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Abstract.  The static analysis of structures with arbitrary cross-section geometry and material lamination 
via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a 
variable order of expansion for the displacement field are developed on the basis of Carrera Unified 
Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular 
cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the 
finite element method (FEM) along the longitudinal direction for different configurations in excellent 
agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder 
is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is 
introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous 
and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight 
limitations of classical beam theories and the importance of higher-order terms in accurately detecting 
in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 
3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the 
analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant 
reduction in computational cost. 
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1. Introduction 
 

Recent numerical modeling advances in structural mechanics have provided in last decades key 

information on the biomechanics of arteries, from prediction of atherosclerotic plaque 

vulnerability (Cheng et al. 1993, Li et al. 2006) and aneurismal rupture (Rodríguez et al. 2008) to 

the effectiveness of stents (Capelli et al. 2009). In particular, a vulnerable plaque can be described 

as a large, soft lipid pool covered by a thin fibrous cap (Davies 1996). It is the rupture of this 

vulnerable plaque that ultimately leads to a break of the endothelium and the fibrous cap, exposure 

of the lipid pool and subsequent thrombosis and ischaemic sequelae (Li et al. 2006). 
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Atherosclerotic cardiovascular disease is one of the leading causes of death in western countries 

(Petersen et al. 2005). As a consequence, an accurate understanding of the mechanical behavior of 

plaques under various loading conditions is an essential contributor for developing more insight in 

the physiology and pathophysiology of the cardiovascular system and new procedures for 

preventing or reducing restenosis (Holzapfel et al. 2004). 

The advent of noninvasive high resolution imaging techniques such as intravascular ultrasound 

(IVUS) and magnetic resonance imaging (MRI) allows nowadays detailed morphological and 

structural characterization of arterial plaques to be performed in vivo (Yuan et al. 2002). Various 

experiments were also carried out to identify the material behavior of tissues constituting arterial 

plaques within the physiological loading domain (Holzapfel et al. 2004). 

Several structural analyses of arterial plaques have been developed by many researchers from 

two-dimensional (2D) to three-dimensional (3D) models by means of the finite element method 

(FEM). 2D studies have shown that arterial wall geometry is a crucial factor influencing stress in 

the arterial wall and that stress in turn influences plaque rupture (Cheng et al. 1993, Li et al. 2006, 

Loree et al. 1992). Huang et al. (2001) used histology-based two-dimensional models for arterial 

plaque and found that thin fibrous caps with large lipid pools are important determinants of 

increased plaque stress. Gao and Long (2008) developed a single patient-based model from 

histological sections and by varying the size and structure of an atherosclerotic lesion they 

investigated its effect on the stress distribution within the wall by using 10-node 3D tetra elements. 

Li et al. (2008) created 2D cross-sectional models, investigating maximum stress locations and 

magnitudes. Kock et al. (2008) created a 2D finite element fluid-structure interaction model to 

investigate axial stresses at the plaque cap. Tang et al. (2008) constructed a 2D/3D patient specific 

multi-component model from in vivo MRI. Most recently, Gao et al. (2008) further expanded the 

use of in vivo MRI to investigate the stress distributions within four arteries and also considered 

the reliability of manual segmentation from MRI (Gao et al. 2009) using 10-node 3D tetra 

elements. 

Typically, two-dimensional (2D) plate and shell or three-dimensional (3D) solid models are 

used to accurately model plaques and other biomechanical structures. Nonetheless, these 

approaches often reveal the disadvantage of a large number of degrees of freedom and hence a 

high computational cost. One main advantage of using instead one-dimensional (1D) models 

would be a reduced number of degrees of freedom (DOFs) and hence a lower computational cost 

compared with plate, shell and solid models (Bathe 1996). The 1D models used in early studies of 

slender structures were based on classical theories. Euler-Bernoulli theory (Euler 1744) neglected 

the transverse shear deformation completely. The first shear deformation theory of Timoshenko 

(Timoshenko 1921) assumed a constant shear strain across the cross-section. The growing use of 

advanced composite and sandwich materials in engineering has recently revealed that 1D theories 

have to be refined in order to predict the behavior of complex structures in an accurate way. 

However, the importance of refined 1D models is even more relevant in biomechanics in order to 

cope with arbitrary geometries and materials. 

Over the last century an extensive work was done to introduce one-dimensional models for the 

analysis of thin-walled slender structures instead of two-dimensional and three-dimensional 

formulations (Kapania and Raciti 1989). A higher-order FE model based on classical laminated 

theory presented higher-frequencies analysis capabilities for the vibration response of laminated 

tapered beams (Ganesan and Zabihollah 2007a, b). Kant and Gupta (1988) proposed a refined FE 

higher-order model with quadratic transverse shear strain that was applied to the free vibration 

analysis of angle-ply laminated, deep sandwich and composite beams (Marur and Kant 1996, 
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2007). Tong et al. (1995) offered an analytical solution for free and forced vibrations of stepped 

generally non-uniform Timoshenko beams. A higher-order shear deformation theory was used by 

Ramalingerswara Rao and Ganesan (1995) to evaluate the harmonic response of tapered composite 

wings. Marur and Kant (1996) extended their work to the transient dynamic analysis of symmetric 

and unsymmetric sandwich and composite structures (Marur and Kant 1997). Na and Librescu 

(2001) studied nonuniform anisotropic thin-walled beams incorporating adaptive capabilities 

through a beam model with transverse shear and warping inhibition which was formulated by 

Librescu and Na (1998). As a particular case of dynamic response, the third-order shear 

deformation theory used by Şimşek (2010) indicated the importance of higher-order terms in 

correctly predicting the dynamic behavior of functionally graded (FG) beams and thus in tailoring 

FG material properties. 

Recently, refined 1D theories such as those based on the 1D Carrera Unified Formulation (CUF) 

(Carrera et al. 2011) and variational asymptotic approach (VABS) (Yu et al. 2002) as well as the 

Generalized Beam Theory (GBT) (Silvestre and Camotim 2002) have presented remarkable 

advances in static, buckling, and free vibration analysis. In particular, CUF is a hierarchical 

formulation useful to obtain structural models of arbitrary order, including classical theories, by 

exploiting a systematic procedure. This formulation has been recently developed for the analysis 

of structures made of isotropic (Carrera et al. 2011, Carrera and Giunta 2010) and composite 

materials (Carrera and Petrolo 2012) via one-dimensional models. The advantages of using 

one-dimensional CUF models for the static, free vibration and forced dynamic analysis of beams 

with conventional cross-section geometries (square, rectangular, annular, etc.) were highlighted by 

Carrera and Giunta (2010), Carrera et al. (2012), and Carrera and Varello (2012). 

The case studied in this paper is the structural analysis of a clinic artery case retrieved from the 

biomechanical literature (Holzapfel et al. 2004, Balzani et al. 2012). This example represents a 

preliminary application of the 1D CUF model to the study of a biomechanical case with arbitrary 

cross-section and nonhomogeneous materials. In the work of Balzani et al. (2012) only a 

two-dimensional structural simulation of the cross-section under a time-dependent internal blood 

pressure is carried out in order to keep the computational effort relatively low. This simplified 

approach totally neglects the important effects due to the third out-of-plane dimension. In general, 

these effects are fundamental especially in a biomechanical case where the haematic flow field and 

the non-standard structural behavior of biological tissues need a complete three-dimensional 

description. Obviously, the introduction of the third direction would typically need the use of solid 

(3D) elements instead of 2D plate or shell FEs and, consequently, a much higher computational 

effort. In order to take into account the out-of-plane direction and analyze a complete solid 

structure, 1D CUF models are thus here proposed since they require a low computational cost 

though showing remarkable three-dimensional performance. 

 

 
2. Preliminaries 

 

A structure with longitudinal axial length L and cross-section is typically considered and 

studied as a beam. A cartesian coordinate system is defined with axes 𝑥 and 𝑧 parallel to the 

cross-section, whereas 𝑦 represents the longitudinal coordinate. The choice of the cross-section 

geometry is arbitrary as well as the material lamination, since they do not affect the following 

theoretical formulation. When the lamination of the material over the cross-section is 

nonhomogeneous, the cross-section can be subdivided into different subsections with their own 
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different laminations and arbitrary shapes. The sample case of three subsections is depicted in Fig. 

1. The number of subsections is referred as 𝑁𝑆  and the index 𝑘 is employed to refer to the 𝑘𝑡ℎ  

subsection Ω𝑘 . The cartesian components of the displacement vector 𝒖(𝑥, 𝑦, 𝑧) are 𝑢𝑥 , 𝑢𝑦 , 

and 𝑢𝑧. The stress 𝝈 and the strain 𝝐 components are grouped in vectors as follows 

 
𝝈𝑝 =   𝜎𝑧𝑧    𝜎𝑥𝑥   𝜎𝑧𝑥    

𝑇                        𝜺𝑝 =   𝜀𝑧𝑧     𝜀𝑥𝑥   𝜀𝑧𝑥    
𝑇 

𝝈𝑛 =   𝜎𝑧𝑦     𝜎𝑥𝑦   𝜎𝑦𝑦    
𝑇

                    𝜺𝑛 =   𝜀𝑧𝑦     𝜀𝑥𝑦   𝜀𝑦𝑦    
𝑇

 
(1) 

 

where superscript 𝑇 stands for the transposition operator. Subscripts 𝑝 and 𝑛 refer to quantities 

related to the beam cross-section and related to the out-of-plane direction, respectively. In the case 

of small displacements with respect to the length 𝐿, the linear relations between strain and 

displacement components hold and a compact vectorial notation can be adopted: 

 

𝜺𝑝 =  𝑫𝑝  𝒖 

 

𝜺𝑛 =  𝑫𝑛  𝒖 =  𝑫𝑛𝑝  𝒖 +  𝑫𝑛𝑦  𝒖 

(2) 

where 𝑫𝑝 , 𝑫𝑛 , 𝑫𝑛𝑝 , and 𝑫𝑛𝑦  are differential matrix operators defined in the work of Carrera and 

Varello (2012). The generalized Hooke's law for the 𝑘𝑡ℎ subsection of the nonhomogeneous 

cross-section is hence: 

 

𝝈𝑝
𝑘 =  𝑪𝑝𝑝

𝑘 𝜺𝑝 +   𝑪𝑝𝑛
𝑘 𝜺𝑛  

 

𝝈𝑛
𝑘 =  𝑪𝑛𝑝

𝑘 𝜺𝑝 +   𝑪𝑛𝑛
𝑘 𝜺𝑛  

(3) 

where 𝑪𝑝𝑝
𝑘 , 𝑪𝑝𝑛

𝑘 , 𝑪𝑛𝑝
𝑘 , and 𝑪𝑛𝑛

𝑘 are the matrices for the isotropic material which the 

𝑘𝑡ℎsubsection is made of: 

𝑪𝑝𝑝
𝑘 =  

𝐶11
𝑘 𝐶12

𝑘 0

𝐶12
𝑘 𝐶22

𝑘 0

0 0 𝐶44
𝑘

 ,        𝑪𝑝𝑛
𝑘 = 𝑪𝑛𝑝

𝑘 𝑇
=  

0 0 𝐶13
𝑘

0 0 𝐶23
𝑘

0 0 0

 ,        𝑪𝑛𝑛
𝑘 =  

𝐶55
𝑘 0 0

0 𝐶66
𝑘 0

0 0 𝐶33
𝑘

      (4) 

 

 

 

Fig. 1 Example of an arbitrary nonhomogeneous cross-section with three subsections (𝑁𝑆 = 3) 
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Through this approach, also the study of homogeneous structures (no subsections) is trivial and 

more details can be found in the work of Carrera and Varello (2012). For the sake of brevity, the 

dependence of the coefficients 𝐶𝑖𝑗
𝑘  on Young's modulus, Poisson's ratio, and shear modulus is not 

reported here, but can be found in Jones (1999). In this paper isotropic materials for the 

nonhomogeneous structure are considered, but an extension of the following theoretical 

framework to orthotropic materials in analyzing laminated structures can be found in Carrera and 

Petrolo (2012). 

 

 

3. Variable kinematic 1D models 
 

According to the framework of Carrera Unified Formulation (CUF) (Carrera et al. 2011), the 

displacement field is assumed to be an expansion of a certain class of functions 𝐹𝜏 , which depend 

on the cross-section coordinates 𝑥 and 𝑧: 

 𝒖 𝑥, 𝑦, 𝑧 =  𝐹𝜏 𝑥, 𝑧 𝒖𝜏 𝑦                𝜏 = 1, 2,… , 𝑁𝑢 = (𝑁 + 1)(𝑁 + 2)/2             (5) 

The compact expression is based on Einstein's notation: repeated subscript 𝜏  indicates 

summation. Eq. (5) represents the general formulation of a one-dimensional (1D) theory, where the 

three-dimensional displacement field is axiomatically expressed in terms of general unknowns 

𝒖𝜏depending on the longitudinal coordinate 𝑦. Multivariate Taylor's polynomials of the 𝑥 and 𝑧 

variables are employed here as cross-section functions 𝐹𝜏  and 𝑁 is defined as the expansion order, 

which is a free parameter of the formulation. Most displacement-based 1D theories can be 

formulated on the basis of the generic kinematic field in Eq. (5). For instance, when 𝑁 = 2, the 

second-order axiomatic displacement field is given by: 

 

𝑢𝑥  =  𝑢𝑥1  + 𝑢𝑥2 𝑥 +  𝑢𝑥3 𝑧 +  𝑢𝑥4 𝑥2  + 𝑢𝑥5 𝑥𝑧 +  𝑢𝑥6 𝑧2 

𝑢𝑦  =  𝑢𝑦1  +  𝑢𝑦2 𝑥 + 𝑢𝑦3 𝑧 + 𝑢𝑦4 𝑥2  + 𝑢𝑦5 𝑥𝑧 +  𝑢𝑦6 𝑧2 

𝑢𝑧  =  𝑢𝑧1  + 𝑢𝑧2 𝑥 +  𝑢𝑧3 𝑧 +  𝑢𝑧4 𝑥2  +  𝑢𝑧5 𝑥𝑧 +  𝑢𝑧6 𝑧2 

(6) 

Classical beam models such as Euler-Bernoulli's (EBBM) (Euler 1744) and Timoshenko's 

(TBM) (Timoshenko 1921) are easily derived from the first-order approximation model. 

Timoshenko beam model (TBM) can be obtained by setting terms  𝑢𝑖𝑗 ∶ 𝑖 = 𝑥, 𝑧;  𝑗 = 2, 3  equal 

to zero. An infinite rigidity in the transverse shear is also adopted for EBBM by penalizing 𝜀𝑦𝑧  

and 𝜀𝑥𝑦 via a high penalty value (Carrera and Varello 2012) on each of the 𝑁𝑆  subsection material 

coefficients 𝐶55
𝑘  and 𝐶66

𝑘 ,  𝑘 = 1,… , 𝑁𝑆 . Higher-order models provide an accurate description of 

the shear mechanics, the cross-section deformation, Poisson's effect along the spatial directions 

and the torsional mechanics in more detail than classical models do. Traditional kinematic 

assumptions of EBBM neglect them all, since this theory was formulated to describe the bending 

mechanics. TBM takes into account constant shear stress and strain components. According to the 

technique described by Carrera and Giunta (2010), opportunely reduced material stiffness 

coefficients are here adopted to correct Poisson's locking effect for classical theories and 

first-order models. 
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4. Finite element formulation 
 

Following standard FEM, the unknown variables in the element domain are expressed in terms 

of their values corresponding to the element nodes (Carrera et al. 2011). For the sake of 

completeness, some details about the formulation of CUF finite elements are here retrieved from 

previous works (Carrera et al. 2012, Carrera and Varello 2012) and extended to the static analysis 

of nonhomogeneous structures. By introducing the shape functions 𝑁𝑖 and the nodal displacement 

vector 𝒒, the displacement field becomes: 

 𝒖 𝑥, 𝑦, 𝑧 =  𝐹𝜏 𝑥, 𝑧  𝑁𝑖 𝑦 𝒒𝜏𝑖                  𝑖 = 1, 2, … , 𝑁𝑁  (7) 

where: 

 𝒒𝜏𝑖 =  𝑞𝑢𝑥 𝜏𝑖
      𝑞𝑢𝑦 𝜏𝑖

     𝑞𝑢𝑧 𝜏𝑖
 
𝑇
 (8) 

contains the degrees of freedom of the 𝜏𝑡ℎexpansion term corresponding to the 𝑖𝑡ℎelement node. 

1D elements with 𝑁𝑁  number of nodes equal to 2, 3 and 4 are formulated and named B2, B3, and 

B4, respectively. The results reported in the present work involve only B4 elements. Third-order 

Lagrange polynomials are used as shape functions (Bathe 1996). For the sake of brevity, more 

details are not reported here, but can be found in the work of Carrera et al. (2010). 

As far as the number of DOFs is concerned, for instance 𝑁 = 2 model leads to 6 unknowns 

for each displacement component 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧  and then 18 DOFs per node, whereas the fifth-order 

model (𝑁 = 5) involves 21 unknowns per displacement component and 63 DOFs per node. The 

1D CUF model can be easily extended to mixed theories. However, this work presents a 

displacement-based formulation. The variational statement is therefore the Principle of Virtual 

Displacements: 

 δ𝐿𝑖𝑛𝑡  =   𝛿𝜺𝑛
𝑇𝝈𝑛 + 𝛿𝜺𝑝

𝑇𝝈𝑝  𝑑𝑉 =
𝑉

 δ𝐿𝑒𝑥𝑡  (9) 

where 𝐿𝑖𝑛𝑡  is the internal strain energy and 𝐿𝑒𝑥𝑡  is the work of external loadings. δ stands for the 

virtual variation. Substituting Eq. (7) into Eq. (2) and using Eq. (3), the expression of the internal 

strain energy (Eq. (9)) can be rewritten in terms of virtual nodal displacements as follows: 

 δ𝐿𝑖𝑛𝑡 = 𝛿𝒒𝜏𝑖
𝑇   𝑲𝑖𝑗𝜏𝑠  𝒒𝑠𝑗  (10) 

The 3 × 3 fundamental nucleus of the structural stiffness matrix presented in Eq. (10) can be 

shown to have the following explicit equation: 

 

𝑲𝑖𝑗𝜏𝑠 = 𝐸𝑖𝑗 ⊲  𝑫𝑛𝑝
𝑇  𝐹𝜏𝑰  𝑪𝑛𝑝  𝑫𝑝  𝐹𝑠𝑰 + 𝑪𝑛𝑛  𝑫𝑛𝑝  𝐹𝑠𝑰   + 

 𝑫𝑝
𝑇𝐹𝜏𝑰  𝑪𝑝𝑝  𝑫𝑝𝐹𝑠𝑰 + 𝑪𝑝𝑛  𝑫𝑛𝑝𝐹𝑠𝑰  ⊳Ω + 

𝐸𝑖𝑗 ,𝑦
⊲   𝑫𝑛𝑝

𝑇 𝐹𝜏𝑰  𝑪𝑛𝑛 +   𝑫𝑝
𝑇𝐹𝜏𝑰  𝑪𝑝𝑛  𝐹𝑠 ⊳Ω 𝑰Ωy  + 

𝐸𝑖,𝑦 𝑗 𝑰Ωy
𝑇 ⊲ 𝐹𝜏 𝑪𝑛𝑝  𝑫𝑝𝐹𝑠𝑰  +  𝑪𝑛𝑛  𝑫𝑛𝑝𝐹𝑠𝑰  ⊳Ω+ 

𝐸𝑖,𝑦 𝑗 ,𝑦
𝑰Ωy
𝑇 ⊲ 𝐹𝜏𝑪𝑛𝑛𝐹𝑠 ⊳Ω 𝑰Ωy  

(11) 

where: 
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 𝑰Ωy =  
0 0 1
1 0 0
0 1 0

          ⊲  . . .  ⊳Ω =  . . .
Ω

 𝑑Ω =    . . .
Ω𝑘

 𝑑Ω𝑘

𝑁𝑆

𝑘

 (12) 

 

  𝐸𝑖𝑗 ,  𝐸𝑖𝑗 ,𝑦
,  𝐸𝑖,𝑦 𝑗 ,  𝐸𝑖,𝑦 𝑗 ,𝑦

 =   𝑁𝑖𝑁𝑗 ,  𝑁𝑖𝑁𝑗 ,𝑦
,  𝑁𝑖,𝑦

𝑁𝑗 ,  𝑁𝑖,𝑦
𝑁𝑗 ,𝑦

 𝑑𝑦
𝑙

 (13) 

In Eq. (11) 𝑰 is the identity matrix. The integration over Ω can be performed numerically over 

an arbitrary cross-section and is indicated by the symbol ⊲  . . .  ⊳Ω. For nonhomogeneous sections, 

the integral over Ω includes the contributions corresponding to each subsection as expressed in 

Eq. (12), where  Ω𝑘  is the 𝑘𝑡ℎ subsection. This method is consistent with the equivalent 

single-layer approach widely used for layered structures, where a homogenization of the material 

properties is conducted by summing the contributions of each layer in the stiffness matrix. For the 

sake of completeness, let the cross-section depicted in Fig. 1 with three subsections (𝑁𝑆 = 3) to be 

considered. In this particular case, the last integral term of Eq. (11) is computed via three 

contributions as follows: 

 ⊲ 𝐹𝜏𝑪𝑛𝑛𝐹𝑠 ⊳Ω =  𝐹𝜏𝑪𝑛𝑛
1 𝐹𝑠𝑑Ω1

Ω1

 +  𝐹𝜏𝑪𝑛𝑛
2 𝐹𝑠𝑑Ω2

Ω2

 +  𝐹𝜏𝑪𝑛𝑛
3 𝐹𝑠𝑑Ω3

Ω3

 (14) 

Where Ω1, Ω2, and Ω3are subsections 1, 2 and 3. Shear locking is corrected through selective 

integration via a typical reduced Gauss integration (Bathe 1996) of the terms in Eq. (13) related to 

the transverse shear. Full integration is adopted for the other terms. The virtual work of external 

loadings variationally consistent with the above method is here derived for the case of a generic 

concentrated load 𝑷 =  𝑃𝑢𝑥
  𝑃𝑢𝑦

 𝑃𝑢𝑧
 
𝑇

acting on the load application point  𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃 . By using 

Eq. (7), δ𝐿𝑒𝑥𝑡  becomes: 

 δ𝐿𝑒𝑥𝑡  =  𝛿𝒖𝑇𝑷 = 𝛿𝒒𝜏𝑖
𝑇 𝐹𝜏𝑁𝑖𝑷 =  𝛿𝒒𝜏𝑖

𝑇 𝑭𝜏𝑖  (15) 

where 𝐹𝜏  is evaluated in  𝑥𝑃 , 𝑧𝑃  and 𝑁𝑖  is calculated in 𝑦𝑃 . Any other loading condition can be 

similarly treated. From Eqs. (9), (10), and (15) the system of equilibrium equations can be derived 

through a finite element assembly procedure: 

 𝐊𝐪 = 𝐅 (16) 

where 𝐊 is the structural stiffness matrix and 𝐅 is the vector of equivalent nodal forces. It should 

be noted that no assumptions on the expansion order have been made so far. Therefore, it is 

possible to obtain variable kinematic 1D models without changing the formal expression of the 

nuclei components. Thanks to the CUF, the present model is invariant with respect to the order of 

the displacement field expansion and the type of finite elements used in the longitudinal axial 

discretization. 

 

 

5. Numerical results and discussion 
 

The ultimate aim of the present paper is the assessment of one-dimensional CUF models in the 

linear static analysis of structures with arbitrary cross-sections made of nonhomogeneous materials, 

as mentioned above. A three-layer circular cylindrical shell is considered as first test case with a 

665



 

 

 

 

 

 

Alberto Varello and Erasmo Carrera 

laminated conventional (annular) cross-section. Then, an atherosclerotic plaque is introduced as a 

typical structure with arbitrary cross-section geometry and studied for both the homogeneous and 

nonhomogeneous material cases through the present 1D higher-order models by comparison with 

3D finite element solutions. 

 

5.1 Annular cross-section made of nonhomogeneous material 
 

A thin-walled cylinder with a nonhomogeneous cross-section is now introduced. As depicted in 

Fig. 2, the cross-section is composed of three thin circular layers denoted as layers 1, 2 and 3. The 

layers of the cylinder are made of three different isotropic materials, whose properties are 

summarized in Table 1. The thickness 𝑡 = 1 mm is constant for each layer and is small enough to 

consider overall the cylinder as a thin-walled structure, since the external and internal diameters 

are equal to 𝑑𝑒 = 100 mm and 𝑑𝑖 = 94 mm, respectively. The length 𝐿 of the cylinder is equal 

to 500 mm. A clamped boundary condition is taken into account for the edges of the cylinder at 

𝑦 = 0 and 𝑦 = 𝐿. 

In order to easily present the deformation of the cylinder, a cylindrical coordinate system 

𝑟 − 𝜃 − 𝑦 is nowintroduced. The plane 𝑟 − 𝜃 is the cross-section plane. The 𝑟 coordinate goes 

along the radial direction, whereas the 𝜃 coordinate is an angle measured counterclockwise from 

the axis−𝑧, see Fig. 2. For the sake of simplicity, the origin of the cylindrical system overlaps the 

cross-section center of mass as well as the origin of the cartesian coordinate system. 

A uniform pressure 𝑝 = 14.8 MPa is applied on the internal edge of the cylinder as shown in 

Fig. 2. In particular, the loading is applied along all the length of the structure and only on the 

upper side of layer 1 (𝑟 = 𝑑𝑖/2, 𝜋/2 ≤ 𝜃 ≤ 3𝜋/2). This sample case is retrieved from the work 

of Varello and Carrera (2012). Although the structure here analyzed is axisymmetric, its deformed 

configuration is not expected to be axisymmetric due to this particular loading distribution. 

Nevertheless, the solution will be symmetrical with respect to both 𝑥 = 0 and 𝑦 = 𝐿/2 planes. 

Given the solution's symmetry with respect to 𝑦 = 𝐿/2 plane, the maximum deformation is placed 

on the section lying on this plane. This section is denoted as mid-span section from this point 

forward. 

 

 

 

Fig. 2 Pressure applied to the cylinder with three different layers 
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Table 1 Material properties of the cylinder layers 

Property Layer 1 Layer 2 Layer 3 

𝐸 [GPa] 69 30 15 

𝜈 0.33 0.33 0.33 

 

 

One-dimensional theories are usually employed to study slender beams because of their 

limiting kinematic hypotheses. Instead, the cylinder here considered is relatively short since the 

span-to-external diameter ratio 𝐿/𝑑𝑒  is equal to 5. Nevertheless, the static response of the structure 

is computed through the 1D CUF model with a variable expansion order up to 𝑁 = 8 and a 1D 

mesh of 10 B4 finite elements by solving Eq. (16). A solid finite element analysis is also carried 

out via the commercial code NASTRAN and taken as reference in order to assess the present 

refined 1D model for a nonhomogeneous shell case. Due to the small layer thickness and the 

well-known aspect ratio restrictions typical of solid finite elements, the model in NASTRAN 

consists of 64800 HEX8 elements and 86880 nodes. The number of degrees of freedom (DOFs) is 

thus equal to 257760. 

The deformation of the cylinder, which is expressed in terms of the magnitude of displacement 

vector 𝒖 of the external edge of the annular mid-span section (𝑟 = 𝑑𝑒/2, 𝑦 = 𝐿/2) along the 

angular 𝜃 coordinate, is depicted in Fig. 3 for different 1D models and compared with the solid 

NASTRAN solution. The solution confirms to be symmetrical with respect to the 𝑥 = 0 plane 

regardless the model used. In addition to a bending behavior, the particular distribution of pressure 

loadings is supposed to deform the beam cross-section. This type of deformation cannot be 

consistent with the kinematic hypotheses of undeformed cross-section shape which classical beam 

models are based on. Classical models are therefore not expected to yield accurate results and this 

statement is confirmed by the constant displacement trend computed by Euler-Bernoulli beam 

theory. By enriching the displacement field, the first-order model provides a linear displacement 

distribution along the 𝑥 and 𝑧 directions, but it results not to be realistic. Taking the solid FE 

model as reference, the results obtained by the present formulation improve as the expansion 

order 𝑁 increases. In particular, for an eighth-order model the deformation of the mid-span section 

is accurately described and its agreement with the 3D solution is remarkable. Even though it is not 

reported here, it is noteworthy that for an expansion order higher than 8 the analysis would provide 

the same results as those obtained by 𝑁 = 8, thus confirming a convergent trend on 𝑁. However, 

for 𝑁 < 8 the displacement is remarkably overestimated at point 𝜃 = 𝜋 and dangerously 

underestimated at points where the displacement is actually maximum. 

The maximum displacement on the external edge of the mid-span section is reported in Table 2. 

The error in computing the maximum deflection is significant for classical and low-order models, 

except for 𝑁 = 1. Nonetheless, the solution for the first-order model is completely unrealistic, see 

Fig. 3. In general, 𝑢𝑚𝑎𝑥  increases as 𝑁 increases approaching the 3D value. Also the position of 

the maximum displacement along the external edge in terms of 𝜃 noticeably changes for different 

models. 𝜃𝑢𝑚𝑎𝑥
 for 1D models with an expansion order higher than 4 coincides with the reference 

solution, whereas lower-order models show their low accuracy even in the position evaluation. 

This aspect has not to be underestimated because it turns out to be fundamental for a failure 

investigation, for instance. In conclusion, the eighth-order model proves its capability in detecting 

exactly the three-dimensional deformation of the layered thin-walled cylinder with a sizeable 

reduction in computational cost in terms of DOFs (4185 vs. 257760). 
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Table 2 Maximum displacement [mm] on the external edge of the mid-span section 

Model 𝑢𝑚𝑎𝑥  % Difference 𝜃𝑢𝑚𝑎𝑥
 DOFs 

EBBM 5.639 -60.663 - 93 

𝑁 = 1 14.272 -0.439 180 279 

𝑁 = 2 8.780 -38.751 93 558 

𝑁 = 3 12.011 -16.212 0 930 

𝑁 = 4 12.625 -11.929 120 1395 

𝑁 = 5 12.685 -11.510 117 1953 

𝑁 = 6 13.281 -7.353 117 2604 

𝑁 = 7 13.300 -7.220 117 3348 

𝑁 = 8 14.236 -0.691 117 4185 

Solid FEM 14.335 - 117 257760 

 

5.2 Arterial cross-section with a pronounced atherosclerotic plaque 
 

As previously indicated, the present hierarchical formulation is able to cope with arbitrary 

cross-section geometries as well as arbitrary material laminations. Once the capabilities of 

higher-order 1D CUF models have been assessed for the previous nonhomogeneous cylinder case 

with a classic annular section, a human external iliac artery with a pronounced atherosclerotic 

plaque is now considered as an important application in biomechanics of an arbitrary cross-section 

structure. In particular, a portion of the atherosclerotic artery with a severe stenoses (lumen 

reduction) presented by Holzapfel et al. (2004) is introduced. 

The components of the artery are identified by hrMRI (high resolution magnetic resonance 

imaging) and histological analysis (Holzapfel et al. 2004), see Figs. 4(a) and 4(b). These 

approaches consider eight different tissue types: fibrous cap (FC), i.e., the fibrotic part at the 

luminal border, calcification (C), lipid pool (LP), adventitia (A), non-diseased media (M), 

non-diseased intima, fibrotic intima at the medial border and diseased fibrotic media. As done by 

Balzani et al. (2012), for the following numerical investigations the non-diseased intima is 

neglected. Furthermore, the fibrotic intima at the medial border and the diseased fibrotic media are 

treated as one component, the fibrotic media (FM). According to these assumptions, in the work of 

Balzani et al. (2012) the same cross-section including the above mentioned components is 

discretized with 6048 triangular elements with quadratic Ansatz functions, as depicted in Fig. 4(c). 

The section width and height of the cross-section are approximately the same and equal to 20 

mm. For the sake of simplicity, the arterial cross-section is extruded along the out-of-plane 

direction (𝑦 axis) for 40 mm. A clamped boundary condition is taken into account for the edges at 

𝑦 = 0 and 𝑦 = 𝐿. These constraints provide a particularly strict condition for the assessment of the 

present 1D CUF model, as they provide a remarkable variation along the longitudinal direction of 

the cross-section deformation which is even more tricky to be accurately detected by a 1D reduced 

order model. The structure is here modeled with a one-dimensional mesh of 10 B4 finite elements 

(31 nodes), as shown in Fig. 5(c), and analyzed through the CUF formulation. Furthermore, a FE 

model is built in NASTRAN and discretized with a mesh of 244320 HEX8 solid elements (260172 

nodes) with a total number of DOFs equal to 761244. Figs. 5(a) and 5(b) show the solid model of 

the atherosclerotic plaque, obtained by extruding the same cross-section shape as that used by 

Balzani et al. (2012) (see Fig. 4(c)). The linear static analysis is performed with a uniform pressure 

load of 180 mmHg (≅ 24 kPa) applied on the surface bounding the lumen, i.e., the inside space of 

the artery, as illustrated in Fig. 5(a). This pressure level may be seen as an upper bound for the 

hypertensive internal blood pressure. 
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Fig. 3 Displacement of the external edge of the mid-span section. Layered cylinder case 

 

 

   
(a) Segmented macroscopic 

view (Holzapfel et al. 

2004) 

(b) High resolution magnetic 

resonance image (hrMRI) 

(Holzapfel et al. 2004) 

(c) Two-dimensional model used 

by (Balzani et al. 2012) 

Fig. 4 Arterial cross-section with a pronounced atherosclerotic plaque in a human external iliac artery 

 

  

 

(a) Solid model: cross-section 

under uniform internal 

blood pressure 

(b) Solid model: three-dimensional 

view 

(c) Mesh of the one- 

dimensional model 

Fig. 5 Simplified solid model of the arterial atherosclerotic plaque discretized with 244320 HEX8 solid 

finite elements in NASTRAN (a), (b). Mesh of the one-dimensional CUF model discretized with 

10 B4 finite elements(c). Homogeneous material case 
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Fig. 6 Displacement  𝒖   [mm] over the mid-span cross-section of the atherosclerotic plaque for different 

one-dimensional models compared to the solid FE solution. Homogeneous material case 
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Higher-order CUF models with a variable expansion order 𝑁 are employed and the results are 

compared to the solid FEM solution. Both the cases of homogeneous and nonhomogeneous 

materials are considered and afterwards described. The clinic application above described is a very 

preliminary application of the 1D CUF model to the study of a biomechanical case. For the sake of 

completeness, it is emphasized that the following results provide a numerical example of limited 

validity with respect to quantitative results. However, this section has the goal to show that the 

proposed one-dimensional CUF models provide an excellent agreement with a three-dimensional 

solution in the context of finite element simulations, with a remarkable reduction in computational 

cost (in terms of DOFs). 

 
5.2.1 Homogeneous material case 
A simplified test case is here addressed by assuming the cross-section made of homogeneous 

isotropic material. Averaging grossly the Young's moduli of the six arterial tissue types reported by 

Balzani et al. (2012), the Young's modulus considered is 𝐸 = 2.4 MPa and Poisson's ratio 

is 𝜈 = 0.33. Fig. 6 shows the deformation of the mid-span arterial cross-section (𝑦 = 𝐿/2), where 

the maximum displacement is located, for different one-dimensional models (up to 𝑁 = 20) 

compared to the solid FE solution. In particular, the colored map of each subfigure represents the 

magnitude of the displacement vector 𝒖 computed over the section by each one-dimensional 

theory. On the contrary, the two colored curves show the internal and external plaque contours in 

the deformed configuration computed through the solid FE method, which is taken as reference. 

The remaining blue lines are the edges of the six arterial issues. 

As expected, classical beam theories (EBBM and TBM) are completely not able to study this 

case due to their kinematic hypotheses about the cross-section deformation. In fact, they show a 

uniform quasi-null displacement over the cross-section. The first-order model (𝑁 = 1) enables the 

in-plane deformation of the cross-section but the result is again completely wrong with respect to 

the 3D solution. In this case, even low-order theories are not accurate enough to catch an 

acceptable solution compared to the 3D simulation. According to the reference solid solution, the 

reason is that the plaque deforms locally around the lumen, i.e., the load application region, 

whereas a quasi-null displacement is observed far from the lumen. This particular deformation 

requires a high expansion order for the present formulation to reach an acceptable accuracy. In 

particular, the tissues most interested by the internal blood pressure are the media and the part of 

adventitia in contact with the media. Though surrounding part of the lumen and being thus directly 

loaded by the pressure, the fibrous cap is barely deformed and its maximum displacement is placed 

close to the media. As will be seen in the nonhomogeneous material case, this fact is directly 

related to the assumption of homogeneous material for all the tissue types. In fact, when a 

homogeneous material is taken into account the volume occupied by the lipid pool and 

calcification remarkably stiffens the side of the section on the right of the lumen with respect to the 

left one. 

Despite its one-dimensional approach, the proposed higher-order model is able to accurately 

detect the in-plane deformation of this kind of cross-section with arbitrary geometry. In fact, the 

proposed 1D FEs provide a convergent solution by approaching the NASTRAN 3D results as the 

refinement of the expansion increases, until a well agreement is achieved for 𝑁 = 20. As can be 

seen in Fig. 6, the region subjected to the maximum displacement lies on the central part of media 

(M) and adventitia (A). Thus, the maximum displacements on media and adventitia computed by 

the different models are reported in Table 3 and indicated as 𝑢𝑚𝑎𝑥
𝑀 and 𝑢𝑚𝑎𝑥

𝐴 , respectively. For the 

sake of completeness, also the maximum displacement on fibrous cap 𝑢𝑚𝑎𝑥
𝐹𝐶 is reported, even 
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though it is much lower as previously mentioned. As expected, classical beam theories are 

completely ineffective in studying this kind of structure, giving a constant quasi-null displacement 

over the section. For all the displacements summarized, the increase of the expansion order 

𝑁 improves the results approaching the reference data with a convergent trend. In fact, the 

introduction of higher-order terms enables the structure to deform in a more realistic way and 

results to be fundamental in order to catch properly the artery deformation. It is important to note 

the remarkably lower computational effort required by 1D CUF model. In fact, the 𝑁 = 20 

model provides an acceptable maximum error but with a number of degrees of freedom equal to 

21483, about 35 times slower than the DOFs required by the solid FE model. 

Numerical results are presented also for strain and stress quantities in Table 4. In particular, the 

maximum value of the transverse normal strain  𝜀𝑧𝑧
𝑚𝑎𝑥 , the minimum (negative) value of the 

longitudinal normal strain 𝜀𝑦𝑦
𝑚𝑖𝑛 , and the maximum value of the transverse normal stress 𝜎𝑧𝑧

𝑚𝑎𝑥  

(all lying in the adventitia) are reported for different one-dimensional models in comparison with 

the three-dimensional solution. The reason of this choice is to compare the 1D higher-order 

formulation with classical beam theories, which neglect 𝜀𝑧𝑧   and 𝜎𝑧𝑧  by definition. For the arterial 

case studied, higher-order models highlight that these transverse quantities are not negligible in 

agreement with 3D results. Moreover, although EBBM and TBM take into account the 

longitudinal normal strain 𝜀𝑦𝑦 , Table 4 shows that even this quantity is completely wrongly 

computed by classical beam theories, which in this case are able to catch only a uniform quasi-null 

displacement, see Fig. 6 and Table 3. In general, the convergent trend obtained for displacements 

as 𝑁 increases occurs also for strain and stress computation, approaching the reference 3D results 

with a remarkably lower number of DOFs. 
 

 

 

Table 3 Maximum displacements [mm] on media, adventitia and fibrous cap of the atherosclerotic plaque 

over the mid-span cross-section for different models. Homogeneous material case 

Model 𝑢𝑚𝑎𝑥
𝑀  (% Error) 𝑢𝑚𝑎𝑥

𝐴  (% Error) 𝑢𝑚𝑎𝑥
𝐹𝐶  (% Error) DOFs 

EBBM 0.0000 (-100.00%) 0.0000 (-100.00%) 0.0000 (-100.00%) 93 

TBM 0.0001 (-99.99%) 0.0001 (-99.99%) 0.0001 (-99.95%) 155 

𝑁 = 1 0.4212 (-58.88%) 0.4632 (-53.96%) 0.3656 (+93.44%) 279 

𝑁 = 4 0.0468 (-95.43%) 0.0471 (-95.32%) 0.0263 (-86.08%) 1395 

𝑁 = 7 0.1631 (-84.08%) 0.1609 (-84.01%) 0.0402 (-78.73%) 3348 

𝑁 = 9 0.2774 (-72.92%) 0.2674 (-73.42%) 0.0569 (-69.89%) 5115 

𝑁 = 10 0.3999 (-60.96%) 0.3839 (-61.84%) 0.0770 (-59.26%) 6138 

𝑁 = 12 0.5696 (-44.39%) 0.5469 (-45.64%) 0.0912 (-51.75%) 8463 

𝑁 = 14 0.7628 (-25.53%) 0.7468 (-25.77%) 0.1322 (-30.05%) 11160 

𝑁 = 17 0.9001 (-12.13%) 0.8884 (-11.70%) 0.1581 (-16.35%) 15903 

𝑁 = 19 0.9441 (-7.83%) 0.9320 (-7.36%) 0.1661 (-12.12%) 19530 

𝑁 = 20 0.9645 (-5.84%) 0.9537 (-5.21%) 0.1714 (-9.31%) 21483 

NASTRAN 

solid 
1.0243 - 1.0061 - 0.1890 - 761244 
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Table 4 Some maximum and minimum strain and stress [MPa] values on the atherosclerotic plaque over the 

mid-span cross-section for different models. Homogeneous material case 

Model 102𝜀𝑧𝑧
𝑚𝑎𝑥  (% Error) 102𝜀𝑦𝑦

𝑚𝑖𝑛  (% Error) 𝜎𝑧𝑧
𝑚𝑎𝑥  (% Error) DOFs 

EBBM 0.0000 (-100.00%) -0.0004 (-99.86%) 0.00 (-100.00%) 93 

TBM 0.0000 (-100.00 %) -0.0004 (-99.86%) 0.00 (-100.00 %) 155 

𝑁 = 1 3.7706 (-52.97%) -0.0004 (-99.86 %) 0.00 (-100.00 %) 279 

𝑁 = 4 0.6539 (-91.84%) -0.0421 (-85.39%) 31.40 (-85.68%) 1395 

𝑁 = 7 1.4728 (-81.63%) -0.0505 (-82.47%) 59.53 (-72.86%) 3348 

𝑁 = 9 2.3757 (-70.37%) -0.0736 (-74.45%) 110.60 (-49.57%) 5115 

𝑁 = 10 3.3719 (-57.94%) -0.1045 (-63.73%) 112.31 (-48.79%) 6138 

𝑁 = 12 4.7096 (-41.25%) -0.1453 (-49.57%) 134.44 (-38.70%) 8463 

𝑁 = 14 6.2810 (-21.65%) -0.1997 (-30.68%) 184.00 (-16.10%) 11160 

𝑁 = 17 7.1202 (-11.18%) -0.2382 (-17.32%) 200.49 (-8.58%) 15903 

𝑁 = 19 7.5109 (-6.31%) -0.2514 (-12.74%) 194.66 (-11.24%) 19530 

𝑁 = 20 7.7067 (-3.87%) -0.2590 (-10.10%) 204.56 (-6.73%) 21483 

NASTRAN 

solid 
8.0169 - -0.2881 - 219.31 - 761244 

 

 

In addition to the evaluation of the maximum value of 𝜎𝑧𝑧 , a comparison of this transverse 

normal stress between the model 𝑁 = 20 and the 3D reference solution is presented in Fig. 7. The 

figure clearly shows that the 𝜎𝑧𝑧
𝑚𝑎𝑥 value is obtained in the adventitia of the mid-span 

atherosclerotic plaque and that the internal blood pressure causes a stress field locally influenced 

on the left of the lumen. It is important to remark the accuracy achieved by the 1D twentieth-order 

model in detecting the stress field all over the cross-section, reaching with a much lower 

computational cost (21438 vs. 761244 DOFs) an approximation comparable to the 

three-dimensional model. It is noteworthy that higher-order terms are necessary for the proper 

evaluation of all transverse normal and shear strains and stresses, which is a feature not present in 

standard beam models. A more accurate comparison of strain and stress terms over the structure 

will be carried out in the following nonhomogeneous material case. 

 

 
       

 

 

                           𝑁 = 20     NASTRAN solid  

Fig. 7 Comparison of stress 𝜎𝑧𝑧  [MPa] over the mid-span cross-section of the atherosclerotic plaque 

between the present 𝑁 = 20model (21483 DOFs) and NASTRAN solid model (761244 DOFs). 

Homogeneous material case 
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(a) Cross-section under uniform internal blood 

pressure 
(b) Three-dimensional view 

Fig. 8 Simplified solid model of the arterial atherosclerotic plaque discretized with 64800 solid HEX8 

finite elements in NASTRAN. Nonhomogeneous material case 

 

5.2.2 Nonhomogeneous material case 
The assessment procedure on the simplified case of homogeneous atherosclerotic plaque is 

completed. The same static analysis is carried out now considering a different material for each of 

the six tissues constituting the atherosclerotic plaque. As illustrated in Fig. 8, the mesh of the solid 

finite element model is the same as that employed for the analysis of the homogeneous material 

case (in Fig. 5). In Balzani et al. (2012) the calcification is assumed to be isotropic and the lipid 

pool is a neo-Hookean material. 

The adventitia, media, fibrous cap, fibrotic media are instead modeled as hyperelastic materials 

defined via several hyperelastic and damage parameters. For the sake of simplicity, all the six 

tissues of Fig. 8(a) are here assumed to be made of linear isotropic materials. The isotropic 

material properties of each tissue are introduced extrapolating grossly the Young's moduli used by 

Balzani et al. (2012) and reported in Table 5 with the corresponding acronyms. It is important to 

note that this approximation is not very relevant for the purpose of this work, i.e., the assessment 

of the 1D formulation with respect to a solid FE model in presence of significant 

nonhomogeneities. In fact, it is emphasized that the following results provide a numerical example 

of limited validity with respect to quantitative results. 

Also for the nonhomogeneous case, the displacements computed by 1D CUF models over the 

mid-span cross-section are depicted in Fig. 9 and compared with a commercial solid finite element 

solution (NASTRAN). The equivalent results of the homogeneous case have been presented in Fig. 

6. Comparing Figs. 6 and 9, it points out that now the deformation of the cross-section, under the 

same internal blood pressure, is higher than the deformation obtained in the homogeneous case. In 

fact, when each tissue is modeled through a different material, the large volume occupied by the 

lipid pool is very deformable and “relaxes” the in-plane cross-section rigidity. The lipid pool 

deforms significantly as well as the fibrous cap, unlike for the homogeneous case. As a 

consequence, also the adventitia and the media present displacement values higher than the 

previous case. Nonetheless, the deformation of the calcification and fibrotic media remains 

quasi-null due to their high material stiffness. In general, this larger in-plane cross-section 

deformation requires an expansion order higher than the homogeneous case to obtain a good 

agreement with the solid finite element solution, which is achieved with 𝑁 = 22. It is noteworthy 

that even for this very complex structure made of nonhomogeneous material with arbitrary 

cross-section geometry, the more the expansion order 𝑁 is, the more the results obtained through 

the 1D formulation are accurate, approaching the NASTRAN results. 
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Fig. 9 Displacement  𝒖  [mm] over the mid-span cross-section of the atherosclerotic plaque for different 

one-dimensional models compared to the solid FE solution. Nonhomogeneous material case 
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Table 5 Material properties of the tissue types used for the analysis of the arterial atherosclerotic plaque 

Nonhomogeneous material case 

Tissue type 𝐸 [MPa] 𝜈 

Calcification (C) 12 0.33 

Lipid pool (LP) 0.1 0.33 

Fibrous cap (FC) 2.4 0.33 

Media (M) 1 0.33 

Fibrotic media (FM) 5 0.33 

Adventitia (A) 2.5 0.33 

 

 
Table 6 Maximum displacements [mm] on media, adventitia and fibrous cap of the atherosclerotic plaque 

over the mid-span cross-section for different models. Nonhomogeneous material case 

Model 𝑢𝑚𝑎𝑥
𝑀  (% Error) 𝑢𝑚𝑎𝑥

𝐴  (% Error) 𝑢𝑚𝑎𝑥
𝐹𝐶  (% Error) DOFs 

EBBM 0.0000 (-100.00 %) 0.0000 (-100.00 %) 0.0000 (-100.00 %) 93 

TBM 0.0001 (-99.99 %) 0.0001 (-99.99 %) 0.0001 (-99.95 %) 155 

𝑁 = 1 0.4200 (-74.31 %) 0.4590 (-71.68 %) 0.3552 (-65.65 %) 279 

𝑁 = 4 0.0713 (-95.64 %) 0.0716 (-95.58 %) 0.0515 (-95.02 %) 1395 

𝑁 = 7 0.2333 (-85.73 %) 0.2329 (-85.63 %) 0.2075 (-79.94 %) 3348 

𝑁 = 9 0.4556 (-72.13 %) 0.4435 (-72.64 %) 0.2922 (-71.75 %) 5115 

𝑁 = 10 0.6430 (-60.67 %) 0.6176 (-61.89 %) 0.3496 (-66.20 %) 6138 

𝑁 = 12 0.8491 (-48.06 %) 0.8102 (-50.01 %) 0.4740 (-54.17 %) 8463 

𝑁 = 14 1.0911 (-33.26 %) 1.0611 (-34.53 %) 0.6125 (-40.77 %) 11160 

𝑁 = 17 1.3249 (-18.96 %) 1.3122 (-19.04 %) 0.7826 (-24.33 %) 15903 

𝑁 = 20 1.4650 (-10.39 %) 1.4575 (-10.08 %) 0.8649 (-16.37 %) 21483 

𝑁 = 21 1.4855 (-9.14 %) 1.4804 (-8.66 %) 0.8714 (-15.74 %) 23529 

𝑁 = 22 1.5047 (-7.96 %) 1.4928 (-7.90 %) 0.9194 (-11.10 %) 25668 

NASTRAN 

solid 
1.6349 - 1.6208 - 1.0342 - 761244 

 

The same maximum results over the cross-section as those presented in Table 3 are now 

reported for the nonhomogeneous case in Table 6. The analysis involves models with 𝑁 up to 22 

and shows the larger deformation due to the nonhomogeneous material. Whereas about a 60 

percent increase is observed in 𝑢𝑚𝑎𝑥
𝑀  and 𝑢𝑚𝑎𝑥

𝐴 , the maximum displacement in the fibrous cap 

𝑢𝑚𝑎𝑥
𝐹𝐶  shows about a 450 percent increase,mainly due to the butter-like behavior of the lipid pool. 

The considerations about the inefficiency of classical beam theories made for the homogeneous 

case are still valid here. On the contrary, the 1D CUF FEs provide again a convergent solution by 

approaching the NASTRAN 3D results and a good agreement is obtained for 𝑁 = 22. Although 

the error computed with respect to the 3D solution is about 8-11%, it is important to note that this 

error is on the overall maximum displacement values and that this approximation is achieved via 

about a 96% reduction in degrees of freedom (see Table 6). 

Despite its one-dimensional approach, the proposed higher-order model is able to accurately 

detect the in-plane deformation of the cross-section even for this kind of cross-section made of 

nonhomogeneous material. A thorough assessment on strain and stress fields over the mid-span 

cross-section is now carried out. The two transverse normal strains 𝜀𝑥𝑥  and 𝜀𝑧𝑧  and the shear 

stress 𝜀𝑥𝑧  are evaluated for the six arterial tissues and the relative maps are depicted on the 

deformed configuration in Figs. 10, 11, and 12, respectively. These strain quantities are related to 
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the beam cross-section, i.e., the components of vector 𝜺𝑝 , and are neglected by classical beam 

theories. Considering the mid-span cross-section, the maximum values of these strains are 

achieved in the adventitia and media, whereas the minimum ones occur in the lipid pool and media. 

This fact clearly highlights the complexity of the case studied, given the markedly material 

nonhomogeneity. In fact, as can be seen also in Fig. 9, unlike the homogeneous material case, the 

whole section is affected by the internal blood pressure. Nonetheless, for all the strains mentioned, 

an expansion order equal to 21 provides a solution in excellent agreement with the reference 3D 

results. In general, a further increase of 𝑁 might be required to achieve an even better accuracy, 

consistent with the considerations previously mentioned about the expansion enrichment. 

 
Table 7 Some maximum and minimum strain and stress [MPa] values on the atherosclerotic plaque over the 

mid-span cross-section for different models. Nonhomogeneous material case 

Model 102𝜀𝑧𝑧
𝑚𝑎𝑥  (% Error) 102𝜀𝑧𝑧

𝑚𝑖𝑛  (% Error) 𝜎𝑧𝑧
𝑚𝑎𝑥  (% Error) DOFs 

EBBM 0.000 (-100.00 %) 0.000 (-100.00 %) 0.00 (-100.00 %) 93 

TBM 0.000 (-100.00 %) 0.000 (-100.00 %) 0.00 (-100.00 %) 155 

𝑁 = 1 3.025 (-72.31 %) 3.025 (-129.94 %) 0.00 (-100.00 %) 279 

𝑁 = 4 1.050 (-90.39 %) -0.468 (-95.37 %) 42.04 (-86.51 %) 1395 

𝑁 = 7 2.097 (-80.80 %) -0.472 (-95.33 %) 74.70 (-76.03 %) 3348 

𝑁 = 9 3.629 (-66.78 %) -1.259 (-87.54 %) 162.98 (-47.70 %) 5115 

𝑁 = 10 4.953 (-54.66 %) -2.567 (-74.59 %) 171.68 (-44.91 %) 6138 

𝑁 = 12 6.206 (-43.19 %) -4.889 (-51.61 %) 179.47 (-42.41 %) 8463 

𝑁 = 14 8.032 (-26.47 %) -6.587 (-35.54 %) 228.49 (-26.68 %) 11160 

𝑁 = 17 9.287 (-14.99 %) -8.173 (-19.11 %) 274.38 (-11.95 %) 15903 

𝑁 = 20 10.301 (-5.70 %) -9.014 (-10.79 %) 287.15 (-7.86 %) 21483 

𝑁 = 21 10.569 (-3.25 %) -9.114 (-9.80 %) 311.23 (-0.13 %) 23529 

NASTRAN 

solid 
10.924 - -10.104 - 311.63 - 761244 

 

 

 
       

 

 

                           𝑁 = 20         NASTRAN solid        

Fig. 10 Comparison of strain 𝜀𝑥𝑥  over the mid-span cross-section of the atherosclerotic plaque between 

the present 𝑁 = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs). 

Nonhomogeneous material case 
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                                      𝑁 = 21   NASTRAN solid  

Fig. 11 Comparison of strain 𝜀𝑧𝑧  over the mid-span cross-section of the atherosclerotic plaque between 

the present 𝑁 = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs). 

Nonhomogeneousmaterialcase 

 

 
 

   
 𝑁 = 21  NASTRAN solid  
Fig. 12 Comparison of strain 𝜀𝑥𝑧  over the mid-span cross-section of the atherosclerotic plaque between the 

present 𝑁 = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs). 

Nonhomogeneous material case 

 

 

Numerical results for the transverse normal strain 𝜀𝑧𝑧  are summarized in Table 7. In particular, 

the maximum value, lying in the adventitia, and the minimum value, lying in the lipid pool, are 

reported for different one-dimensional models up to 𝑁 = 21and compared to the reference 

solution. As can be seen, classical and low-order models provide a unrealistic behavior of the 

arterial plaque. In fact, EBBM and TBM neglect 𝜀𝑧𝑧 , whereas 𝑁 = 1 takes into account an 

inaccurate non-null constant strain distribution. On the contrary, the proposed 1D FEs provide a 

convergent solution by approaching the NASTRAN 3D results as the refinement of the expansion 

increases. According to Fig. 11, a good agreement is achieved via a remarkably lower number of 

DOFs. The maximum value of the corresponding transverse normal stress 𝜎𝑧𝑧
𝑚𝑎𝑥  computed 

through an increasing expansion order is also presented in Table 7. The accuracy obtained 

demonstrates once again the three-dimensional capabilities of the CUF higher-order approach in 

computing the displacement and strain fields, since all the different strain terms are involved in the 

computation of stresses via the constitutive equations (Eq. (3)). These capabilities are nonstandard 
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for a one-dimensional formulation. 

Figs. 13 and 14 compare the longitudinal stress 𝜎𝑦𝑦  and the transverse normal stress 𝜎𝑧𝑧  

computed by the CUF model to the three-dimensional solution, respectively. The stress maps are 

depicted on the deformed configuration of the media, which is particularly stressed and subjected 

to both traction and compression. Even though the EBBM and TBM results are not reported here, 

it can be demonstrated that these classical beam theories are again completely ineffective for this 

case even in evaluating the axial stress, which is not neglected by kinematic hypotheses. Obviously, 

Figs. 13 and 14 show that the introduction of higher-order terms is fundamental not only for the 

accurate evaluation of the deformation, but also of the stress field. In fact, the higher the theory 

order employed the more the results approach the solid FEM solution with a convergent trend. 

The present model allows the computation of strain and stress fields in every point of the 

structure analyzed. The shear stress 𝜎𝑥𝑧  distribution over the cross-section is investigated with an 

expansion order equal to 21 and compared with the solid FE solution, bearing in mind that EBBM 

and TBM completely neglect it. The prediction of the shear stress 𝜎𝑥𝑧  is slightly underestimated 

by the 𝑁 = 21 model as can be noted by the different scales used in Fig. 15, but its distribution is 

well-detected all over the cross-section with an acceptable approximation with respect to the 3D 

solution, which involves a number of DOFs about 32 times higher. 

In conclusion, the one-dimensional CUF formulation provides not only a correct evaluation of 

the displacements of the structure, but also a proper computation of the strain and stress fields. The 

atherosclerotic plaque studied here represents a very severe test case for the present 

one-dimensional model, from different points of view. First of all, this configuration is very short, 

given that the ratio between the length 𝐿 and the characteristic cross-section dimension is about 

equal to 2. Furthermore, the cross-section has an arbitrary nonconventional geometrical layout. 

The material employed is markedly nonhomogeneous and, finally, the internal pressure load is 

applied on a nonplanar surface again of arbitrary geometry. 

 

 

 

       

     𝑁 = 4        𝑁 = 9       𝑁 = 14      𝑁 = 17     𝑁 = 20 
NASTRAN 

solid 
 

Fig. 13 Comparison of stress 𝜎𝑦𝑦  [MPa] over the media of the atherosclerotic plaque (mid-span 

cross-section) for different models. Nonhomogeneous material case 
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     𝑁 = 4     𝑁 = 9       𝑁 = 14     𝑁 = 17     𝑁 = 20 
NASTRAN 

solid 
 

Fig. 14 Comparison of stress 𝜎𝑧𝑧  [MPa] over the media of the atherosclerotic plaque (mid-span 

cross-section) for different models. Nonhomogeneous material case 

 

 
       

 

 

                           𝑁 = 21     NASTRAN solid  

Fig. 15 Comparison of stress 𝜎𝑥𝑧  [MPa] over the mid-span cross-section of the atherosclerotic plaque 

between the present 𝑁 = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs). 

Nonhomogeneous material case 

 

 

6. Conclusions 
 

The static analysis of structures with arbitrary cross-section geometries and materials through 

refined one-dimensional models is addressed in this paper. Variable kinematic 1D finite elements 

were formulated on the basis of Carrera Unified Formulation (CUF) and assessed by comparison 

with solid finite element solutions. As far as the use of 1D higher-order models is concerned, the 

following main conclusions can be drawn: 

1. the introduction of higher-order terms in the displacement field is important even for the 

analysis of structures with conventional cross-sections. Higher-order models are required 

especially for structures with significant material nonhomogeneity and arbitrary geometry; 
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2. classical beam theories were completely ineffective in studying the kind of structures 

considered. Although Euler-Bernoulli's and Timoshenko's are basically bending beam theories, 

they were not able to accurately detect even the axial strain and stress, which are not 

neglected by the kinematic hypotheses of undeformed cross-section shape they are based on; 

3. a convergent trend of displacement, strain and stress values approaching the 

three-dimensional results as the expansion order increases is achieved. This proves that the 

proposed 1D hierarchical model does not introduce additional numerical problems in the 

analysis of arbitrary nonhomogeneous structures with respect to classical beam theories. 

As far as the present hierarchical one-dimensional approach is concerned, the results point out 

that: 

a. CUF is the ideal tool to easily compare different higher-order theories. The expansion order of 

the model, i.e., its accuracy, is a free parameter of the analysis by exploiting a systematic 

procedure that leads to governing FE matrices whose form does not depend on the order of 

expansion used for the displacement unknowns over the cross-section; 

b. in-plane cross-section deformations are well-described by the present 1D CUF models. The 

enrichment of the displacement field enables the structure to deform in a more realistic way 

and a very good agreement with the three-dimensional solution was achieved; 

c. despite its one-dimensional approach, the proposed higher-order formulation proved its 

accuracy in the analysis of even short structures made of homogeneous or nonhomogeneous 

materials with classical or arbitrary cross-section geometries. Local effects and complete 

three-dimensional displacement, strain and stress fields were computed in well agreement 

with those obtained by three-dimensional models; 

d. the refined 1D CUF model shows a remarkable reduction in computational cost in terms of 

DOFs with respect to the solid FE model. 

Comparing results with three-dimensional solutions, the present 1D finite element formulation 

proved to be a valid alternative to shell and solid methods, which necessarily require a higher 

computational cost, and a promising numerical tool for the analysis of arbitrary nonhomogeneous 

structures in biomechanical applications. In this respect, further work should be done in order to 

take into account material anisotropy and nonlinearity typical of biological soft tissues. 
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