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Abstract.  In this research, an internal model based method is proposed to estimate the structural 
displacements and velocities under ambient excitation using only acceleration measurements. The structural 
response is assumed to be within the linear range. The excitation is assumed to be with zero mean and 
relatively broad bandwidth such that at least one of the fundamental modes of the structure is excited and 
dominates in the response. Using the structural modal parameters and partial knowledge of the bandwidth of 
the excitation, the internal models of the structure and the excitation can be respectively established, which 
can be used to form an autonomous state-space representation of the system. It is shown that structural 
displacements, velocities, and accelerations are the states of such a system, and it is fully observable when 
the measured output contains structural accelerations only. Reliable estimates of structural displacements and 
velocities are obtained using the standard Kalman filtering technique. The effectiveness and robustness of 
the proposed method has been demonstrated and evaluated via numerical simulations on an eight-story 
lumped mass model and experimental data of a three-story frame excited by the ground accelerations of 
actual earthquake records. 
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1. Introduction 
 

Deflection is a global characteristic for any structure in both the construction and service 

periods. It is essential for estimating the performance of the structure under dynamic loading.   

There are many different types of sensors that can be used to measure the dynamic or static 

deflection of a structure. These include models such as the interferometer (Lloret and Rostogi 

2003), the dail guage (Kim and Cho 2004), the laser doppler vibrometer (Nassif et al. 2005), the 

linear variable differential transducer (LVDT) (Park et al. 2007), and the global positioning  

system (GPS) (Roberts et al. 2012). These sensors have been confirmed through laboratory 

testing to accurately measure the displacement of a structure. However, for field testing, these 

sensors may not be feasible for use due to the limitations and challenges in their 

instrumentation. Direct measurement of displacement requires a reference datum, which is, 

in many cases, only temporarily available through scaffold (Yoneyama et al. 2007, Gindy et al. 

                                                      
Corresponding author, Associate Professor, E-mail: tianwei@hawaii.edu 



 

 

 

 

 

 

T.W. Ma, M. Bell1, W. Lu and N.S. Xu 

 

2008) or suspended cable. These datums are time consuming, increase the cost of the project, and 

are ineffective due to the difficulty in maintaining a stationary reference over time. These 

difficulties make using a reference datum unsatisfactory for long term applications. As a result, 

indirect displacement measurement methods have been developed. A common method used in 

practice is to measure accelerations directly and apply integration to calculate the velocities and 

displacements. However, it can be theoretically shown that small random errors in  the 

measured signals, also referred to as noise, are bound to grow through successive integrations, 

which leads to significant  distortions in the estimated profiles (Astrom 2006). Gindy et al. 

(2008) introduced a post processing method in which a state space analytical model is 

constructed via a singular value decomposition based algorithm to generate an approximation 

of the noise-free acceleration signal. By applying appropriate correction techniques, this 

noise-free approach can be used off-line to derive a displacement profile. Smyth and Wu (Smyth 

and Wu 2007) proposed a multi-rate Kalman Filtering technique for the data fusion of 

displacement and acceleration response measurements. Using displacement measurements 

along with measured accelerations, this technique has been proven to filter and smooth noise 

contaminated measurements into accurate estimates. Based on a similar concept, Ma and Xu 

developed a fusion method to accurately estimate the displacement and velocity from the noise 

tainted acceleration and displacement measurements (Ma and Xu 2007). More recently, the 

FIR-based method was proposed (Lee et al. 2010, Hong et al. 2013) and implemented on a 

wireless platform (Park et al. 2013) for reconstruction of structural displacements from 

acceleration measurements. 

Velocity is another global characteristic of a structure, but it is rarely measured in the field 

due to the difficulty in directly obtaining it. However, structural velocity is important because it 

is the one variable which can be used to characterize the motion of a structure. In the state 

space of a structural system, velocity and displacement are independent states of the system. 

Knowing both means complete knowledge of the dynamics of the structure, which is beneficial 

in various applications, such as characterization of structural motion, identification of 

structural parameters, monitoring in-service structural performance, and so on. To the best 

knowledge of the authors, there have not been reliable methods reported in the literature for 

velocity measurement or velocity profile reconstruction for ambient structural vibrations. 

Laser doppler vibrometers are designed for measuring velocities, however, deployment of them 

in the field is impractical due to limitations such as their prohibitively high cost, delicate 

nature, and installation difficulties, among others. 

Aside from the time-domain signals, dynamics of a structure can be analyzed in the modal 

domain. Such modal representation describes the structural motion from a different 

perspective, usually in a more concise and abstract way with most of the information preserved. 

Methods that extract modal information, i.e., frequencies, mode shapes, and damping ratios, 

from time-domain signals have gained increasing popularity in both theory development and 

practical applications (Ewins 2000). Particularly of interest for vibrations of civil 

infrastructures are methods for identifying these modal parameters with output-only system 

techniques under ambient vibrations (Brincker et al. 2001, Nagarajaiah and Basu 2009, Au and 

L. 2011). For example, the modal parameters of a high-rise slender structure, more than 400 

meters high in its large scale model, were identified using a subspace system identification 

based algorithm (Liu and Loh 2011). Additionally, six modes and their parameters were 

identified for a footbridge and a 300 meter tall building in Hong Kong (Au and L. 2011). 

In this study, a method based on an internal model is developed to estimate a structure’s 
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displacements and velocities from measured accelerations. Estimates are obtained via 

reconstruction of the structural modal displacements and modal velocities, which allows for 

subsequent recovery of the time-domain information using modal superimposition. Based on 

the modal parameters of the structure, the internal models for the structural modes and 

excitation are established, which are used to construct an autonomous system for every 

participating mode that closely mimics the modal dynamics of the structure. The Kalman 

filtering technique is applied to the individual autonomous systems to estimate the modal 

responses of every mode. The proposed method is essentially an observer-based approach, and 

thus is suitable for real-time applications. The measured accelerations can be used as an online 

performance index to monitor the accuracy of the estimated structural displacements and 

velocities. Illustrative examples of an eight-story lumped mass shear beam numerical model 

and a three-story frame experimental model were chosen to demonstrate the implementation 

of the proposed method and verify its feasibility and robustness through error analysis. The 

results of these simulations are compared to the known measured values to validate the accuracy 

and precision of this method. 

 

 

2. Formulation 
 

The dynamic response of a linear structure subjected to an arbitrary excitation can be 

accurately represented by superposition of a finite number of modal responses (Humar 1990) 

as 

u = Φy                                  (1) 

where Φ denotes an N by m (N  ≥ m) modal matrix of the structure, in which N is the 

number of degrees of freedom of the structure and m is the number of modes that contribute 

significantly to the structural response. Structural response in time and modal domain are 

denoted using u = [ u
1    

u
2   · · ·    u

N  ]T and y = [  y
1   y

2   · · ·     y
N  ]T , respectively. 

In this study, structural response considered includes displacement, velocity, and acceleration. 

Clearly, uv = du
d /dt and yv = dy

d /dt, where subscripts d and v refer to displacement and 

velocity, respectively.  Furthermore, displacement and velocity are defined using the structural 

base as the reference, thus, in the case where the structural base is fixed during the course of 

excitation, ua = d
2 u

d /dt
2
 and ya = d

2

y
d /dt

2

, in which subscript a refers to absolute 

acceleration, however, in the case of base excitation, such relationship is not valid. 

Consider  the  case of classical  damping,  the  modal  responses  are  governed  

by the following equation 

NitPy
dt

dy

dt

yd
iii

i
ii

i ,,2,1),(2 2

2

2

                   (2) 

where ξi and ωi are the damping ratio and natural frequency of the ith mode, respectively, yi the 

ith modal displacement, and Pi (t) represents the ith modal force, normalized by the ith modal 

mass. 

For every mode, define a non-dimensional time variable as tii   . Eq. (2) can be written 

in a non-dimensional form as 
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)(2 iiiiii Qyyy                                (3) 

Here (˙) and (̈ ) denote first and second derivatives of the argument with respect to the 

non-dimensional time variable, i , and 
2/)()( iiiii PQ   . 

Eq. (3) can be written in state space as 

)(BYAY iiiiii Q                               (4) 

where the state vector of the ith mode is defined as ][Y iii yy  , the excitation location matrix 

of the ith mode is 
T

iii yy ][B  , and the state transition matrix of the ith mode is defined 

as 













i

i
21

10
A                              (5) 

Using the definition of the state vector, the modal acceleration of the ith mode, aiy can be 

written  as 

)(YC iiiiiai QDy                             (6) 

where  ii 21 C  and Di depends on the excitation. For a base-excited structure Di= 

0. 

 

2.1 Observer design in model domain 
 

In the case where structural accelerations au  are measured and the structural modal 

properties are known, the modal accelerations can be obtained as 

aay uΦ
1                          (7) 

Note that in the case where N > m, i.e., there are more degrees of freedom than the modes, 

a pseudo inverse can be used to obtain the response in modal domain. Using the absolute 

acceleration decomposed in modal domain, the modal displacement and modal velocity for 

every mode can be estimated with a properly designed observer as 

aiiiiiiii yQ LBY)CLAY ii  )(ˆ(ˆ
.

                  (8) 

Where 

T

iii yy 









.

ˆˆŶ is the estimated state vector for the ith mode, in which iŷ and i
y
.

ˆ

denotes the estimated displacement and velocity for the ith mode, respectively, and iL  is the 

observer gain, which can be determined using various techniques (Ȧstrӧm and Murray 2008). It is 

noted that the error of the estimation depends on the accuracy of the information about the 

modal excitation and modal acceleration measurement. In this study, it is assumed that the 

modal properties of the structure are identified accurately and there are a sufficient number 

of structural acceleration measurements, i.e., N ≥ m, thus, the modal acceleration can be 
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obtained using (7). In the following section, treatment of modal excitation using the internal 

model concept is presented. 

 

2.2 Observer design using internal model of excitation 
 

2.2.1 Internal model 
It is known that a mathematical model may be constructed to represent the inherent law 

of motion or evolution reflected in a deterministic signal. Such a model is also called internal 

model (Matausek and Stipanovic 1998, Xu and Yang 1999, Xu 2001). For a continuous, 

deterministic signal x(t), the internal model equation can be written as 

0)()(  txD                                  (9) 

where the internal model polynomial is defined as  



2

2

1

1)( DDDD n

n

n  

01  D , in which n  is the order of the model, dtdD /  is a differential operator and

n ,,, 10   are constant coefficients. 

If the structural excitation is deterministic and the complete information of it can be 

obtained, it is possible to construct the internal model for the modal excitation for every mode 

such that 

0)()(  iiP QD
ii

                             (10) 

where the internal model polynomial for the ith mode is 




2

2

1

1)(
i

i

i

i

iii
DDDD

n

n

n

P   

01   
i

D , in which in  denotes the order of the internal model. Here iddD
i

 /  denotes 

differentiation with respect to the non-dimensional time variable. 

Using the internal model (10), the structural modal Eq. (3) can be rewritten in an augmented 

form as 

0)()(  iSP yDD
iiii                                     (11) 

where 122 
iii

DD iS    denotes the internal model polynomial of the ith structural mode.  

For the case of ambient structural excitations, if the excitations can be treated as the 

sample functions of a random process, each sample function may be analyzed as a deterministic 

signal. As long as the frequency-domain properties of the random process do not vary 

dramatically, it is possible to use one internal model to represent its sample functions, thus, the 

above analysis is still valid for ambient vibrations. 

 

2.2.2 Observer design 
Using (11), an augmented state-space model of the ith mode can be written as 

avgiavgiavgi ,,, YAY                               (12) 

where the augmented state vector is defined as 

T
n

iiiiavgi

i

yyyy 









1(

, Y and the state 

transition matrix is defined in a canonical form as 
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
























1210

,

1000

0

100

0010

in

avgi

 









A                         (13) 

where coefficients 2,1,0, jj are determined from the internal model polynomials, i.e.,

)(
ii

DP  and )(
ii

DS  . Note that as the dynamics of the excitation are included in the system 

equation, the augmented system becomes an autonomous one. 

The absolute structural acceleration can be written in standard state-space representation as 

avgiavgiaiy ,, YC                                (14) 

where  00100, avgiC  for the case of fixed base, i.e., the excitation does not  

include a component related to the motion of the base, whereas in the case of base-excitation, 

 00021, iavgi C . It can be shown that the pair ),( ,, avgiavgi CA  is 

observable, thus the following observer can be constructed to estimate the states of the augmented 

system. 

aiavgiavgiavgiavgiavgiavgi y,,,,,,
ˆ)(ˆ LYCLAY

.

                  (15) 

where  Tiiiavgi yyy  ˆˆˆˆ
, Y is the estimated state vector of the augmented system, in 

which iŷ and iy̂  are the estimated ith modal displacement and velocity, respectively. The 

observer gain is denoted as avgi ,L .  

In practice, ambient Excitations applied to a structure are, in general oscillatory, and thus can 

be expressed using Fourier Series (Tolstov 1976). For an excitation with zero mean, a possible 

form of the internal model may be chosen as 

)()()()( 222

2

22

1

2

pP rDrDrDD
iiiii
                      (16) 

where pjr ijj ,,2,1,/   , in which p  21 are the lowest p dominant 

frequencies of the excitation. Note that among these frequencies, only those that are close to the 

natural frequencies of the structure contribute significantly to the structural response, whereas 

those further away, even at higher energy levels, do not have much influence on the structural 

response. Thus, the natural frequencies of the structure can be used as a guide to the construction 

of the internal model for the excitation, especially for applications where such modal properties of 

the excitation are not available as a priori. For every mode, the normalized frequencies in the 

internal model can be selected as 
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qjr ijij ,,2,1,1                            (17) 

where subscript i refers to the ith mode and the distribution of the normalized frequencies jr  is 

symmetrical about the normalized structural natural frequency. Symbol ij  denotes the spacing 

between the frequencies, and 2q is the number of total frequencies. Note that the 

half-power-bandwidth of every mode is i2 , for structures with low damping levels, small  

frequency spacing, e.g., on the same order of magnitude as the damping levels, and small number 

of frequencies can be used to reduce the order of the resulted system. 
 

2.3 Estimation error 
 

Assuming that the internal model of the excitation for the ith mode is selected as 

   2222 )1()1()( j

j

jP iiii
DDD                       (18) 

where ∏ is the product operator. Using such an internal model and the structural modal equation, 

the following augmented state-space representation of the system can be obtained. 

iavgiavgiai

Qiavgiavgiavgiavgi

vy

R





,,

,,,,

YC

BYAY
                          (19) 

where QiR  denotes the residual modal excitation resulting from the internal model, iv the 

measurement noise for the ith mode, and  Tavgi 1000, B  denotes the location of the 

excitation in the augmented system. 

The estimation error of an observer designed in the form of Eq. (15) can be written as 

iavgiQiavgiavgiavgiavgiavgiavgi vR ,,,,,,,
ˆ)( LBeCLAe                 (20) 

where the error is defined as avgiavgiavgi ,,, ŶYe  . Note that the measurement noise iv  

includes the hardware noises introduced directly by the measuring instruments as well as error 

generated from data processing, i.e., modal expansion. When the mode shapes of dominant modes 

are identified with satisfactory accuracy, which can be normally achieved by using a sufficient 

number of well distributed sensors, the effect of such error may be negligible. In the case where 

the dominant modes of the excitation are well captured in the internal model (18), the residual 

modal excitation QiR  is insignificant. Eq. (19) takes the same form as the standard Kalman 

filtering problem, where an optimal  observer  gain can be obtained (Kalman 1960) when the  

levels of noises are known.  It is noted that when the excitation is with nonzero mean, the residual 

modal excitation QiR  will include a static component, which will generate a static error in the 

final estimation. If the static component of the excitation is known, the associated error can be 

minimized by explicitly incorporating it into the Kalman filter. For the case of unknown nonzero 

mean, the static error cannot be effectively compensated in the filtering process, and thus the 

estimated structural response will deviate from the actual values by some unknown static errors. 

Compensation for such errors in real time requires further in-depth investigation, which is not 

included in this study. 
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3. Illustrated examples 
 

In this section, results from two illustrative examples are presented to demonstrate the 

effectiveness of the proposed approach. The examples comprise numerical and experimental 

studies of building structures subject to seismic excitations. A general sketch of the two models is 

shown in Fig. 1. In both examples, accelerations of all floor levels are used as the only 

measurements to reconstruct the displacements and velocities relative to the base. Results obtained 

using the N-S ground acceleration record of the 1940 El Centro earthquake are presented. Ground 

acceleration records of other major earthquakes were also applied to the structural models. The 

results obtained were similar and thus are omitted herein. 

 
 
 

 

Fig. 1 Sketch of shear beam lumped mass models 

 
 
 
3.1 Example 1: eight-story lump mass model 
 

The first structure considered was an eight-story lumped mass shear beam numerical model 

(Yang 1982, Spencer et al. 1994, Ma et al. 2008). The mass, stiffness, and damping coefficient for 

each floor level were assumed to be m = 3.456 10
5
 kg, k = 3.404 10

8
 N/m

  
and c = 4.0 10

6
 N

ms / respectively. The first three natural frequencies of the model are 1.05, 3.11, and 5.06 Hz, 
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respectively. These frequencies correspond to damping ratios of 3.0%, 8.9%, and 14.5%, 

respectively. The highest natural frequency of the model is 11.17 Hz. According to the 

Nyquist-Shannon sampling theorem, the sampling frequency should be at least twice higher than 

the highest frequency in the signal to avoid loss of useful information. Accelerations of all floors 

were assumed to be measured at a sampling frequency of 50 Hz in this example. The 

measurements were also assumed to be contaminated with 20% noise. The same frequency was 

used to sample the simulated displacements and velocities.  

An analysis of the spectra of the excitation and the structural responses (Fig. 2) revealed that 

under this relative broad-bandwidth excitation, only the first structural mode contributed 

significantly to the structural displacements, while higher modes participated slightly more at 

lower floors. Such higher modes, however, contributed to the accelerations at much higher levels. 

Since the accelerations were assumed to be measured in this study, only the dominant mode was 

sufficient for a good estimation of the displacements and velocities. In this example, the internal 

model was constructed using only the first structural mode. The corresponding modal parameters, 

i.e., frequency, mode shape, and modal damping, were identified using the frequency domain 

decomposition (Brincker et al. 2001). As the half-power-bandwidth of the first mode was 

approximately 0.06 Hz, the frequency spacing of 1.011   (Eq. (17)) was used. A Kalman filter 

was designed using the assumed measurement noise level. The variance of the residual modal 

excitation QiR was assumed to be 0.01 in the filter design.  

The estimated structural displacements and velocities are presented in Figs. 3 and 4. Only the 

quantities for the top floor are shown for simplicity. A time period of five seconds, in which the 

largest response occurred, was chosen to provide a clear view of the two lines in the figures. Fig. 3 

compares the displacements of the top floor. It is clear the estimates follow the actual 

measurements very closely. The velocity profile for the top floor is also compared in Fig. 4.  

Similarly, the estimates closely mirror the actual velocity response. A summary of the maximum 

errors in the estimated peak values for all floor levels is presented in Table 1. It is seen that the 

proposed method estimated the peak/trough values accurately for all floor levels. The errors for 

peak/trough displacements and velocities are, with the only exception of the velocity at the 1
st
 

level, below 10%. The correlation coefficients (Rahman 1968) were also calculated using the 

entire time histories of the results. It was found that the coefficients increase monotonically with 

higher floor levels. The lowest and highest values for displacements were found to be 98.83% and 

99.11% for the first and top floor, respectively. The correlation coefficients for velocities were 

smaller, ranging from 89.03% for the first floor to 91.52% for the top floor. It is interesting to note 

that the estimates are not sensitive to the accuracy of the identified modal damping ratios. In this 

example, the first modal damping ratios, ranging from 1% to 8%, were used in the proposed 

method for the estimates. Compared with the actual damping ratio of 3%, the considered damping 

ratios covered a range of over 200% difference or identification error. Such significant 

discrepancies, however, only introduced very slight, unnoticeable changes in the estimates. Such 

robustness to damping ratios is beneficial in practice as damping ratios are less easily identified 

with the same level of accuracy as natural frequencies using ambient vibration measurements. 

Similar to the traditional observer-based estimation/filtering techniques, the accuracy of the 

proposed method in real-world applications can only be checked or monitored using system 

outputs, which are the actual measured accelerations compared with the filtered values in this 

study. Figs. 5 and 6 respectively show the filtered accelerations of the first and top floors obtained 

using the first mode and the first three modes. As discussed previously, higher modes contribute to 
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accelerations at significantly higher levels as compared to their share in displacements or velocities, 

especially at lower levels. 

 

 

 

 

 

Fig. 2 Spectra of excitation and structural responses 

 

 

 

 

 

Fig. 3 Estimated displacement of the top floor 
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Fig. 4 Estimated velocity of the top floor 

 

 
Table 1 Maximum percent error in estimated peak/trough values 

Floor 

Level 

Actual 

Displ.(m) 

Est. 

Displ. (m) 

|Diff.| 

(%) 

Actual 

Vel.(m/s) 

Est. 

Vel.(m/s) 

|Diff.| 

(%) 

1 0.0035  0.0037 6.73 0.0197 0.0217 10.59 

2 0.0069 0.0073 6.13 0.0391 0.0427 9.34 

3 0.0101 0.0107 5.75 0.0572 0.0622 8.81 

4 0.0130 0.0137 5.48 0.0731 0.0797 9.03 

5 0.0154 0.0162 4.93 0.0864 0.0944 9.28 

6 0.0174 0.0182 4.37 0.0971 0.1058 8.95 

7 0.0188 0.0195 3.83 0.1052 0.1137 8.08 

8 0.0195 0.0202 3.59 0.1096 0.1177 7.39 

 

 

Thus, using only the first mode is sufficient in recovering displacements and velocities despite 

that the errors in the filtered accelerations with only one mode are noticeably larger at lower 

floors. Therefore, in real-world applications, relatively larger errors in system output comparison 

(accelerations) may be allowed at lower floors. 

Note that in this example, the highest excited mode was the 3
rd

 mode (5.06 Hz), reasonable 

accuracy can still be achieved with sampling frequencies lower than 50 Hz. Simulations were 

conducted with different sampling frequencies. The results showed no noticeable changes in 

accuracy when the measurements were sampled at 20 Hz and up to 500 Hz. Relatively larger 

errors occurred when the sampling frequency approached 10 Hz, which was close to the critical 

frequency as the highest dominant frequency was 5.06 Hz. Much larger errors were observed 

when further reducing the sampling frequency. As in many civil engineering applications, the 

structural response is dominated by relatively low frequencies, e.g., up to 20 Hz, a sampling 

frequency of 50 - 100 Hz should be sufficient. 
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3.2 Example 2: three-story scaled building model 
 

In addition to the numerical structure, an experimental three-story scaled building model was 

analyzed. The floors were identically built with a dimension of 0.314 m 0.386 m 0.401 m. The 

floor masses for the lowest, second and top floors were 6.67 kg, 6.64 kg, and 5.03 kg, respectively.  

Using structural deflections under static loads, the inter-story stiffness coefficients were 

determined experimentally to be 31.01 N/mm, 34.07 N/mm, and 31.47 N/mm for the first, second, 

and top floor, respectively. Using a shear beam lumped mass model, the natural frequencies were 

theoretically determined to be 5.10 Hz, 14.19 Hz, and 20.41 Hz. The N-S component of the 

ground accelerations of the 1979 El Centro earthquake was scaled so that the peak value was 

about 0.8 g and used as the base excitation. The structural accelerations were measured at all 

three floors. The displacements of the three floors were also measured relative to a fixed reference 

using LVDTs. Both accelerations and displacements were measured at a sampling frequency of 

100 Hz based on the Nyquist-Shannon sampling theorem to avoid loss of useful information.  

Fig. 7 shows the spectra of the accelerations at all floors. It is clear that three modes dominated 

in the structural response. Using frequency domain decomposition, the dominant frequencies 

were identified as 4.79 Hz, 15.19 Hz, and 21.63 Hz. The identified mode shapes are shown in Fig. 

8. Using the measured floor masses and stiffness coefficients, the modal assurance criterion 

(MAC) (Allemang 1980, Allemang and Brown 1982) of the identified mode shapes was 

calculated to be 0.9958, 0.9756, and 0.9418 for the first, second and third mode, respectively. 

The proposed method was applied to the measured accelerations with the same parameters of the 

Kalman filter used in the numerical example. Once again, the damping ratios played an 

insignificant role in the estimation, thus, the results obtained using a fixed damping ratio of 0.05 

for all three modes are presented. Fig. 9 shows the filtered accelerations of the three floor levels 

as compared to the actual measured values. It is seen that the filtered accelerations closely follow 

the actual measurements. The peak values were captured with excellent accuracy. The estimated 

inter-story drifts for the top two floors are shown in Fig. 10. The estimated displacements are in 

good agreement with the measured response. The accuracy of the lower floor estimates deviate 

slightly. The velocity profile of the model is shown in Fig. 11. 

 

 

 

Fig. 5 Filtered acceleration of the first floor 
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Fig. 6 Filtered acceleration of the top floor 

 

 

Fig. 7 Frequency content of accelerations at all floors 

 

 

Fig. 8 Identified mode shapes 
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(a) 

 
(b) 

 
(c) 

Fig. 9 Estimated accelerations compared with measured. (a) Top floor accelerations,  (b) Second 

floor accelerations and (c) First floor accelerations 

 

 

4. Conclusions 
 

A method has been proposed for structural displacement and velocity estimation using only 

measured accelerations. When the structural modes are adequately excited, an internal model of 

the excitation can be established based only on limited modal information of the structure. Using 

such an internal model, an autonomous dynamic system can be obtained, the states of which can 

be accurately estimated using standard filtering/observer technique. A numerical example of an 

eight story, lump mass shear beam model of a building structure subject to seismic excitation has 

been presented to demonstrate the effectiveness of the proposed method. It has been shown that 

under a real seismic excitation, the structural displacement and velocity profiles can be 
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reconstructed accurately with only the information of the first structural mode. The accuracy of 

the estimation can be monitored using the acceleration measurements compared with the filtered 

ones from the algorithm. As accelerations, particularly at lower floors, contain significant amount 

of energy at higher modes, larger errors may exist in the filtered accelerations at lower levels if 

such higher modes are not included in the algorithm. While these errors do not indicate poor 

estimation accuracy, one may use a few more modes in real-world applications to ensure a 

relatively uniform performance in acceleration filtering. In such a case, the estimation accuracy 

can be reliably deducted from the errors in the filtered accelerations. The proposed method has 

also been validated on a set of experimental data collected from a scaled building model, excited 

by a scaled ground acceleration record from a real earthquake. There is good agreement between 

the estimated response and the actual measurements. It is noted that the proposed method does not 

require precise identification of all the modal parameters. Only partial knowledge of the structural 

modal parameters, such as that of the dominating modal frequencies and mode shapes, is needed. 

Discrepancies in the dominant frequencies of the structure are compensated by the spectrum of 

the internal model, while errors in structural modal damping and modes are treated as system 

noise and rejected largely in filtering, i.e., the Kalman filter in this study. As a result, the structural 

properties of the structure are no longer needed to get an estimate of its behavior under ambient 

excitations. This allows for a more practical approach while monitoring a structure in the field. 

By simply placing accelerometers, one can determine in real time whether the structure is 

exceeding its critical displacement and velocity limits. 

 

 

 
(a) 

 
(b) 

Fig. 10 Estimated inter story drift compared with measured. (a) Top floor inter story drifts and (b) Second 

floor inter story difts 
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Fig. 11 Estimated structural velocities 
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