In the 
estimation, an incremental displacement estimation (IDE) algorithm that updates a previously 
estimated displacement using the previous and the current observed data was proposed to reduce 
computation time. For the detailed explanation of the kinematics of the ViSP and the IDE 
algorithm, refer to Jeon et al. (2011, 2012). 

 
2.2 Displacement estimation error back-propagation (DEEP) 
 
To apply ViSP to massive civil structures, multiple ViSPs are placed in a cascaded manner and 

the dynamic displacement of the entire structure is estimated, as shown in Fig. 1. In other words, 
the relative displacement between adjoining ViSPs is combined with the next partition, and the 
entire movement of the structure can thereby be monitored. However, the performance of multiple 
ViSPs is impeded by the major problem that the displacement estimation error is propagated 
through the partitions. 

To solve this problem Jeon et al. (2013), inspired by the error back-propagation algorithm used 
in neural networks, proposed a displacement estimation error back-propagation (DEEP) method 
that uses Newton-Raphson or gradient descent formulation. Fig. 3 shows a configuration of 
multiple ViSPs. ix  denotes a 6-DOF displacement, [xi, yi, zi, θi, ϕi, ψi]

T, at the i-th ViSP module 
in the world coordinate. Relative poses zi,i+1 = [xi,i+1, y i,i+1, z i,i+1, θ i,i+1, ϕ i,i+1, ψ i,i+1]

T (i = 0,…,N-1) 
denote measurement results through the ViSPs. A 6-DOF relative pose N,0z  is obtained from the 

known data using a precise GPS or topographical surveying. The propagation error can be defined 
as the difference between the position of the last module given by the ground truth ( Nx ) and the 

estimated position from multiple ViSPs ( Nx ), where N is the number of modules. Nx  and Nx  

are derived from N,0z  and zi,i+1 , respectively. The error between the Nx  and the pose of the last 

module Nx  is propagated sequentially for correcting the poses of the entire nodes. The DEEP 

method using the Newton-Raphson formulation with a learning rate α is formulated as follows 

( 1) ( )
ii i Nk k J E    xx x                          (1) 

where /
i N iJ E  x x  is the Jacobian of the propagation error EN, J+

xi is the pseudo-inverse of 

Jxi, and N N NE  x x . Similar to the DEEP method using the Newton-Raphson formulation, the 

DEEP method with a gradient descent formulation can be depicted as follows 
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Fig. 3 The propagation error (E) of multiple ViSPs is defined as the difference of the position of the last 

module calculated by ground truth ( Nx ) and the ViSPs (xN) 

 
 

( 1) ( ) ( )
ii i ik k J k     xx x x                      (2) 

 

Here, /
i G iJ E  x x  is the Jacobian of the propagation error EG, where 21

( )
2G N NE  x x , 

α is the learning rate, γ is a momentum parameter, and Δxi(k)= xi(k)- xi(k-1). 
In the DEEP method, since the number of displacement variables is more than the number of 

constraints ( Nx ), there can be numerous solutions that minimize the propagation error. Therefore, 

we assume that the updated range of the displacement, Δxi, is limited by two constraint values, 
Δxi

min and Δxi
max. The two constraint values are determined by considering physical limitations of 

the motors or error covariance of the ViSP. For the detailed explanation of the DEEP method, refer 
to Jeon et al. (2013). 

 
 

3. PODE method 
 

3.1 Pose-graph optimization 
 
The PODE method proposed in this paper is based on a pose-graph optimization technique 

recently used in mobile robotics (Lee et al. 2012a, Lee et al. 2012b). A pose-graph consists of 
nodes and edges. Each node represents the robot pose. Relative measurements between the nodes 
are denoted as edges (Grisetti et al. 2010, Lu and Milios 1997, Olson et al. 2006). In the mobile 
robotics system, the measurements are obtained from dead reckoning and sensor measurement 
results, such as by use of an inertial measurement unit (IMU) or a variety of sensors such as a 
camera or a laser range finder (LRF). In the ViSP system, the nodes represent displacement of each 
module in the world coordinates. And the edges denote measurement results through the ViSPs and 
known data using precise GPS or surveying. Assuming the measurement noises follow Gaussian 
distributions, the maximum likelihood estimation (MLE) optimizes the graph structure. And then 
the corrected displacements of the ViSP modules are given from the nodes (Dellaert and Kaess 
2006, Kaess et al. 2008, Kaess et al. 2012). 
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Fig. 4 Graphical model of pose-graph optimization. xi is a robot pose vector, zi,j is the measurement value 
between i-th and j-th nodes from sensors, and Λi,j denotes an information matrix of the 
measurement, which is the inverse covariance matrix 

 
 

Fig. 4 shows a graphical model of pose-graph optimization, where xi = [xi, yi, zi, θi, ϕi, ψi]
T is a 

robot pose vector, zi,j = [xi,j, yi,j, zi,j, θi,j, ϕi,j, ψi,j]
T is the measurement value of the relative pose 

between i-th and j-th nodes from sensors, and Λi,j denotes an information matrix of the 
measurement, which is the inverse covariance matrix. The MLE of the pose-graph is obtained by 
minimizing the Mahalanobis distance of residuals as follows 




 
Cji

jiji
T

ji
,

,,, )()(
2

1
minarg xrΛxrx
x

                    (3) 

where ri,j is a residual between the prediction and the observation in the relative pose of i-th and 
j-th nodes and C strands for the set of edges connecting nodes. The residual ri,j is represented as 

jijiji ,,, )()( zxhxr                             (4) 

where hi,j(x) is the prediction model between i-th and j-th nodes. Since ri,j is generally a nonlinear 
function, the pose-graph optimization leads to an iterative method for solving a non-linear least 
square problem with respect to Δx. A nonlinear cost function of the pose-graph is set as follows 
(Dellaert and Kaess 2006, Kaess et al. 2008, Kaess et al. 2012, Lu and Milios 1997) 

  



Cji

jiji
T

ji
,

,,, )()(
2

1
F xrΛxrx                       (5) 

Ji,j(x) is the Jacobian of ri,j(x) with respect to x, as delineated in Eq. (6). 
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The cost function F(x) is approximated by its second-order Taylor series expansion as follows 

 

   
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,
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            (7) 

And then, by taking derivatives with respect to Δx, the MLE problem of the pose-graph 
becomes a linear system as Eqs. (8) and (9). 

 
00

F

0







xHg
x

xx

x

                    (8) 

gxH                                (9) 

where H and g are represented by Eqs. (10) and (11), respectively. 

)()( ,,,,

,
,

xJΛxJH

HH

jiji
T

jiji

Cji
ji



 
                         (10) 

)()( ,,,,

,
,

xrΛxJg

gg

jiji
T

jiji

Cji
ji



 
                         (11) 

All robot poses x is updated from Δx as 

xxx                               (12) 

Using the updated x, the cost function is recalculated to obtain a new incremental value Δx 
iteratively. These calculations are iterated until it converges or meets some termination criteria. 

A variety of pose-graph optimization algorithms have been developed for computational 
efficiency in robotics communities. In this paper, the iSAM (Incremental Smoothing and 
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Mapping) algorithm is used to optimize the poses of the multiple ViSP modules. iSAM provides a 
graph optimization solution using sparse linear algebra, and hence computational speed is 
dramatically increased (Kaess et al. 2008, Kaess et al. 2012). 

 
3.2 Pose-graph optimized displacement estimation (PODE) 
 
In order to estimate the displacement of massive civil structures, ViSPs have been applied in a 

cascaded manner, and then each pair of ViSP modules monitors the relative 6-DOF movement 
between the modules. However, in this configuration, measurement error of each ViSP is 
propagated, and then the last module has a large displacement error. In order to overcome this 
drawback, we assume that the ground truth at the last module is known a priori using precise 
sensors such as a high-priced GPS or topographical surveying. It is then necessary to estimate 
6-DOF poses of all modules by considering the propagated error. In this section, we propose a 
PODE method to obtain correct results for multiple ViSPs in civil infrastructures while 
overcoming the shortcomings of the previous work, the DEEP method: the DEEP needs 
constraints on the movement of each ViSP module and corrects the displacement errors 
sequentially, not concurrently. 

 
 
 

(a) 

(b) 

Fig. 5 (a) Procedure of the PODE method. (b) Pose-graph representation of multiple ViSP modules using 
nodes and edges 
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The PODE method is based on pose-graph optimization. Fig. 5 shows the procedure of the 

proposed PODE method and a pose-graph representation of multiple ViSP modules using nodes 
and edges. Pose vectors xi (i = 0,…,N) represent 6-DOF poses of each module in the world 
coordinates, where N is the number of modules. Measurement data of the relative pose between the 
nodes are assumed to have Gaussian noise. Relative poses zi,i+1 and information matrices Λi,i+1 (i = 
0,…,N-1) denote measurement results and their uncertainties through the ViSPs, respectively. A 
relative pose z0,N and an information matrix Λ0,N are obtained from the known data using precise 
GPS or surveying, and hence the measurement z0,N has lower uncertainty than the other 
measurements. Moreover, since the information matrix is the inverse covariance matrix of the 
Gaussian noise, the information matrix Λ0,N has larger values than the other information matrices. 
The structured pose-graph with all initial poses x0…N and all measurement data z0…N-1,1…N, z0,N, 
Λ0…N-1,1…N, and Λ0,N, is optimized by the procedure shown in Section 3.1 above. The initial poses of 
the nodes are set using only measurement data of the ViSPs. Therefore, in our method, only the 
measurement information of the ViSPs and the prior pose of the last module are used to obtain 
correct poses of the entire modules. Contrary to the DEEP method, the PODE method does not 
need displacement constraints to find a unique solution, because it simply optimizes the graph 
structure under the maximum likelihood criterion. 

 
 
4. Simulations and experiments 

 
4.1 Simulation results 
 
In order to verify the performance of the PODE method, simulation studies have been 

conducted and the results were compared to those of the DEEP method. Three configuration sets, 
with four, six, and ten ViSP modules, respectively, are used in the simulation. The estimated 
6-DOF poses (xi) of the modules are evaluated against the ground truth for the poses (x̄i). In these 
simulations, we focused on numerical aspects of displacement estimation rather than the real 
displacement order. This scheme also had been applied to the simulation studies of the DEEP 
method (Jeon et al. 2013). Therefore, we performed the same procedures and analyzed the 
simulation results for comparison purpose. 

The simulation data sets are the same with the data used in the previous work for the evaluation 
of the DEEP (Jeon et al. 2013). For the data it was assumed that each ViSP module has uniform 
random noise of [-0.1 0.1] cm in laser point measurements. The random noise corresponds to 
approximately ten image pixel errors of a camera with a screen size of 0.15 m×0.1 m and image 
resolution of 640×480 pixels. Initial poses are obtained from the measurement of ViSP and then 
the errors are propagated along the modules. And the relative pose between the first and the last 
modules is given; that is, it is assumed that the pose is measured by a precise GPS or topographical 
surveying. Then, for the PODE method, a graph structure is built by using the measurement data 
from the ViSP and the precise relative pose between the front and the end modules. In this 
simulation, an information matrix Λ is formed such as  

951



 
 
 
 
 
 

Donghwa Lee, Haemin Jeon and Hyun Myung 

 

1

2

2

2

2

2

2

00000

00000

00000

00000

00000

00000













































z

y

x

                       (13) 

The six elements (σx, σy, σz, σθ, σϕ, σψ) of the information matrix represent the standard 
deviations of the Gaussian noise in measuring the 6-DOF relative pose. In the ViSP and the 
precise relative pose measurements, the standard deviations are set to (0.055 m, 0.055 m, 0.085 m, 
0.4◦, 0.4◦, 0.4◦) and (0.0055 m, 0.0055 m, 0.0085 m, 0.04◦, 0.04◦, 0.04◦), respectively. The pose of 
each node is updated by a graph optimization algorithm, iSAM (Kaess et al. 2008, Kaess et al. 
2012). The simulations with the DEEP are performed with the same parameters as reported in Jeon 
et al. (2013). In DEEP method, the motion limits and the error threshold are set to [±0.01 m, ±0.01 
m, ±0.15 m, ±1◦, ±1◦, ±1◦]T and 1.0 × 10−4, respectively. The learning rate of the DEEP method 
with Newton–Raphson formulation is set to 0.1, and the learning rate and momentum parameter of 
the DEEP method with gradient descent formulation are set to (0.1, 0.3), (0.05, 0.1) and (0.003, 
0.005) for the simulations with four, six and ten ViSP modules, respectively. 

The performance of the PODE method is analyzed statistically with a Monte Carlo simulation 
(MCS). A multi-module simulation set is randomly generated twenty times with four, six, and ten 
modules, respectively. In particular, with the four modules, additional simulations are performed 
by adding random errors to the precise measurement data of the last modules. The updated 
displacement is then evaluated against the ground truth based on the normalized sum of absolute 
errors (NSAET and NSAER) at each module, which are defined by the following equations 


 


n

i j

j
i

j
iT n 1

3

1

1
NSAE xx                         (14) 


 


n

i j

j
i

j
iR n 1

6

4

1
NSAE xx                         (15) 

where n is the total number of modules, the subscript i denotes the i-th module, the superscript j 
denotes the j-th component of the pose vector, and x  indicates the ground truth. Boxplots of the 
simulations with four modules are used to analyze the results, as shown in Fig. 6. Cases 1 and 2 
are estimated displacements by using only ViSP and ViSP with DEEP or PODE, respectively. In 
Cases 3 and 4, uniform random noises of [±0.02 m, ±0.02 m, ±0.02 m, ±0.1◦, ±0.1◦, ±0.1◦]T and 
[±0.1 m, ±0.1 m, ±0.1 m, ±0.5◦, ±0.5◦, ±0.5◦]T are added to the pose vector of the last modules, 
respectively. The simulation results with three different numbers of modules are shown in Fig. 7 
and Table 1. In Fig. 7, the three dimensional axes X, Y, and Z represent coordinate system of the 
first ViSP module as shown in Fig. 1. The proposed PODE method greatly reduces the estimation 
errors of the ViSP, and has strength in reducing translational errors with respect to the other 
methods. In addition, using a t-test, the difference between the PODE and the others is verified, as 
shown in Table 2. The null and alternative hypotheses in these tests are that two distributions are 
equal or not equal, respectively. pT and pR represent p-values of the NSAET and NSAER, 
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respectively. All p-values of NSAET (pT) are less than 0.05. In NSAER, the comparison to the result 
with ten modules and the DEEP(GD) reveals good performance (pR < 0.05), while the other four 
cases are similar to the PODE (pR > 0.05). In particular, comparing the result with six modules and 
that of the DEEP(GD) reveals that the PODE has poor performance with pR < 0.05. However, 
since the p-value of this case is 0.024, the result of the PODE is not far from those of the other 
methods. 

 
 

 
(a) 

 
(b) 

Fig. 6 Boxplots of 20 Monte Carlo simulation results with four modules. Cases 1, 2, 3, and 4 are estimated 
displacements by using ViSP, ViSP with DEEP or PODE, and ViSP with DEEP or PODE with 
uniform random noises of [±0.02 m, ±0.02 m, ±0.02 m, ±0.1◦, ±0.1◦, ±0.1◦]T, and [±0.1 m, ±0.1 m, 
±0.1 m, ±0.5◦, ±0.5◦, ±0.5◦]T, respectively. The DEEP method is performed with the 
Newton-Raphson (NR) and gradient descent (GD) formulation. The random noises are applied to 
the ground truth positions at the last modules. (a) Normalized sum of absolute translational errors 
(NSAET). (b) Normalized sum of absolute rotational errors (NSAER) 
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Table 1 Normalized sum of absolute errors (NSAET and NSAER) with different numbers of modules. The results of the simulations are 
the medians of 20 cases. Compared to the ViSP, the results of the ViSP+PODE exhibit significantly reduced errors, which are 
indicated by the values in parenthesis. Compared to the DEEP(NR) and DEEP(GD), the PODE method especially has strength 
in reducing translational errors 

# of modules Algorithms NSAET (m) NSAER (deg) 

4 ViSP 0.438 3.163 

 ViSP+DEEP(NR) 0.082 (81% ↓) 0.466 (85% ↓) 

 ViSP+DEEP(GD) 0.168 (62% ↓) 0.527 (83% ↓) 

 ViSP+PODE 0.059 (87% ↓) 0.511 (84% ↓) 

6 ViSP 0.870 3.535 

 ViSP+DEEP(NR) 0.124 (86% ↓) 0.818 (77% ↓) 

 ViSP+DEEP(GD) 0.331 (62% ↓) 0.782 (78% ↓) 

 ViSP+PODE 0.104 (88% ↓) 0.884 (75% ↓) 

10 ViSP 1.598 3.847 

 ViSP+DEEP(NR) 0.301 (81% ↓) 1.558 (59% ↓) 

 ViSP+DEEP(GD) 0.902 (44% ↓) 1.774 (54% ↓) 

 ViSP+PODE 0.163 (90% ↓) 1.537 (60% ↓) 

 
Table 2 Welch’s t-test results of normalized sum of absolute errors (NSAET and NSAER) with different numbers of modules. The null 

and alternative hypotheses in these tests are that two distributions are equal or not equal, respectively. The PODE is compared 
to each previous method for the difference between two means of each 20 cases. pT and pR represent p-values of the NSAET 
and NSAER, respectively. The PODE method especially has strength in reducing translational errors (pT < 0.05), while some 
rotational errors have similar distributions with the DEEP(NR) and DEEP(GD) (pR > 0.05) 

# of modules Algorithm pT pR 

4 ViSP 3.036 × 10-19 2.835 × 10-20 

 ViSP+DEEP(NR) 1.988 × 10-6 0.311 

 ViSP+DEEP(GD) 1.322 × 10-13 0.665 

6 ViSP 1.531 × 10-21 2.050 × 10-21 

 ViSP+DEEP(NR) 0.042 × 10-2 0.091 

 ViSP+DEEP(GD) 1.373 × 10-15 0.024 

10 ViSP 5.766 × 10-22 3.564 × 10-15 

 ViSP+DEEP(NR) 2.128 × 10-17 0.832 

 ViSP+DEEP(GD) 3.224 × 10-9 0.002 
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(a) 

(b) 

(c) 

Fig. 7 Simulation results with (a) four, (b) six, and (c) ten modules. Solid lines with asterisks: ground 
truths. Dashed lines with crosses: estimated results from the ViSP. Dashed lines with triangles: 
updated positions by using the DEEP method with Newton-Raphson formulation (DEEP(NR)). 
Dotted lines with rectangles: updated position by using the DEEP method with gradient descent 
formulation (DEEP(GD)). Dot-dashed lines with circles: updated positions by using the PODE 
method. The three dimensional axes X, Y, and Z represent coordinate system of the first ViSP 
module as shown in Fig. 1 
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4.2 Experimental results 
 
The PODE method has been applied to real experiments with a ViSP module. The experimental 

setup of the ViSP system is the same as in previous studies (Jeon et al. 2011, Jeon et al. 2013). Fig. 
8 shows the ViSP system and the experimental setup. As shown in Fig. 8(a), each side has a screen, 
a camera, and one or two lasers. One side is installed on a motion stage that generates rotational 
and/or translational variations. The lasers are manipulated by the electrical components, as shown 
in Fig. 8(b). Experimental results are compared with the motion stage outputs, which can be 
considered as the ground truth. The motion stage outputs consist of data from the motorized 
rotation and translation stages, as shown in Fig. 8(c). The estimated displacement results using the 
ViSP module have been applied four times to simulate a multi-module system. Simulated positions 
of four ViSP modules are represented in Fig. 8(d). 

 
 

 
Fig. 8 Experimental setup. (a) Overall experimental setup, (b) front and rear view of side A, (c) motorized 

rotational and translational motion stages, and (d) simulated positions of four ViSP modules 
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(a) 

 
(b) 

Fig. 9 Experimental results of the proposed method PODE in two cases: (a) translational displacement 
along X axis and (b) rotational displacement about Y axis. Solid lines with asterisks: ground truths. 
Dashed lines with crosses: estimated results from the ViSP. Dashed lines with triangles: updated 
positions by using the DEEP method with Newton-Raphson formulation (DEEP(NR)). Dotted 
lines with rectangles: updated position by using the DEEP method with gradient descent 
formulation (DEEP(GD)). Dot-dashed lines with circles: updated position by using the PODE 
method. The three dimensional axes X, Y, and Z represent coordinate system of the first ViSP 
module as shown in Fig. 1 
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Table 3 Normalized sum of absolute errors (NSAET and NSAER) from real experiments with four modules. 

Compared to the ViSP, the results of the ViSP+PODE exhibit significantly reduced errors, which are 
indicated by the values in parentheses. Compared to the DEEP(NR) and DEEP(GD), the PODE 
method especially has strength in reducing translational errors 

Case Algorithm NSAET (m) NSAER (deg) 

Translation ViSP 0.149 0.621 

 ViSP+DEEP(NR) 0.011 (93% ↓) 0.010 (98% ↓) 

 ViSP+DEEP(GD) 0.009 (94% ↓) 0.001 (99% ↓) 

 ViSP+PODE 0.001 (99% ↓) 0.002 (99% ↓) 

Rotation ViSP 0.139 1.046 

 ViSP+DEEP(NR) 0.031 (78% ↓) 0.024 (98% ↓) 

 ViSP+DEEP(GD) 0.033 (76% ↓) 0.004 (99% ↓) 

 ViSP+PODE 0.012 (91% ↓) 0.009 (99% ↓) 

 
 
The updated displacements with the proposed PODE method are compared to the ground truths 

and the results using the DEEP method with the Newton-Raphson (NR) and gradient descent (GD) 
formulation (Fig. 9 and Table 3). Information matrix values of the PODE are the same as those 
used in the previous simulation experiments. The DEEP is performed with the same parameters as 
used in Jeon et al. (2013). In DEEP method, the motion limits and the error threshold are set to 
[±0.05 cm, ±0.05 cm, ±0.01 m, ±0.4◦, ±0.4◦, ±0.4◦]T and 1.0 × 10−4, respectively. As shown in Fig. 
9, the errors of the ViSP increase as the number of modules increases. By applying the proposed 
PODE method, the entire propagation errors in the estimated displacement are minimized. In 
particular, the results of the PODE are in good agreement with the ground truth at every module, 
while the DEEP agrees only at the last module. The three dimensional axes X, Y, and Z represent 
coordinate system of the first ViSP module as shown in Fig. 1. As shown in Table 3, the PODE 
method reduced errors drastically, especially in the estimation of translation. The rotational errors 
were already corrected significantly in the DEEP(NR) and DEEP(GD) methods (above 98%). 
Therefore, the NSAER of the PODE also shows very small errors compared to the other methods. 
Also, these results conform to those from the simulation studies: the rotational errors of the PODE 
have had similar distribution to the DEEP(NR) and DEEP(GD). 

 
 

5. Conclusions  
 
In order to estimate displacement of massive structures, the ViSP modules should be placed in a 

cascaded manner. Estimation error is then propagated through the multiple modules, and the error 
of the last module thereby becomes large as the number of modules increases. In a previous work 
it was shown that the DEEP method minimizes the estimation errors by using the Newton-Raphson 
or the gradient descent method. However, in the DEEP method, the displacement range of each 
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ViSP module must be constrained and the entire estimation errors are not considered concurrently. 
To overcome these limitations, the PODE method based on a pose-graph optimization technique 
has been proposed in this paper. In the PODE method, a graph structure is built using the positions 
of the modules and the relative measurements. The graph is then iteratively optimized by a 
maximum likelihood method. The PODE method considers entire errors simultaneously and does 
not need any constraints on the ViSP modules. In order to validate the performance of the PODE 
method, simulations with different numbers of modules and real experiments have been performed 
and the obtained results were compared with those of the DEEP method. The results show that the 
displacement errors are reduced significantly, and the PODE especially has strength in reducing 
translational errors. In the future, multiple modules of the ViSP with the PODE method will be 
applied to a variety of massive structures. 
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