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Abstract.  Node layout optimization of structural wireless systems is investigated as a means to prolong the 
network lifetime without, if possible, compromising information quality of the measurement data. The 
trade-off between these antagonistic objectives is studied within a multi-objective layout optimization 
framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end 
user can select the final layout. The information quality of the measurement data collected from a 
heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. 
The network lifetime or equivalently the network energy consumption is estimated through WSN simulation 
that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout 
optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed 
approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal 
Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the 
monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a 
discrete-event simulator with stochastic communication models. Finally, we compare the optimization 
results with those obtained in a previous work where the network energy consumption is obtained via 
deterministic communication models. 
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1. Introduction 
 

For the last decade, Wireless Sensor Networks (WSNs) have been successfully employed as an 

alternative monitoring technology in Structural Health Monitoring (SHM) systems (Pakzad et al. 

2008, Rice et al. 2011). In contrast to the conventional wired systems, WSNs offer numerous 

advantages such as flexible installation, scalable deployment, and unobtrusive communication at a 

lower cost for both short- and long-term deployments (Feltrin et al. 2010). However, the limited 

energy resource (batteries) of the wireless sensor nodes imposes severe restrictions on the network 

performance factors, particularly on the monitoring period. Consequently, many research studies 
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have been devoted to improve the energy efficiency (or network lifetime) of WSNs using various 

approaches at different levels. At the node hardware level, low-power hardware components are 

integrated to satisfy stringent energy constraint of the WSN-based systems, whereas at the network 

level, energy-efficient communication protocols have been developed to prolong the network 

lifetime. Furthermore, smart monitoring applications conserve energy by employing sleeping, or 

event detection mechanisms. 

Recently, the network layout (sensor node locations) optimization has gained much attention 

from the research community as a strategy to prolong the network lifetime (Younis and Akkaya 

2008). The objective of this approach is to find physical locations of the sensor nodes on the 

monitored structure such that the network lifetime is extended due to the optimized 

communication scheme. The layout optimization approach is most effective when the energy 

consumption of communication is relatively higher than the energy consumption of other 

operations such as sensing and data processing. Indeed, in typical WSNs, the power consumption 

of a radio transceiver is significantly higher than the power consumption of other components such 

as sensors and microcontrollers. 

Besides influencing the energy consumption, the network layout directly affects the quality of 

the extracted information (information quality) from the measurement data, since the sensor node 

locations coincide with the measurement points. As the purpose of a monitoring system is to obtain 

high quality information, it is more effective to optimize the network layout along with the 

information quality.  

The combination of the information quality and the energy consumption aspects into one 

optimization problem has been investigated for generic (Krause et al. 2006) and 

application-specific (Jourdan and de Weck 2004) domains. These layout optimization methods are 

based on the assumption that the required information of interest is spread over the target area 

uniformly, or the measurement data is spatially correlated with the distance between their 

measurement locations. In SHM, however, the measured response of a structure is a function of a 

complex system involving a large number of structural elements and the complete integration of 

these elements to form the whole structure. Thus, there is no significant spatial correlation, and the 

desired information is not uniformly spread over the monitored area. 

Furthermore, reliable a priori knowledge of a civil structure can always be achieved using 

models. Therefore, it is more effective to predict the sensor placement quality using a structural 

model and optimize the locations before the deployment. In the literature, a number of sensor 

placement methods have been developed to maximize the information quality (Meo and Zumpano 

2005). However, these methods are developed for wired monitoring applications and therefore do 

not consider the constraints imposed by WSNs. 

To overcome the issues in wireless SHM systems, a layout optimization method has been 

developed (Li et al. 2010). In this approach, first, an optimal layout with respect to the information 

quality is obtained using the Effective Independence (EFI) method (Kammer 1990), a traditional 

optimal sensor placement method, and then the similar layouts with respect to the result of EFI are 

explored to find a better alternative in terms of energy consumption. Although the method 

combines the WSN and SHM multi-disciplinary aspects into a single layout optimization problem, 

the sensor locations and the wireless network are optimized separately in two phases. As a result, 

this approach ignores other energy-efficient layouts that still satisfy the application requirements. 

Instead, as an improved strategy, more layouts that are satisfactory must be investigated, and the 

optimal layout with respect to both information quality and network lifetime must be selected as 

the final deployment layout. 
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The WSN layout optimization is an NP-hard problem (Krause et al. 2006). Therefore, 

exhaustive search techniques are impractical to solve layout optimization problems. Moreover, the 

underlying problem structure or the gradient of the objective functions is unknown. Hence, the 

evolutionary algorithm is a practical approach to solve such problems. For instance, Genetic 

Algorithm (GA), a common evolutionary algorithm, has been successfully applied in a layout 

optimization problem(Jourdan and de Weck 2004). Although the optimization study provides 

important aspects of the GA application to the layout optimization, the over simplified WSN 

models, such as the ideal communication models, degrade the practicality of the proposed 

approach. 

In WSN layout optimization, realistic energy estimation is the most challenging and critical 

part due to the high complexity of WSNs. The energy estimation of WSN involves all significant 

energy-consuming components and their complex interactions and operations. Although it is 

possible to measure precisely the energy consumption of these components, the required radio 

transmission power and communication protocol behavior are non-trivial to predict due to the 

stochastic communication behavior. In the literature, there are studies that deterministically 

estimate the energy consumption with several simplifying assumptions (Fu et al. 2012, Jourdan 

and de Weck 2004, Li et al. 2010). On the contrary, a more realistic energy estimation approach is 

to use a discrete-event network simulator that can predict the behavior of the stochastic 

communication protocols with high precision (Shnayder et al. 2004). However, this fine-grained 

energy estimation is usually achieved with a high computational cost. When using an evolutionary 

algorithm, it is desirable that the energy estimations are sufficiently fast to analyze as many layouts 

as possible. 

The contribution of our work is two-fold. First, we design a multi-objective layout optimization 

framework, where the end user is able to determine the trade-off between energy consumption and 

information quality considering the application requirements. Second, a discrete-event simulation 

is proposed to estimate stochastically the energy consumption of a WSN in the layout optimization. 

A simulation case study is presented to evaluate the proposed approach with a layout optimization 

of a wireless SHM system comprised of multi-type sensors. Finally, we compare our WSN model 

with the model proposed in a previous work where the energy estimation employs deterministic 

communication models. The challenge of optimizing the layout of such a WSN is that the different 

types of sensor nodes affect both the network lifetime and the information quality of the 

monitoring system in different ways. 

 

 

2. Multi-objective layout optimization framework 
 

An overview of the proposed multi-objective layout optimization framework is depicted in 

Fig. 1. Before the optimization process, structural and WSN models are developed based on the 

priori knowledge such as the physical properties of the monitored structure and the surrounding 

environment. The optimization process starts with a GA exploring design space and evaluating the 

objective functions according to the developed models. Once the result is obtained as a set of 

Pareto-optimal solutions, the end user selects the final deployment from the result based on the 

application requirements and domain expertise. Finally, the WSN is deployed on the monitored 

structure according to the selected layout. 

In the following sections, we describe the problem formulation and the search method 

employing GA. 
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2.1 Layout optimization problem formulation 
 

The aim of WSN layout optimization is to select particular physical locations on the monitored 

structure such that the resulting WSN exhibits optimal performance. The sensor node locations are 

selected from a set of n discrete candidate locations C = {(x1, y1, z1), …, (xn, yn, zn)} defined in a 

3-dimensional Cartesian coordinate system. The candidate locations are fixed in advance by 

considering the installation restrictions of the sensor nodes on the monitored structure. In addition, 

the number of deployed sensor nodes is also fixed according to the application requirements. Then, 

the feasible design space X is the power set of C, containing all possible subsets with a cardinality 

of k, where k is the number of deployed sensor nodes. 

WSN layout optimization is formulated as a generic multi-objective problem that 

simultaneously optimizes antagonistic objectives. In multi-objective optimization, the objective 

functions conflict with each other, i.e., solving for one objective function degrades the other 

objectives. Consequently, multiple globally optimal solutions exist in such type of problems, and 

the problem should be formulated and solved differently from the single-objective optimization 

problems. 

Let J = {J1, J2, …, Jm} be a set of objective functions to be minimized. The optimization result 

minimizing J consists of a set of optimal solutions, the so-called Pareto-optimal solutions. Pareto 

optimality is a concept to describe the multiple optimal solutions of a multi-objective optimization 

problem. A feasible design vector u is said to dominate (or preferred to) another design vector v 

(u  v), if and only if, i. Ji (u)  Ji (v) and j. Jj (u) < Jj (v). A solution is Pareto-optimal if it is not 

dominated by any other solution in the design space (Konak et al. 2006), i.e., it is impossible to 

improve an objective of Pareto-optimal solution without degrading any other objectives. Formally, 

a set of Pareto-optimal network layouts X
*
from the design space X can be defined as 

   xXxXxX  :                            (1) 

X
*
 may consist of any number of Pareto-optimal layouts in addition to the utopia points 

{u  X : i. x  X. Ji (u)  Ji (x)}, which is the optimum for a single objective function ignoring 

the other objectives. 

 

2.2 GA for network layout optimization problem 
 

An analytical solution for X
*
 is difficult to obtain due to the non-linearity, absence of convexity, 

and the complex dynamics of the objective functions. Since X is discrete and categorical (no 

 

Fig. 1 Multi-objective WSN layout optimization framework for SHM 
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intrinsic ordering to the sensor node absence and presence), it is difficult to apply classical 

optimization approaches based on the objective function gradient. A well-suited approach to 

overcome this issue is to employ derivative-free metaheuristic optimizers (Custódio et al. 2012, 

Zhang et al. 2008). Although metaheuristics do not guarantee that the global optimum solution is 

reliably found, studies show that common evolutionary metaheuristics, such as GAs, provide 

acceptable results (Guo et al. 2004, Jourdan and de Weck 2004). 

As any GA explores the design space by operating on the design variable, the design variable 

must be coded into a suitable structure called chromosome in the GA terms. Since the set of 

candidate locations C is predefined in advance by the domain expert, the binary coding is a simple 

and efficient way for coding the design variables for the layout optimization. Here, the design 

variable x is a bit vector indicating the sensor node presence on the candidate locations: 

x = (x1, x2, …, xn) where the bits 0 and 1 correspond to the absence and presence respectively. Note 

that the design variable is a categorical variable. 

A GA runs according to the steps below: 

Step 1. Randomly generate an initial population, P0, in order to start from an average point in 

general. 

Step 2. Execute the main loop until the stopping condition is reached. Such a condition can be 

the number of iterations or the running time that is exceeded.  

Step 2.1. A new population, Qi, is generated from the parent population, Pi, using the mutation 

and crossover genetic operators. 

Step 2.2. The individuals in Pi and Q are evaluated according to the objective functions in J. 

Step 2.3.The individuals are sorted according to their Pareto ranking, and the highest-ranking 

individuals are selected for the next parent population Pi+1. 

Step 3.The last iteration result Pi consists of Pareto-optimal solutions that can be used for the 

next step of the optimization framework.  

Despite no guarantee that the last Pi represents the true Pareto front X
*
, it is a reasonable 

approximation preserving the computational time and resource. The main issue in a GA design is 

to select appropriate values for the mutation rate, crossover probability, and the population size 

parameters. This parameter tuning process requires a number of preliminary runs to observe the 

convergence behavior for specific parameter values from which the best values can be selected for 

the final GA run. Another issue is to decide on the stopping condition of GA. Our strategy was to 

empirically estimate the GA iteration number from similar but smaller layout optimization studies 

(Jalsan et al. 2012). In these cases, the problem sizes are sufficiently small that the exhaustive 

search can be used to obtain the true Pareto front. Subsequently, GA is applied to the same 

problems to observe the iteration count until it provides an acceptable Pareto front. 

 

 

3. Objective functions 
 

In the following sections, the information quality and energy estimation formulations are 

discussed. The information quality is formulated as a ratio of the placement quality metrics of 

acceleration and strain sensors. To estimate the WSN energy consumption, a discrete-event 

simulator is used. Since a fast simulation execution is desired in the optimization search, we 

discuss a technique that speeds the simulation process. 
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3.1 Information quality formulation 
 

The formulation of information quality (or sensor placement quality) depends on the 

monitoring application type and requirements. Two types of monitoring applications are common 

in SHM: modal identification using vibration and fatigue assessment using strain. In this work, we 

focus on modal identification applications. With appropriate information quality metrics, the 

proposed optimization framework can be used in fatigue assessment or other types of monitoring 

applications as well. 

The studies mentioned in the introduction are largely limited to homogeneous networks with a 

single type of sensor. In order to allow an optimal use of resources, a network consists of 

multi-type sensors, specifically accelerometers and strain gauges, can be used for modal 

identification applications (Soman et al. 2014). In multi-type sensor networks, the orthogonality of 

the modal vectors cannot be exploited as in single-type sensor networks. Therefore, approaches 

that do not rely on the orthogonality of the modal vectors, namely Modal Clarity Index (MCI) 

(Natarajan et al. 2006) and Mode Shape Expansion (MSE) (Levine-West et al. 1996), are 

employed to quantify the sensor placement quality.  

The optimization problem studied by Soman et al. (2014) is solved using GA with a weighted 

sum of the MCI and MSE. The weighted sum approach requires that the weighting of the 

objectives must be set in advance to the optimization. When the end user does not have enough 

a priori knowledge about the problem, it is difficult to set the effective values of the weighting 

parameter. 

In this study, we assume that the end user has no particular preference on the measurement 

types; instead, the best combination of both measurement types is desired. Hence, the information 

quality objective function JI is defined as a ratio of the MCI and MSE metrics described bySoman 

et al. (2014) 

 
( )

argmin ( ), where ( ) .
( )

I I
x X

MSE x
J x J x

MCI x

  (2) 

The ratio of MCI and MSE represents a MSE error gain per unit MCI value, and minimizing 

Eq. (2) leads to the best combination of both measurement types. This formulation overcomes the 

issues arising in the weighted sum approach.  

 

3.2 Energy consumption formulation 
 

The energy consumption of a WSN determines its lifetime. Assuming that all sensor nodes 

operate to obtain satisfactory information, the lifetime of the first-depleted node determines the 

network lifetime. Therefore, we want to minimize the maximum energy consumption of the i-th 

sensor node 

 
  
argmin

xÎX

J
E
(x), where J

E
(x) = max({E

i
:"i.x

i
= 1}),   (3) 

where JE is the objective function and Ei is the total energy consumption of i-th sensor node. 

Considering that the sensor network exhibits same behavior over the operating period, Ei can be 

approximated by the energy consumption of one-round data collection process. 

In this work, the energy consumption is estimated using a discrete-event network simulator. In 

a discrete-event simulation, the whole WSN is simulated to estimate the energy consumption of 

individual nodes according to the monitoring application and communication protocols. The 

advantage of a discrete-event simulator is that the energy estimation can be performed with 
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real-life complex network protocols that are difficult to analyze with closed-form expressions. 

The simulation execution time of the discrete-event simulation is an important factor to obtain 

effective optimization results. In typical WSN simulators, the one-round execution time of a 

non-trivial WSN is in the order of seconds. Since the layout optimization algorithm needs to 

explore a large design space, the overall optimization performance degrades due to the limited 

optimization time. To improve the optimization performance, a fast estimation method of the 

energy consumption is presented in Section 3.2.1. Finally, the communication model of a 

multi-hop data collection network is described in Section 3.2.2. 

 

3.2.1 Fast energy consumption estimation approach 
Common sensor network simulators are relatively slow for a layout optimization due to the 

detailed simulation granularity (Egea-López et al. 2006). Such detailed simulations can be even 

unfeasible when the optimization design space is non-trivial. Therefore, the simulation granularity 

must be set to a proper level to balance the execution speed and estimation accuracy.  

In this study, a top-down approach is used to determine the simulation granularity: i) the 

simulated monitoring program is divided into a set of tasks that are further divided until the energy 

consumption of such a task is constant, which is referred to as a primitive task; ii) the energy 

consumption of a primitive task is calculated independently from the simulation process; iii) a 

discrete-event network simulator executes the monitoring application with a simulation granularity 

of primitive tasks for one-round data collection to count the number of executed primitive tasks; iv) 

the approximate one-round energy consumption of a sensor node E is defined by 

 0

1

,
n

i i

i

E n W E


    (4) 

where ni is the executed number of the i-th primitive task; Wi is its energy consumption calculated 

independently from the simulation; and E0 is the residual energy consumption due to other 

non-significant components on the node hardware circuit.  

By definition, a primitive task has a constant energy consumption (W given in Eq. (4)) that is 

obtained independently from the optimization process. Thus, a fine-grained energy profiling, such 

as low-level node hardware simulation, can be employed to calculate W. If a node has n number of 

energy-significant components, and a component has a fixed number of predefined power states, 

the energy consumption of a primitive task is given by 

 
, ,

1 1

,
imn

i j i j

i j

W P t
 

   (5) 

where Pi,j  is the power consumption of i-th component in its j-th power state, and ti,j is the time 

spent in the corresponding power state. Pi,j is measured from the target sensor node using current 

measurement tools, e.g., current shunt and an oscilloscope, whereas ti,j is obtained through an 

energy profiling of a wireless sensor node. 

 

3.2.2 Communication model 
A multi-hop data collection network is simulated, where each node is capable of measuring the 

monitored phenomena and transmitting the measurement data to the sink node S0 via the other 

sensor nodes in the network. Let Gx = (S, L) be a particular WSN topology induced by layout x, 

where N = {N0}  {Ci : i. xi = 1}is a set of nodes, and L = {RSSi,j : i.j} is a set of signal 

strength estimates between each pair of nodes. Here, RSSi,j denotes the signal strength from node Ni 

to node Nj. Given a data collection tree T = (N0, N \ N0, P) rooted at N0, where 
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P = {(i, j) : RSSi,j > t}, packets are relayed according to the route P and received at the sink 

nodeS0.Here, t is the minimum threshold of the received signal power. 

In wireless networks, single-hop reliable communication is handled by a Media Access Control 

(MAC) protocol. We consider a contention-based MAC protocol, particularly the Carrier-Sense 

Multiple Access (CSMA) protocol, which is the most common MAC protocol in WSNs. A typical 

CSMA protocol assesses the channel before a transmission, and transmits a packet if no ongoing 

transmission is detected. If busy channel is detected, CSMA retries assessing the channel. 

For simulating the CSMA protocol, accurate modeling of the signal propagation, channel and 

physical layer are crucial. The signal strength at the receiver can be calculated as RSS = Ptx – PL, 

ignoring the antenna loss and other constant effects. Here, PL is the expected path loss in dB, and 

Ptx is the transmitted signal power. The exact prediction of PL on a monitoring site is difficult due 

to fading effects, specifically multi-path due to reflection and shadowing due to obstruction. An 

approach is proposed byRappaport and Sandhu (1994) to model the signal loss at the receiver as a 

combination of the loss due to free-space propagation and the loss due to fading effects, given by 

 0 10

0

10 log ,
d

PL PL n X
d



 
   

 
 (6) 

where PL is the mean path-loss over d distance,PL0 is the free-space path loss for d0 reference 

distance, n is a path-loss exponent, and X is a zero-mean log-normally-distributed random 

variable with standard deviation  in dB. The model parameters, namely n, d0, and 2
, are 

experimentally defined for various environments and can be found in the literature (Sohrabi et al. 

1999). 

Typical WSNs operate on single wireless channel that is shared among the sensor nodes. Thus, 

a transmission can be interfered by other ongoing transmissions. Since the received signal is the 

sum of all ongoing signals, the decoding ability of the receiver depends on the power of the useful 

signal. A way to quantify the signal quality is Signal-to-Interference-plus-Noise Ratio (SINR). 

Here, we use the additive interference model that quantifies the SINR by 

 ,
RSS

SINR
I N




 (7) 

where I is the interference power (sum of interfering RSS), and N is the noise power (Iyer et al. 

2009). Since signal-decoding success solely depends on SINR, the radio physical layer is often 

modeled as a function of SINR. For a particular radio transceiver, each SINR value can be mapped 

experimentally to the Packet Reception Rate (PRR) value, which can be used to simulate the 

physical layer in the network simulator. 

 

 

4. Case study: layout optimization of bridge monitoring system 
 

The proposed methodology has been evaluated with a layout optimization of a specific SHM 

system. The SHM system is designed for a modal test application (Soman et al. 2014) that 

employs multi-type sensor measurements, specifically acceleration and strain measurements. The 

optimization goal is to obtain the Pareto-optimal network layouts X
*
 that simultaneously minimize 

the network energy consumption (JE) and maximize the information quality (JI) objectives. In the 

following sections, we present the monitoring application followed by the optimization setup and 

results. 
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4.1 Monitoring setup 
 

The monitored structure is a 2694 m long suspension bridge that has three spans 

(535/1624/535 m) and two pylons (254/254 m). The candidate sensor locations (453 for 

acceleration sensors and 452 for strain sensors) are located along the longitudinal direction of the 

bridge spans. We assume that the first eight bending modes are of interest, and therefore the 

number of deployed sensor nodes is fixed to 17. Fig. 2 displays the bending modes that were 

considered for evaluating the network layouts in Section 4.3. The mode shapes were computed 

using the model presented in (Soman et al. 2014). 

The wireless sensor nodes perform acceleration or strain measurements depending on the 

attached sensor. To effectively measure the vibration modes of interest, the sampling frequency 

and duration of both types of measurements were set to 64 Hz and two seconds respectively. Once 

the measurement is done, the data is transmitted to the sink node via multi-hop network. The sink 

node location is assumed to be fixed to one end of the bridge and plugged into unlimited energy 

source. This assumption is legitimate when the WSN has to transmit a high amount of data to a 

remote database using the Internet connection provided by a cellular network. 

 

 

 

(a) Bending modes 1 to 4 

 
(b) Bending modes 5 to 8 

Fig. 2 First eight bending mode shapes of the monitored bridge 

 

 

4.2 Optimization setup 
 

As discussed in Section 3.1, the ratio of MSE and MCI is used to formulate the objective 

function for the information quality (see Eq. (2)). A Finite Element (FE) model of the bridge 

developed by Soman et al. (2014)is used to evaluate JI of a particular network layout for the first 
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eight bending modes. 

For calculating the network energy consumption JE, Eq. (3) is adopted. First, a power model of 

the target sensor node is developed from the current measurements of the sensor node platform, 

including the radio transmission for different power levels (Tables 1 and 2, respectively), assuming 

that the supply voltage is 3 V during the operating period. Second, three main energy-consuming 

tasks on the sensor nodes are considered: i) measurement, ii) send, and iii) receive. The send task 

is further divided into three sub-tasks: i) channel assessment, ii) back-off, and iii) transmission. 

 

 
Table 1 Current measurement of the sensor node platform 

 Active (mA) Sleep (mA)  Active (mA) Sleep (mA) 

Microcontroller 5.1 0.002 Strain gauge 16 0 

Accelerometer 2.6 0 Radio transceiver
*
 9.2 0 

*Active mode of the radio transceiver represents the listen, receive, and channel assessment mode 

 

 

 
Table 2 Current measurement of the radio transmission for different power levels 

Signal power (dBm) 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 

Current (mA) 22 21.5 21 20.6 20.2 18.3 18.1 16.3 16.1 15.9 14.4 14.1 13.9 13.8 13.6 12.7 

 

 

The energy consumption of these tasks is considered constant and therefore calculated 

according to the power model and the sensor node specification. Finally, in order to estimate the 

energy consumption E of individual nodes, a discrete-event WSN simulator is used, namely 

TinyOS Simulator (TOSSIM) (Levis et al. 2003).The simulator executes the node software with a 

simulation granularity of the derived tasks. 

In the TOSSIM simulator, the routing tree is formed as the Shortest-Path Tree of which the 

logical distance between adjacent nodes is specified by the estimated signal strength. Considering 

the signal strength as the distance instead of the Euclidean distance is legitimate because the 

energy consumption does not depend directly on the Euclidean distance, but rather on the required 

signal strength. The CSMA MAC protocol, radio physical layer model, and the propagation model 

given by Eqs. (6) and (7) are integrated into the TOSSIM simulator. The radio propagation model 

is used with the parameter values n = 2.5, PL0 = -30 dB, and X = 3 dB (Sohrabi et al. 1999). The 

physical layer model uses a PRR-SINR curve analytically derived for the radio transceiver 

complying the IEEE 802.15.4 standard (Huang et al. 2011). 

The simulation process starts with the booting of all sensor nodes at a random time. Afterwards, 

the measurement starts on the sensor nodes, which is followed by the transmission of a packet 

containing the measurement data to its parent node. If a node receives a packet from its child 

nodes, the packet is forwarded to the parent node as well. Once all packets arrive at the sink node, 

the one-round simulation process stops, and the energy consumption of each sensor node is 

calculated. 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al. 2002) is employed due to 
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its applicability to multi-objective optimization problems. We set the NSGA-II parameters, the 

crossover probability of two individuals, the mutation probability of an individual, and the 

population size, to the commonly used values of 0.9, 0.05, and 16 respectively. 

 
4.3 Simulation results 
 

The GA evolution process is depicted in Figs. 3(a) and 3(b) for the individual objective 

functions JI and JE respectively. GA evolves to the next solutions by mutating and mating the 

current good solutions. The convergence of JI (Fig. 3(a)) replicates such behavior, a systematic 

evolution to the optimal solution. However, in case of JE, the evolution does not follow a specific 

pattern; instead, it merely resembles a random search. We believe that this is due to the high 

complexity of WSN energy estimation. For instance, moving one sensor node to another location 

can completely change the network topology and most importantly the packet routing, which 

strongly influences the energy consumption of a node. Moreover, the random input to the objective 

function evaluation can contribute to the poor JE convergence. 

The GA runs for 1000 generations exploring 16000 network layouts. The fitness values (the 

objective function values) of the layouts evaluated in all generations are shown in Fig. 4(a). The 

energy consumption varies by two orders of magnitude, indicating that the layout is indeed an 

important factor for the energy efficiency, and therefore for the network lifetime. 

The optimization produces 12 Pareto-optimal layouts, Fig. 4(b). Figs. 5(a)-5(c) show the most 

significant Pareto-optimal layouts as a deployment on the bridge plan. Layout x1, which maintains 

the best information quality, is comprised of 15 acceleration nodes and one strain node. If the 

energy consumption of 150.5 m J is within the given energy budget, x1is considered the optimal 

layout. In contrast, the most energy-efficient layout x12 has achieved half as much network lifetime 

as layout x1 with a balanced packet forwarding load and minimized packet retransmissions. 

Additionally, the layout x12 does not include a strain gauge due to its significantly higher energy 

consumption than that of an accelerometer. Finally, a balanced trade-off between the energy 

consumption and information quality can be achieved with layout x6, which favors a configuration 

that is similar to x12. 

 

 

 

  
(a) Overall exploration (b) Pareto front 

Fig. 3 Layout distribution over the objective function range 
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(a) JI – Information quality (b) JE – Energy consumption 

Fig. 4 GA convergence over the iterations 

 

 

 
(a) Pareto-optimal layout x1 

 
(b) Pareto-optimal layout x12 

 
(c) Pareto-optimal layout x6 

Fig. 5 Most significant layouts (the most and least energy-consuming nodes marked) 
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In order to evaluate the advantage of fine-grained discrete-event simulation, we compared the 

optimization results to those obtained by deterministic WSN models. The two energy estimation 

approaches produce different Pareto-optimal layouts, Figs. 5(b) and 6(c). In the layout produced 

by the deterministic WSN model, the energy consumption of the individual sensors is significantly 

lower than that of the discrete-event simulation. Additionally, the sensor nodes are gathered around 

the sink node. These are due to the absence of packet collisions and retransmissions in the 

deterministic energy model, which significantly reduces the energy estimation accuracy of real-life 

WSN systems. Furthermore, the sensor nodes located at different distances to the sink node have 

exactly the same amount of energy consumption because of the same discrete power level of radio 

transmission. Both layouts favor more acceleration nodes than strain nodes, possibly due to the 

higher energy consumption of strain sensors. 

In Figs. 6(a) and 6(b), the execution time is depicted as a function of the number of simulated 

sensor nodes. Both execution times represent the exponential or polynomial growth; however, the 

growth is faster in the discrete-event simulation case, whereas a relatively slower growth is 

observed in the deterministic model case. In addition, the execution time of discrete-event 

simulation is non-monotonic, which may indicate that the execution time depends on not only the 

number of sensor nodes, but also on the other factors such as the network topology and the number 

of packet retransmissions. 

 

 

 

  
(a) Execution time of discrete-event simulation (b) Execution time of the deterministic energy 

model 

 

(c) Most energy-efficient Pareto-optimal layout obtained with the deterministic energy estimation model 

Fig. 6 Comparison of energy estimation methods 
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5. Conclusions 
 

In this work, a layout optimization methodology for SHM systems is presented, particularly 

modal test applications employing multi-type sensors. A multi-objective layout optimization 

framework is proposed to obtain a set of Pareto-optimal solutions from which the end user selects 

the final deployment layout. The energy consumption is estimated using the discrete-event 

simulation to predict the behavior of the communication protocols with high precision. The 

simulation granularity is adopted to increase the execution running time. 

A case study has been conducted to evaluate the feasibility of the proposed methods. In the case 

study, a layout optimization of a real bridge monitoring is presented using multi-objective GA 

from which a set of Pareto-optimal solutions was obtained. A power model of a specific sensor 

node platform has been developed and used within the TOSSIM simulator to estimate node energy 

consumption. The optimization yields 12 Pareto-optimal solutions with different network lifetime 

and information quality values that can be used for deciding on the final deployment layout. 

The multi-objective layout optimization of wireless SHM systems is feasible with the 

application of GA and discrete-event simulation. The GA provides a satisfactory result given that 

the objective functions provide consistent ranking for the investigated layouts. However, a further 

analysis is required to evaluate the optimization performance such as the population diversity. 

Even though the discrete-event simulation notably increases computational complexity, it provides 

accurate energy consumption estimation since the realistic CSMA MAC protocol and radio 

physical layer are considered. As the discrete-event simulation incorporates random input, a single 

simulation result cannot reflect the average performance of a layout. Therefore, a Monte-Carlo 

method where a number of replications are simulated for the layout to obtain the empirical 

distribution function can be employed. 
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