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Abstract.    The strain data acquired from structural health monitoring (SHM) systems play an important 
role in the state monitoring and damage identification of bridges. Due to the environmental complexity of 
civil structures, a better understanding of the actual strain data will help filling the gap between 
theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain 
response are first revealed after abundant investigations on the actual data from two typical long-span 
bridges. Results show that, strain types at the three typical temporal scales of 105, 102 and 100 sec are caused 
by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of 
10-2, 10-1 and 100 Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and 
extracting these strain types. During the above process, two methods for determining thresholds are 
introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an 
effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. 
This research may contribute to a further understanding of actual strain data of long-span bridges; also, the 
proposed extracting methodology is applicable on actual SHM systems. 
 
 

Keywords:    health monitoring; bridges; strain; information extraction; multi-scale; wavelet 
 
 
1. Introduction 
 

Recently, many technical articles have arisen on the subject of strain-based health monitoring, 
which extend the original concept of Structural Health Monitoring –the so-called global damage 
identification based on dynamic responses (Housner et al. 1997). Some of these put an emphasis 
on the function of short/long-term ‘monitoring’ and evaluation on structural state or identification 
of the environmental events (Cardini and DeWolf 2009, Kamath et al. 2010, Li, et al. 2012, Li et 
al. 2001, Liu et al. 2009, Omenzetter et al. 2004, Ye et al. 2012), while some of others much 
concentrate on the function of ‘damage identification’ (Bukkapatnam et al. 2005, Hu and Shenton 
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2007, Katsikeros and Labeas 2009, Kesavan et al. 2008, Li and Wu 2008, Reynders et al. 2007). 
All the above point to the wide application and important role of strain data in structural health 
monitoring. 

Due to the complexity of structural field environments, there still exists a distance between the 
laboratorial /theoretical results and practical applications (Farrar et al. 2001, Van der Auweraer and 
Peeters 2003). Consequently, it becomes extremely crucial to obtain clean, reliable and normalized 
data when we apply the developed techniques, which may have been validated in laboratories, on 
actual structures.  The situation couldn’t be an exception for strain-based health monitoring 
strategies, especially for long-span bridges which are usually under more complex operational 
environments. A better understanding on these strain data is then required if we want to use them 
confidently rather than abstractly. 

Literature and publications on research concerning with the strain itself are relatively sparse, 
with the exception of aiming at developing a much robust and low-noise data acquisition system, 
for example in (Wong et al. 2006). Differently from these studies, online strains in this article are 
all supposed to be ‘good’– not highly noisy – data which record the real response of structures, 
allowing for concentration on the structure of online strain itself. Considering the wide application 
of SHM systems on long-span bridges, investigations in this article should be helpful for 
researchers and users of them. 

The strain data used in this article is from SHM systems installed on the Tsing-Ma Bridge 
(TMB) and Run-Yang Bridge (RYB). Tsing-Ma Bridge in Hong Kong with a 2.2 km total span and 
a main span of 1377 m, is the longest of suspension bridge that carries both railway and highway 
traffic. Run-Yang Yangtze Bridge, a highway bridge connecting Yang-Zhou and Zhen-Jiang, China, 
includes a suspension bridge and a cable-stayed bridge of which the suspension bridge with a main 
span of 1490 m ranks the third longest suspension bridge in the world. 

In the article, the characteristic of online strain data is investigated first. Based on its 
multi-scale feature, multi-resolution analysis and wavelet shrinkage are introduced for separating 
and extracting the different strain types. A wavelet model for strain data is proposed in Section 
4.Results and discussions are presented in Section 5. 

 
 

2. Features of online strain at multiple temporal scales  
 
The structural monitoring system in TMB comprises a total of approximately 900 sensors, 

including accelerometers, strain gauges, displacement transducers, level sensors, anemometers, 
temperature sensors and weigh-in-motion sensors, installed permanently on the bridges and the 
data acquisition and processing system. The strain gauges which were installed to measure strain 
in bridge-deck sections are shown in Fig. 1. The locations of strain gauges installed in the Tsing 
Ma Bridge include rail track sections at CH 24662.50, bridge-deck trough section at CH 24664.75 
and deck at tower and rocker bearing links at CH 23623.00.Locations of some strain gauges in 
cross frame at CH 24662.50 are shown in Fig. 1.  

Despite of the huge data size collected by hundreds of sensors installed on TMB and RYB, 
investigation shows that the strain data from sensors at different locations of one bridge exhibit 
similar features. For this reason, only two strain gauges are chosen as representations to illustrate 
their common characteristic. They are respectively numbered SSTLN01, a strain gauge installed 
on the top chord of the longitudinal truss in the cross-section CH24662.50 of TMB, as shown in 
Fig. 1, and YBH4-13, a gauge locating at the upper deck in the middle-span section of Run-Yang 
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suspension bridge. They were continuously recording the strain under working conditions at rates 
of 25.6 Hz and 20 Hz, respectively. A 24-hours strain history was selected for both gauges.  
Further detailed description on layouts of strain sensors could be seen in (Lau and Wong 1997) and 
(River 2004). 

 
2.1 Analysis in the time domain 
 
The characteristic of strain response can be described in brief as “multi-scale”. More 

specifically, the strain displays distinctive features at three typical temporal scales of 106 sec, 103 
sec and 100 sec. 

At the scale 1 (1 day or 86400 sec): As shown in Figs. 2(a), 3(a), 4(a), and 4(b), both strains 
demonstrate a trend line (Type 1) in 24 hours, and the varying magnitude is about 100 με. 
Moreover, this strain type has a periodic character with a cycle time of 24hours because the daily 
curve is similar. 

At the scale 2 (1000 sec): In SSTLN01 on Tsing-Ma Bridge, a new strain type (Type 2) could 
be recognized at this scale in Figs. 2(c) and 3(d). It could be described as a “local impulse” or a 
“local strain cycle” with the duration of approximately 20sec and order of variation magnitude 10s 
με. However, this strain type couldn’t be found in Fig. 4(c) in Run-Yang Bridge. 

At the scale 3 (1 sec): As seen in Figs. 3(h) and 4(e) for Tsing-Ma and Run-Yang Bridge, 
respectively, another strain type (Type 3) can be recognized at this time scale. Type 3 presents the 
feature of ‘local oscillating impulse’ or ‘consecutive local impulses’. The key point is that they all 
last about 1sec from the beginning to the end, displaying two, occasionally three, consecutive 
peaks or valleys. The variation range differs between the two bridges. For TMB, it is less than 
10με, with an average of several strain units, while for RYB, it could be large than 50 με, with an 
average of tens of strain units. 
 

 
(a) Layout of strain gauges on Tsing-Ma Bridge, (b) Strain gauge location in the cross frame at 

CH24662.50 
Continued- 
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(c) Some figures for details and views in Fig. 1(b) 

Fig. 1 Layout and locations of strain gauges on Tsing-Ma Bridge 
 

 

 
Fig. 2 The original strain history from SSTLN01 on Tsing-Ma Bridge at different scales: (a) 106 sec, at this 

scale only the strain caused by temperature variation could be recognized, (b) 103 sec, only strain 
under railway load could be recognized, (c)100 sec, at this scale, the details of truck induced strain 
cycles could be clearly displayed 
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Fig. 3 The separated strain components from SSTLN01: (a) temperature strain t̂ at scale 1(24hours), (b) 

railway strain r̂  at scale 1, (c) r̂  at intermediate scale (25min), (d) r̂  at scale 2 (80sec), (e) 

highway strain h̂ at scale 1 (24hours), this strain type could not be recognized, but globally, the 

range of strain cycles is much smaller than railway strain, (f) h̂  at intermediate scale (25min), 

this type of strain still could not be recognized, (g) h̂ at scale 2, the details are not so clear 

(80sec), (h) h̂ at scale 3 (2sec) 
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It should be pointed out that other time scales were also chosen during the study, without 
noticeable strain types discovered. A further investigation indicates that the above three strain 
types are caused by events of temperature variation, train (railway loads) and heavy truck 
(highway loads), respectively. The first strain type reflects the daytime temperature change (Chan 
et al. 2001). The second strain type is the structural response to trains passing through the bridges, 
evidenced by the numerical simulation implemented by Chan et al. (2003). The third type is 
caused by heavy trucks of those the gross weight is above 14,000 Kg, where the consecutive two 
or three peaks/valleys are corresponding to the two or three lines of front and rear wheels. 
Additionally, the absence of the second strain type in RYB could be smoothly explained for TMB 
is a double-duty bridge for both railway and highway loads while RYB is singly a highway bridge. 
 
 

 
Fig. 4 actually could be treated as noise signal considering its in SSTLN01 (e) h̂ at scale 3 (2sec) 
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2.2 Analysis in the frequency domain 
 
In order to discriminate the above three types of strains, their characteristics in frequency 

domain are discussed in this section. 
 
Type 1: 
The 1st type of strains resembles to a periodical function with a cycle time of 24 hours. 

According to the Fourier series theory of periodical functions, the fundamental frequency can be 
approximated as   51 / 3600 24 1.2 10 Hzbf

    . 

Consequently, a sufficiently large multiple of the fundamental frequency is chosen as the 
cut-off frequency of its energy distribution. Considering the temperature varies slowly, it is 
reasonable to assume that the temperature remains smooth within certain minutes. So the cut-off 
frequency could be expected qualitatively as about 1000 times of the fundamental frequency. 

2 2
, 1 10 Hz O(10 )c tf    

                        
(1) 

 
Type 2: 
As described above, the 2nd type of strains is similar to an impulse with the duration of 

approximately 20 sec. On the basis of Fourier Transform theory, the great majority energy of a 
δ-duration impulse concentrates in a frequency interval named Main Lobe from 0 to Main Lobe 
Width Δ. Table 1 presents several typical impulse types with their Main Lobe Widths (Mitra and 
Kuo 2006). 

It can be inferred that the cutoff frequency fcof impulses with duration δ should be in the order 
of magnitude of 1/δ although their curve shapes may be different. Thus by choosing a 
representative duration δ2=20sec, the cutoff frequency of the 2nd strain type could be estimated as 

1 1
,

2

2
1 10 Hz O(10 )c rf


                          (2) 

Type 3: 
The third type of strains is similar to an oscillating impulse or consecutive impulses with two 

valleys (peaks) generally lasting less than 1sec. Likewise, by choosing a reasonable value δ3 as 
0.5sec, the representative cutoff frequency of this type could be calculated below as 

3

00
,

2
4 10 Hz O(10 )c hf


                        (3) 

 
 

Table 1 Main-Lobe Widths of typical impulses 

Types of Impulse Rectangular Triangular Cosine 

Main Lobe Width Δ 1/δ 2/δ 2/δ 
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3. Multi-resolution analysis and wavelet shrinkage 
 
Corresponding to the multi-scale characteristic revealed above, wavelet analysis method is 

applied to deal with the strain data. In this section, we will briefly introduce the theory of 
multi-resolution analysis (MRA) and wavelet shrinkage. 

 
3.1 Multi-resolution analysis 
 
The multi-resolution theory was developed by Mallat (Mallat 1989). Through defining  the 

multi-resolution structure  j

j j
V




of L2(R) space that 1j jV V   and  2

jL R V  , he proved there 

existed a scaling function φ (x), the set of the translations and dilations to which, 

    /2
, 2 2 ,j j

j n
j Z

x n n Z  


   , is an orthogonal basis of the multi-resolution 

approximation spaces Vj.  Subsequently, the theory constructs the orthogonal complement of Vj in 
Vj-1 , named the detail spaces Wj . Finally the wavelet function ψ(x) could be constructed that the 

translations and dilations of which     /2
, 2 2 ,j j

j n
j Z

x n n Z  


   form the basis of Wj.  

For a recorded time history of strain )(t at a finite sampling rate – assume   0t V  , the 

coefficients at the level of j are defined as 

   , ,j n j na t t dt 



  ,    , ,j n j nd t t dt 




                (4) 

Define    , ,j j n j n
n

a t a t and    , ,j j n j n
n

d t d t  as the j-th approximation and the 

j-th detail respectively, the full expanding of )(t at the J-th level can be expressed as  

       0
1

J

J j
j

t a t a t d t


                           (5) 

For practical implementation, Mallat also provided a pyramidal algorithm for computing 
coefficients in signal decomposition and reconstruction based on convolutions with quadrature 
mirror filter derived from φ(x). Giving the coefficients aj,k of the j-th approximation aj(t), the 
decomposition operation is necessary for determining the coefficients of the coarse-resolution 
approximation a j+1 and the detailed signal dj+1 . The reconstruction should be conducted when 
computing ajfromaj+1 and dj+1. 

From the point of digital signal process, the decomposition is equal to a filtering process. After 
a level of decomposing on aj, the separated coarse-resolution approximation aj+1 keeps the 
information mainly on the lower 1/2 band of aj, while the detail dj+1 contains the main information 
on the higher 1/2 band. The detailed interpretation of MRA theory could be found in articles by  
Mallat (1989) and Daubechies (1992). 

 
3.2 Wavelet shrinkage 
 
Wavelet Shrinkage was proposed by David and Johnstone (1994), and David (1995) for 
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problems of recovering an unknown function from noisy data. Sometimes this process was also 
named wavelet de-nosing (Mallat and Hwang 1992) or wavelet filtering. 

A straightforward strategy for shrinkage or de-noising is thresholding wavelet coefficients. The 
general procedure follows the next three steps: 

Step 1: (Decomposition) decompose the original signal f at a selected level N. 
Step 2: (Thresholding) select a threshold and then apply soft or hard thresholding to detail 

coefficients computed in Step1. The approximation coefficients will not be changed. 
Step 3: (Reconstruction) reconstruct signal using the approximation coefficients at the N-th 

level and the modified detail coefficients at levels from1 to N. 
The key issue for wavelet shrinkage is to determine thresholds on which an overview was 

provided in(Nason, 1995)and(Vidakovic, 2009). Here two methodologies are introduced.  
The first is Mallat’s model and percentile threshold(S. G. Mallat, 1989). He found that the 

probability density of image detail coefficients can be experimentally modelled as the family of 
exponential function: 

(| |/ )( ) df d Ce
                             (6) 

Where the constant C is normalized as
2 (1/ )

C


 



, and the coefficients α and βcan be 

calculated through estimating the first and second moment of the probability density. 
The above model could be used to design the percentile threshold. The induced threshold is 

1 /2T q                                   (7) 

Where 1 /2q  is the (1 / 2) quantile of the estimated distribution function or the empirical 

distribution of the sampling data. 
The second is so-called universal threshold by Donoho and Johnstone (1994). The universal 

threshold is proposed as 

ˆ 2logT n                             (8) 

Where n is the number of data points,̂  is an estimation of the noise level and could be 
obtained by computing the standard deviation of the detail coefficients (at the j-th level) 

1/2

2
,

1

1
ˆ ( )

1

jn

j i j
ij

s d d
n




 
     

                      (9) 

When SNR (signal-to-noise ratio) is small, the MAD (median absolute deviation from the 
median) estimation is much robust: 

   1 1
ˆ MAD median median( )

0.6745 0.6745j j jd d d            (10) 

Where median (·) is the middle value (50% percentile) of empirical distribution. 
In summary, we could see that the percentile threshold much concentrates on the wanted 

information of which a prior knowledge has usually to some extent been achieved, while the 
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universal threshold is as much as in the viewpoint of controlling the risk of noise. 
 
 

4. Wavelet model of strain data  
 

As it has been revealed, online strain of bridges consists of three types of strain, with their own 
but separable time scales. The subsequent question becomes that how to separate and extract them 
one by one. In this section, the wavelet model of strain with an emphasis on information extraction 
is proposed. 

 
4.1 The strain model 
 
As a general form, the strain response under service environment could be deconstructed that 

          ( )t d r r h h wt t t t t r t                      (11a) 

Where t , r , h and w represent  the strain components due to temperature variation, railway 

loads (trains), significant highway loads (heavy trucks) and wind load(especially typhoons), 
respectively. dt , rt and ht  represent their characteristic time scales. As estimated in Eqs. (1)-(3), 

they should be in the order of hours, minutes and seconds, respectively. ( )r t  refers to the strain 
caused by random noises or insignificant random loads. Strain signals without any loading were 
investigated in our study. It was found to usually have a small vibration magnitude and a wide 
frequency band. Moreover, its empirical distribution is found not to reject the normal distribution 
at a significant level of 5%. Since strains evolved in this study were not under a significant wind 
environment, the character of wind-induced strain and its separation will not be included. Thus in 
this article, Eq. (11(a)) could be simplified as 

        ( )t d r r h ht t t t r t                        (11b) 

Decompose the strain signal to the Nh-th, Nr-th and Nt-th level in sequence, and then 
reconstruct the details between consecutive levels, the strain could be divided into four parts, 

         
1 1 1

t hr

t

r h

N NN

N j j j
j N j N j

t a t d t d t d t
    

                     (12) 

At an given sampling frequency, we could determine the appropriate numbers of Nh, Nr and Nt 
after estimating cut-off frequencies through Eqs. (1)-(3), yielding 

     3
ˆ

t

a
N t t da t t r t     

     3
1

ˆ
t

r

N
d

j r r r
j N

d t t r t 
 

    

     2
1

ˆ
r

h

N
d

j h h h
j N

d t t r t 
 

    
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   1
1

hN
d

j
j

d t r t


                            (13) 

Here t̂ , r̂ and h̂  are actual strain components containing noises corresponding to t , r

and h defined in Eq. (11). Because  r t is a wide-band noise, its multi-level components will still 

be superposed on the actual strain caused by significant loads. Therefore,  3
ar t ,  3

dr t and  2
dr t  

could be understood as noises on temperature strain, railway strain and highway strain,  
respectively. 

 
4.2 Level determination 
 
Assuming that the sampling rate of )(t  is fs, then the Nyquist frequency will be fm=fs/2. By 

estimating the three cut-off frequencies through Eqs. (1)-(3), the value of Nh, Nr and Nt can be 
determined as follows 

2
,

log m
h

c h

f
N

f

 
   

 
, 2

,

log m
r

c r

f
N

f

 
   

 
and 2

,

log m
t

c t

f
N

f

 
   

 
            (14) 

Where fc,h, fc,r and fc,t are cut-off frequencies for the strain types induced by highway load, 
railway load and temperature, respectively.  

Take strain data on TMB with fs=25.6 Hz and fm =12.8 Hz as an example: 
(1)Nh can be chosen as 1 since fc,h is the estimated as 4 Hz. For convenience, Nh is directly set as 

zero because Nh is a minor value in this case. 
(2) Considering fc,r is at the order of O(10-1) Hz, it is reasonable to choose fc,r as 0.2 Hz or 0.4 

Hz. Thus the Nr could be calculated as 5 or 6. 
(3) Similarly, let fc,t be 0.01 Hz , the value of Nt should be taken as 10 or 11. 
Due to the environmental and operational complexity, the cut-off frequencies given in 

Expression (1)-(3) are more qualitative rather than quantitative. Therefore, the composition level 
could be slightly adjusted according to the practical situation and specific requirement. For 
instance, if we care more about )(tr  and require the separated r̂  be precious enough, then a 
relatively large value of fc,r such as 0.8 Hz and a relatively small fc,t such as 0.005 Hz can be taken, 
which leads Nr to be 4 and Nt to be 11 even 12. 

 
4.3 Information extraction of different strain types 
 
Information extraction of bridge strain has two levels. The first level could be named as 

information separation that is separating the three types of strain into t̂ , r̂  and h̂  in Eq. (13). 
The second level could be called the real information extraction which identifies and picks up the 
local strain cycles or impulses of the 2nd and 3rd types one by one, that is to say, to extract )( dt t ,

)( rr t  and )( hh t  from the noisy data. In this article, wavelet shrinkage methods are adopted to 
realize the extraction operation above. 

 
4.3.1 The procedure of information extraction 
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Based on above analysis, both of the separation and extraction should conduct decomposition 
and reconstruction operation three times (or twice when Nh=0) with one type of strain being 
separated each time. Distinctively, the extraction has a shrinkage (thresholding) operation on 
wavelet coefficients before reconstruction. Fig. 5 illustrates the flowchart of information 
extraction. 

We make a summation of all required parameters from the practical level of implementing 
wavelet shrinkage, they are 1) the levels of decomposition and reconstruction and 2) thresholds for 
de-noising. The determination of decomposition levels could be got through Eq. (14). Next in 
Section 4.3.2, we will give two strategies for calculating thresholds expressed in Eqs. (16) and (17), 
respectively suitable for extracting strain types due to trains and heavy trucks.  

 
4.3.2 Threshold determination 
In this section the determination of threshold for wavelet shrinkage is discussed. Based on the 

prior knowledge of each strain type, this article proposes a specific threshold computing method 
by referring the essential strategies mentioned in Section 3.2 instead of directly applying them on 
the practical data. Namely, when the strain caused by train loads is picked up, the percentile 
threshold is utilized by controlling its occurrence probability. On the other hand, the strategy of 
controlling noise is applied for extracting the strain caused by heavy trucks. These two methods 
are simply named as P-method and N-method, respectively. 

 
 
 

Fig. 5 Flow chart of information extraction 
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P-method for extraction of the strain due to trains 
The investigation shows that the passing train traffic is highly regular in Tsing-Ma Bridge. 

Firstly, the number of trains crossing the bridge every day is strictly stipulated with little deviation. 
Secondly, the duration time of passing the bridge is steady because of the limited speed. These 
characters induce the idea of P-method that is to control the happening of the train strain )( rr t . 

The procedure is listed as follows: 
1) Through counting the average number of the 2nd type in a unit of a single day, assuming as 

Ntrain, the expected occurrence rate could be calculated as  

5
train train train/ day 1.1574 10 Hzf N N    

2) The occurring probability of the 2nd type could be obtained as  

train train trainp f t                             (15) 

Here traint is the average duration of the 2nd strain types. 

3) The threshold of detail coefficients at level j could thus be determined at the percentile of 
ptrain.  

train1( )j j pT d                              (16) 

Where (·)1-p denotes the 1-p percentile of the data vector. 
Investigations on TMB show that Ntrain is about 460 times which happen during about 19 hours 

every day since trains are not scheduled to pass the bridge between 1:00 and 6:00 A.M. The 
probability trainp  could thus be achieved as 10.6% by estimating traint as 20s. 

 
N-method for extraction of the strain due to heavy trucks  
 
The strain responding to the truck load has a different character; its occurring rate and duration 

time have a relatively high variability. Therefore, it is more practical to control the noise rather 
than its happening probability.  

According to Eq. (8) suggested by Donoho, the threshold at level j could be obtained by 
ˆ2 logj j jT n  , Here, the length of strain collected by health monitoring system is enormous, 

taking the sampling rate 20 Hz for example, the size of data point from a single strain gauge could 
nearly reaches up to 2 million after 24 hours. Although the data size of the detail coefficients will 
reduce to nearly a half after every level of decomposition according to the Mallat’s algorithm, the 
length could still be about tens of thousands after 6 levels decomposition. So the value of

2 log jn  seems too strict for recovering the actual strain response caused by trucks. Thus, we 

preserve the form of the above equation but make an adjustment of the multiplier factor j  on 

the estimated noise level ˆ j
 

that is  

ˆj j jT                                 (17) 

Assume the noise in strain data follows the norm distribution because the empirical distribution 
doesn’t reject the norm distribution at a significance level of 5%. Therefore, the cumulative 
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function for standard normal distribution

2

2
1

( )
2

x
x

x e dx





    could be referred to determine 

the threshold value. It can be found that, when x is larger than 3, the occurrence probability on the 

two tails  2 1  will descend to a magnitude order of 10-3, a reasonable value to suppress noise. 

Therefore, the value of  is chosen as 3.0 in this paper. 
For wavelet selection, Daubechies wavelets are used in our study. Daubechies wavelets are a 

family of orthogonal and compact supported wavelets. There is balance in choosing a specific 
Daubechies wavelet. A larger support length will lead to a larger vanishing moment, which makes 
the frequency separation of the signal more effective. On another side, a larger support length may 
result in a bad time-domain resolution, that is to say, may not be effective for strain type extraction. 
It should be noted that although the above consideration is important, our practice shows that by 
choosing DB2 to DB10, results only have slight differences. We suggest DB8 (the number 8 
denoting the support length) for strain separation, and DB4 for information extraction. These two 
are also the wavelets we used in the study. 

 
 

5. Results and discussion 
 
Results of strain separation are shown in Figs. 3 and 4. In fact, they have been explained in 

detail when revealing the multi-scale characteristic of bridge strain. We could find that the wavelet 
method could successfully separate these different strain types and thus makes it possible to 
conduct a concentrated research on a specific kind of strain type.  

 
5.1 Extraction of train-induced and heavy-track-induced strains 

 
 

 

Fig. 6 Extraction of  (red) from  (blue) 

 

 r rt  r̂ rt
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As revealed above, strain data from SSTLN01includes both train-induced strains and 
heavy-truck induced strains, while the strain data from YBH4-13 on Run-Yang Bridge only 
contains the heavy-truck induced strains. Moreover, it was found that the YBH4-13 extraction 
result on the truck-induced strain is very similar to that of SSTLN01. With these in mind, 
SSTLN01 is taken for an example to display the results of information extraction. In Fig. 6, the 
extracted train-induced strain  r rt (in red) and the strain before extraction  ˆ

r rt (in blue) are 

plotted together for comparison. It is shown that noise has been reduced to a lower level, while on 
another hand, strain curves and peak values induced by trains could be exactly recovered. 

Fig. 7 shows the result of heavy-track-induce strain extraction. It could be seen in Fig. 7(a) that 

after extraction  h ht  will become zero for most of the time period. In contrast, when a heavy 

truck passes through, the induced strain cycle still could be exactly extracted as show in Fig. 7(b) 
--strain curves and peak values both agree well with the strain before extraction. 

To verify the effectiveness of information extraction, we define an index named average peak 
error (APE) ep to quantitatively test the global accuracy of exacted strain types. This is because 
peak values are usually of importance for bridge health monitoring.  

1

ˆ
N

j j
j

p

p p

e
N







                            (18) 

Where N means the counting number of strain Type 2 or Type 3 and jp are their peak (valley) 

values. For a kind of strain type extraction, a smaller APE value implies a more accurate recovery. 
As listed in Table 2, it could be seen that APE values, for both extracted strains caused by trains 

(Type 2) and heavy trucks (Type 3), are very small by considering that the accuracy of strain 
gauges is usually of 1 με. 

 
 

 

Fig. 7 Extraction of  (red) from  (blue)  h ht  ˆ
h ht
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Compression ratio and energy ratio are used to investigate extraction results. Compression ratio 
is defined in the way that 

MemSize( )
ˆMemSize( )c




                            (19) 

where MemSize (·) represents the required size for digital storage. After wavelet shrinkage it is 
roughly equal to the number of nonzero coefficients.   

Energy ratio is defined as 

2

2
2

2
ˆ

e





 ,                                (20) 

where
2
 denotes the L2 norm of a signal, thus 2

2
  is the energy. 

Values of above two indexes are also shown in Table 2. It is found that noise in ˆ
h  is 

relatively higher than in ˆ
r . This is because the variation range of strain cycles due to trains and 

that due to the heavy trucks are different–usually 101 µε versus 100 µε, while noise are usually 
universal at every level.  

 
5.2 The capability of data compression  
 
As we known, the data size collected by health monitoring system would be extremely huge 

during its persistently cumulative process. Therefore, investigations on the extent to which the data 
could be compressed without compromising its useful information will be necessary for both 
system designers and users. 

Assuming the length of original data is l, after information separation, ˆh , ˆr and t̂ will be 

stored in the form of wavelet coefficients with the length of 
1

1
2 2 2h r h hN N N N

l l


   
 

,

1
1

2 2 2t rr rN NN N

l l


   
 

 and
2 tN

l
, respectively. Furthermore, after extraction, the memory size 

for storing h and r will be about ,

2 h

c h
N l


and ,

2 r

c r
N

l


. The total ratio for compression could be 

estimated as 

, ,

, ,

1

2 2 2

1

2 2 2

h tr

h tr

c h c r
c N NN

c h c r
N NN

l
l l

l

 


 

 
   

 

  

                      (21) 

As representative values, we choose Nh=0, Nr=4, Nt=12, , train 10%c r p   and , 0.5%c h  , 
which lead the total ratio c to be 1.4%. This is a considerable value and seems to make 
information extraction very attractive for bridge health monitoring systems.  
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Table 2 Comparisons on average peak error, compressionratio and energy ratio 

 ep/10-6   

/  0.40 10.7%(=ptrain) 96.3% 

/  0.56 0.45% 39.1% 

 
 
6. Conclusions 

 
This article reveals the multi-scale features of online strains recorded by health monitoring 

systems of long-span bridges. It is shown that despite of the diversity of bridge types and the 
complexity of their respective working environments, the actually measured strain could still be 
understood and deconstructed in a common model. The strain within three typical temporal scales 
of 105, 102 and 100 sec have different characteristics, which have their individual cut-off 
frequencies of different magnitude orders of 10-2, 10-1 and100 Hz, and are caused by temperature 
change, trains  and heavy trucks, respectively. 

Multi-resolution analysis and wavelet shrinkage methods can successfully separate and extract 
the different strain types, which make the research on a specific strain type more convenient. To 
make things better, the extraction process compresses the collected date at the same time to an 
attractive ratio. 

The methodology developed during the information extraction, especially the choice of 
compression level and the determination of threshold, is applicable to the actual digital strain 
processing for long-span bridges, as the load conditions are similar. 

The findings and the developed method for the monitoring data analyses will help bridge 
engineers and managers to obtain a reliable and clear description of the bridge response under 
different type of loading, therefore have better understanding to their bridge’s behavior from a 
multi-scale viewpoint and subsequently can evaluate the different influences on the structure 
induced by different load types. 

As we known, the actual environment of civil structure is quiet complicated. For example, 
besides temperature variation, railway loads and heavy trucks, the wind loads, especially typhoons 
(Chen and Wu 2008, Li et al. 2002, Xu et al. 2007), may also induce significant strain responses. 
It should be pointed out that the strain history in this article is the response under service 
environment; therefore, the features revealed here should be an elementary model. Strains caused 
by occasional environmental events which make the strain more sophisticated will have their own 
characters and possibly could also be identified and separated by wavelet method. Further 
investigations could be conducted on these subjects. 
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