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Abstract.  This paper presents a linear computational homogenization framework to evaluate the effective 
(or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric 
structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as 
reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based 
on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the 
overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) 
analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures 
with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under 
short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational 
framework may be useful for the optimal design of active structure multi-functional composites which can 
be used for multi-functional applications such as structural health monitoring, power harvest, vibration 
sensing and control, damping, and shape control through anisotropic actuation. 
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1. Introduction 
 

The desire to reduce the weight and complexity of systems has led to the development of new 

materials and structures that simultaneously perform (a) multiple structural functions, (b) 

combined non-structural and structural functions, or (c) both. An example of type (b) would be a 

load-bearing structure that has the capability of providing its own noise and vibration control, 

self-repair, thermal insulation, and energy harvesting/storage. Recent research on mechanics of 

multi-functional composite materials and structures is reviewed in Gibson (2010). For the example 

of type (b), Lin and Sodano developed piezoelectric structural fibers consisting of conductive 

structural fibers such as carbon coated with a piezoelectric interphase layer and an outer electrode 

layer, see Lin and Sodano (2008, 2009). Finite element (FE) models of such piezoelectric 

structural fiber/polymer matrix composites showed that the electromechanical coupling 
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coefficients available from such composites can be as high as 65-70% of the corresponding 

coupling coefficient for the fiber itself, and that piezoelectric structural fiber (PSF) composites are 

suitable for vibration control, damping, energy harvesting or structural health monitoring. 

However, the difficulty in applying or collecting the electric fields along the piezoelectric shell of 

the transversely poled PSFs makes it unsuitable for autonomous sensing or actuating applications. 

To address this issue, very recently, it has been reported in Dai and Ng (2012) a PSF composite 

made by uni-directionally deploying the longitudinally poled PSFs into a polymer matrix. The 

proposed PSFs are fabricated by coating a piezo-ceramic onto a carbon/silicon carbide (SiC) core 

fiber to improve the mechanical properties of the monolithic piezoelectric material. The PSF 

reported in Dai and Ng (2012) was longitudinally poled along the fiber direction. Such active 

composite laminate with deployed PSFs is presented in Fig. 3. Micromechanics (Mori–Tanaka 

approach and the extended Rule of Mixture) analysis and three-dimension (3D) FE modeling were 

conducted in Dai and Ng (2012) to investigate the overall electromechanical properties of such 

PSF composites. 

The advance of multi-functional composite materials requires the development of the coupled 

models to predict the interactions between mechanical responses and electrical fields. The 

increased complexity of composite structure at the micro-level greatly complicates the analysis of 

the structural behavior, which is necessary for the rational design of these structures. If one is 

interested in capturing the effect of the micro-scale response (fluctuation) on the system response, 

direct analysis of such structures using standard numerical methods (e.g., FE method), although 

possible, is computationally intensive and unrealistic. Alternatively, one can look for effective 

property estimation of these multi-functional materials and then use them judiciously to have an 

estimate of the average response. This approach is computationally many orders of magnitude 

more efficient in capturing the average response and the micro-scale response (fluctuation) can be 

obtained from the macro-scale response with minimal computational effort. 

Over the last 50 years, numerous micromechanics models have been proposed to predict the 

effective properties of composite materials from known constituents informations (e.g., properties, 

topology and morphology textures). Roughly, the micromechanics models for composite materials 

can be classified in two categories: (a) mean field (MF)-based models and (b) local field 

(LF)-based models. The MF-based methods, see Qu and Cherkaoui (2006), are based on Eshelby’s 

solutions, see Eshelby (1957), and are capable of predicting the entire behavior of composite 

materials under arbitrary loads. They can provide reasonable estimates for a material’s bulk elastic 

response but typically fail to provide good estimates for the local responses and the 

history-dependent responses of the material. They use averaged representations of the local fields 

within the constituents of the composite, i.e., they do not account for the local fluctuations of the 

field quantities. In order to correctly predict the local and bulk response characteristics in the 

elastic and inelastic domains, LF-based micromechanical theories consider both the average fields 

within phases as well as the fluctuating fields within the phases. There are a number of such 

theories currently available, see Yu et al. (2007) and references cited therein. 

The purpose of this work is two-fold. First, the effective electromechanical properties of the 

PSF composites reported in Dai and Ng (2012) will be investigated using the Variational 

Asymptotic Method for Unit Cell Homogenization (VAMUCH), a recently developed 

micromechanics modeling framework, see Yu and Tang (2007), Tang and Yu (2008), Koutsawa et 

al. (2012). This method is based on the variational asymptotic method (VAM), see Berdichevsky 

(1977, 1979), which is applicable to any solid mechanics problem admitting a variational structure 

where one or more relatively small parameters are involved. The “smallness” of these parameters 
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is exploited by using an asymptotic expansion structure of the functional of the problem (and not 

of the unknown field quantities as done in the traditional asymptotic methods). The VAM 

combines the advantages of both variational (most notably FE structure) and asymptotic methods. 

With the VAMUCH, a two-dimension (2D) unit cell (UC) is sufficient to predict the full 3D 

anisotropic overall electromechanical properties of a PSF composite instead of 3D UCs used in 

Dai and Ng (2012). 

Second, the effective electromechanical properties of the PSF composite will be used in a FE 

model to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) 

for structures with integrated PSF composites elements. The EMCC measures the energy 

conversion efficiency of a piezo-ceramic material. The EMCC is an important measure of the 

effectiveness of the electromechanical coupling and, thus, of the effectiveness of a piezoelectric 

material for a given application. The EMCC has been used as an important parameter for several 

applications, such as passive shunt damping, active control authority improvement, piezoelectric 

power harvesting and damage detection. Some authors have used the EMCC as index or objective 

function in the design, positioning and sizing optimization of piezoelectric transducers, see 

Trindade and Benjeddou (2009) and references cited therein. 

The paper is organized as follows. Section 2 briefly presents the main ingredients of the 

VAMUCH approach specified for the micromechanical analysis of continuous PSF composites. 

Section 3 describes the FE modeling using the commercial FE code ABAQUS to evaluate the 

effective EMCC for mechanical structure with bonded PSF composite patches. The main results 

regarding the two objectives of this work are presented and discussed in Section 4. Conclusions 

are drawn in Section 5. 

 

 

2. Variational asymptotic method for heterogeneous piezoelectric materials 
 

The general VAMUCH theory in Tang and Yu (2008), Koutsawa et al. (2012) can be specified 

for the micromechanical analysis of continuous PSF composites as the minimization of the 

following functional 

 Π =  𝐶𝑖𝛼𝑗𝛽  𝜀𝑖𝛼 + 𝜒𝛼 ,𝑖  𝜀𝑗𝛽 + 𝜒𝛽 ,𝑗    (1) 

subject to the following constraints  

 𝜒𝛼  𝒙; 𝑦𝟏, 𝑦𝟐 = −
𝑑𝟐

𝟐
, 𝑦𝟑 = 𝜒𝛼  𝒙; 𝑦𝟏, 𝑦𝟐 = +

𝑑𝟐

𝟐
, 𝑦𝟑  (2) 

 𝜒𝛼  𝒙; 𝑦𝟏, 𝑦𝟐, 𝑦𝟑 = −
𝑑𝟑

𝟐
 = 𝜒𝛼  𝒙; 𝑦𝟏, 𝑦𝟐, 𝑦𝟑 = +

𝑑𝟑

𝟐
  (3) 

  𝜒𝛼  = 0 (4) 

Π is minimized with respect to 𝜒𝛼 . Here the angle brackets denote averaging over the UC, 

𝐶𝑖𝛼𝑗𝛽  the positionally dependent fourth-order electro-elasticity tensor, 𝜀𝑖𝛼  contains both the3D 

macroscopic strain field (𝜀𝑖𝑗 ) and the 3D macroscopic electric field (𝐸𝑖), 𝜒𝛼  the fluctuating 

functions, 𝜒𝛼 ,𝑗 = 𝜕𝜒𝛼/𝜕𝑦𝑗 , 𝑦𝑖  the Cartesian coordinates describing the UC with 𝑦2  and 𝑦3 

originated from the middle of the UC, and 𝑑2 and 𝑑3 the UC lengths in 𝑦2 and 𝑦3 directions 
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respectively, see Fig. 1. Throughout this paper, Latin indices are space indices assuming the values 

1 to 3 while and Greek indices are fields indices assuming the values 1 to 4 and repeated indices 

are summed over their range except where explicitly indicated. The VAMUCH formulation uses 

three coordinates systems: two cartesian coordinates 𝒙 = (𝑥1 , 𝑥2 , 𝑥3) and 𝒚 = (𝑦1 , 𝑦2 , 𝑦3) and 

an integer-valued coordinate 𝒏 = (𝑛1 , 𝑛2 , 𝑛3), see Fig. 1. 𝑥𝑖are used as the global coordinates to 

describe the macroscopic structure and 𝑦𝑖  parallel to 𝑥𝑖  as the local coordinates to describe the 

UC. To uniquely locate a UC in the heterogeneous material, the integer coordinates 𝑛𝑖  is 

introduced. The integer coordinates are related to the global coordinates in such a way that 

𝑛𝑖 = 𝑥𝑖/𝑑𝑖 . Let us denote by 𝑣𝑖(𝒙) and 𝜓(𝒙) the macroscopic displacements and electric 

potential fields, respectively. If we denote by 𝑢𝑖(𝒙; 𝒚) and 𝜙(𝒙; 𝒚) the displacements and 

electric potential fields within the UC, respectively, then the fluctuation functions, 𝜒𝛼(𝒙; 𝒚), are 

defined as follows, see Tang and Yu (2008) for more details  

 𝑢𝑖(𝒙; 𝒚) = 𝑣𝒊(𝒙) + 𝑦𝒋

𝝏𝑣𝒊(𝒙)

𝝏𝑥𝒋
+ 𝜒𝒊(𝒙; 𝒚) (5) 

 𝝓(𝒙; 𝒚) = 𝝍(𝒙) + 𝑦𝒊

𝝏𝝍(𝒙)

𝝏𝑥𝒊
+ 𝜒𝟒(𝒙; 𝒚) (6) 

Eqs. (2) and (3) express the traditional periodic boundary conditions at ( 𝑦2 = −𝑑2/2 , 

𝑦2 = +𝑑2/2) and (𝑦3 = −𝑑3/2, 𝑦3 = +𝑑3/2) respectively. As it is shown in Tang and Yu 

(2008), Eq. (4) does not affect the minimum value of the functional in Eq. (1) but helps uniquely 

to determine the fluctuating functions, 𝜒𝛼 . Here it is assumed that the PSF axis is parallel to the 

𝑦1-axis. Therefore, the partial derivatives of the fluctuating functions, 𝜒𝛼 ,1, will vanish because 

the PSF composite is uniform in the 𝑦1 direction. At this point it is important to precise that 

𝜀𝑖𝑗 (𝒙) =  𝑣𝒊,𝒋 + 𝑣𝒋,𝒊 /𝟐  and 𝜀𝑖4(𝒙) = 𝑬𝒊(𝒙) = −𝜓,𝒊. 

 

 

 

 

Fig. 1 Coordinate systems for periodic heterogeneous materials and the corresponding unit cell 
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The functional (1) can be restated in a matrix form as minimizing the following functional  

 Π =
1

𝛺
  𝜀(𝒙) + 𝜺(𝒙; 𝒚) ⊤

Ω

 𝑫  𝜀(𝒙) + 𝜺(𝒙; 𝒚) dΩ (7) 

where 

   

 𝜀 𝒙; 𝒚 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0

0
𝜕

𝜕𝑦2
0 0

0 0
𝜕

𝜕𝑦3
0

0
𝜕

𝜕𝑦3

𝜕

𝜕𝑦2
0

𝜕

𝜕𝑦3
0 0 0

𝜕

𝜕𝑦2
0 0 0

0 0 0 0

0 0 0 −
𝜕

𝜕𝑦2

0 0 0 −
𝜕

𝜕𝑦3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜒1

𝜒2

𝜒3

𝜒4

 = ℋ𝝌(𝒙; 𝒚) (8) 

   
 𝑫  is the 9 × 9 material matrix condensed from the positionally dependent fourth-order 

electro-elasticity tensor, 𝐶𝑖𝛼𝑗𝛽 , Ω is the area of the UC. The matrix  𝑫  includes the elastic(𝑪), 

piezoelectric (𝒆), and dielectric (𝜿) properties and is expressed as  

  𝑫 =  𝑪 −𝒆⊤

−𝒆 −𝜅
  (9) 

If one discretizes 𝜒 using the finite elements as  

 𝜒(𝒙; 𝒚) = 𝑺(𝑦𝟐, 𝑦𝟑)Γ(𝒙) (10) 

where 𝑆(𝑦2 , 𝑦3) representing the shape functions (in the assembled sense) and Γ(𝒙) a column 

matrix of the nodal field variables of the fluctuation functions (considering the constraints (2) and 

(3)), one obtains a discretized version of the functional as  

 Π =
1

𝛺
 Γ⊤𝑫𝜒𝜒 Γ + 2Γ⊤𝑫𝜒𝜀 𝜀 + 𝜀

⊤
𝑫𝜀𝜀 𝜀 , (11) 

where 

 𝑫𝜒𝜒 =   ℋ𝑆 ⊤

Ω

 𝑫  ℋ𝑆 dΩ (12) 
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 𝑫𝜒𝜀 =   ℋ𝑆 ⊤

Ω

 𝑫 dΩ (13) 

 𝑫𝜀𝜀 =   𝑫 
Ω

dΩ (14) 

From now on, for simplicity, Γ(𝒙) is replaced by Γ. The minimization of Eq. (11) with 

respect to Γ gives the following linear system  

 𝑫𝜒𝜒 Γ = −𝑫𝜒𝜀 𝜀 (15) 

The solution of Eq. (15) can be written as  

 Γ(𝒙) = Γ𝟎 𝜺(𝒙), (16) 

where Γ0 is the solution of the linear system  

 𝑫𝜒𝜒 Γ0 = −𝑫𝜒𝜀 . (17) 

Here, the linear system (17) is solved using the multifrontal massively parallel sparse direct 

solver (MUMPS), see Amestoy et al. (2001, 2006), within the GetFEM++ FE library, see Renard 

and Pommier (2011). Substituting Eq. (16) into Eq. (11), one can calculate the electric enthalpy of 

the UC as  

 Π =
1

𝛺
𝜀
⊤
 Γ0

⊤𝑫𝜒𝜀 + 𝑫𝜀𝜀  𝜀 ≡ 𝜀
⊤
𝑫𝜀, (18) 

where 𝑫 is the effective (or homogenized) piezoelectric material matrix which can be expressed 

using a 9 × 9 matrix as  

 𝑫 =
𝜕2𝛱

𝜕𝜀 𝜕𝜀
=  𝑪 −𝒆

⊤

−𝒆 −𝜅
 . (19) 

Having obtained the effective electro-elastic properties, one can use these properties to carry 

out the macroscopic analysis of the complete structure to predict the global electro-elastic behavior 

of the engineering system integrating the PSF composite. If one needs the point-wise distribution 

of the electro-elastic fields (displacements, strains, stresses, electric potential, etc.) within the 

microstructure, one has to uniquely determine the fluctuation functions, 𝜒𝛼 , using the constraints 

in Eq. (4) and follow the recovery procedure explained in Tang and Yu (2008). Although it is easy 

to distinguish the VAMUCH from other analytical micromechanics approaches, the VAMUCH is 

often confused as one of the finite element analysis (FEA)-based micromechanics approaches 

because the equations of the VAMUCH theory are solved using the FE technique. FEA-based 

micromechanics approaches carry out a conventional FEA of a UC with specially designed 

boundary conditions under specifically designed loads (see Dai and Ng (2012), for example). 

 

 

3. Effective EMCC for mechanical structure with bonded PSF composite patches 
 

The EMCC measures the energy conversion efficiency of a piezo-ceramic material. Several 

formulas and methods were proposed to evaluate numerically or measure experimentally the 

EMCC of a piezoelectric material, see Chevallier et al. (2008, 2009), Trindade and Benjeddou 

(2009) for more details. The technique for evaluating the effective EMCC based on the 
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short-circuit (SC) and open-circuit (OC) eigen-frequencies presented in Chevallier et al. (2008, 

2009) is applied here to elastic beams with PSF composite patches. The modal effective EMCC is 

post-processed from free vibrations analysis under SC and OC electrodes of the patches. Hence, 

two cantilever Aluminium beams with symmetrically bonded PSF composite patches, having the 

same poling (SP) directions, were analyzed in free-vibrations for SC and OC electrodes with 

equipotential (EP) constraints. The effective square EMCC for the structure with piezoelectric 

elements, vibrating in the i-th mode, can be defined as (see Chevallier et al. (2008, 2009)) 

 𝐾𝑖
2 =

𝑓𝑖,𝑂𝐶
2 − 𝑓𝑖,𝑆𝐶

2

𝑓𝑖,𝑆𝐶
2 , (20) 

where 𝑓𝑖  is the natural frequency of the 𝑖-th mode. The free-vibrations analysis of the cantilever 

beams were performed here using ABAQUS FE commercial codes. The cantilever adaptive beam 

has been discretized using quadratic (20-nodes) brick elements. C3D20R (R for reduced 

integration) and C3D20ER (E for electric) were used for the Aluminium beam and the PSF 

composite patches, respectively (see Fig. 2(b)). 

For the SC condition, the patches four faces are selected and a nil potential is applied on them. 

For the OC case, the faces of the patches are charge free. The usual way is to not apply any electric 

condition. However, for physical reasons, the EP condition has to be added by coupling the nodes 

of each face of the patches, see Chevallier et al. (2008, 2009). The EP constraints of the patches 

surfaces are expressed by the following relationships used between the electric DOFs (DOF 9 in 

ABAQUS)  

*EQUATION 

2 

SP1EXT, 9, 1.0, NP1EXT, 9, -1.0 

2 

SP1INT, 9, 1.0, NP1INT, 9, -1.0 

2 

SP2EXT, 9, 1.0, NP2EXT, 9, -1.0 

2 

SP2INT, 9, 1.0, NP2INT, 9, -1.0 

 

where 

 

 SP1EXT is a set of all nodes of the PSF patch 1 external surface except a node,  

 NP1EXT is the remaining node of the PSF patch 1 external surface,  

 SP1INT is a set of all nodes of the PSF patch 1 internal surface except a node,  

 NP1INT is the remaining node of the PSF patch 1 internal surface,  

 SP2EXT is a set of all nodes of the PSF patch 2 external surface except a node,  

 NP2EXT is the remaining node of the PSF patch 2 external surface,  

 SP2INT is a set of all nodes of the PSF patch 2 internal surface except a node,  

 NP2INT is the remaining node of the PSF patch 2 internal surface. 
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(a) Sketch of the cantilever beam (b) FE mesh of the cantilever beam 

Fig. 2 Cantilever beam with a bonded pair of PSF composite patches (dimensions in mm). 

 

 

 

 

Fig. 3 Piezoelectric structural fiber (PSF) composites, (a) structure of one PSF (Lin and Sodano 2008) (b) 

PSF laminate with built-in electrodes (Dai and Ng 2012) and (c) representative volume element 

(RVE) of the PSF composites with hexagonal packing 

 

 

 

4. Results and discussion 
 

In the following sections, the main results concerning the effective electromechanical 

properties of the PSF composite and their EMCC via free-vibrations analysis are presented and 

discussed.  

 

4.1 Effective electro-elastic properties of a PSF composite 
 

In this section, the electro-elastic properties of a PSF composite (see Fig. 3(b)) are predicted 

using the VAMUCH micromechanics approach described in Section 2. Hexagonal packing of the 

PSFs is assumed, see Fig. 3(c). 

The constituents’ materials properties of the PSF composite are presented in Tables 1 and 2. 
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Table 1 Material mechanical properties of the constituent phases of the PSF composite 

Material  𝐶11  𝐶12  𝐶13  𝐶23  𝐶33  𝐶44  𝐶66  𝜌 

 [GPa]  [GPa]  [GPa]  [GPa]  [GPa]  [GPa]  [GPa]  [kg/𝑚3]   

Epoxy  8  4.4  4.4  4.4  8  1.8  1.8  1300   

Carbon  24  9.7  6.7  6.7  250  27  11  2200   

PIC255  105.2  58.3  55.4  55.4  85.9  21  23.5  7800   

 

 
Table 2 Material piezo-electric and dielectric properties of the constituent phases of the PSF composite 

Material 𝑒31  𝑒32  𝑒33  𝑒15  𝑒24  𝜅11/𝑘0
1 𝜅22/𝑘0 𝜅33/𝑘0 

 [C/𝑚2]  [C/𝑚2]  [C/𝑚2]  [C/𝑚2]  [C/𝑚2] - - - 

Epoxy  - - - - - 4 4 4 

Carbon  - - - - - 12 12 12 

PIC255  -7.25 -7.25 14.41 11.57 11.57 931.22 931.22 804.38 

1
: 8.8510−12  C/Vm. 

 

 

In what follows, the aspect ratio, 𝛼, of the PSF is defined as the value of the coating thickness, 

𝑡, divided by the outer radius, 𝑟0, as shown in Fig. 3(a). It is worth noting that VAMUCH has 

been extensively validated against 3D FE-based micromechanics models, see Tang and Yu (2008), 

Koutsawa et al. (2012). In this work, our implementation has been validated against 3D FE 

modeling using ANSYS following the procedure reported in Koutsawa et al. (2010). It has been 

found that the 2D VAMUCH and the 3D ANSYS predictions match very well for all the 

considered volume fractions and aspect ratios for the PSF.  

Figs. 4(a) and 4(b) show the variation of the effective elastic coefficients 𝐶11  and 𝐶33 of the 

PSF composite with the PSF volume fraction (𝑣PSF ) and 𝛼. For all aspect ratios, a linear variation 

of the longitudinal elastic coefficient, 𝐶33, with 𝑣PSF  is observed while the transverse elastic 

coefficient, 𝐶11, is an exponential function of 𝑣PSF . The PSF composite with a larger volume of 

piezoelectric material has higher transverse modulus. This is explained by the high 𝐶11 modulus 

of the piezoelectric material (PIC255), see Table 1. Since the 𝐶33 modulus of PIC255 is less than 

that of the Carbon fiber, it is expected that the PSF composite with a larger volume of piezoelectric 

material has smaller longitudinal modulus, see Fig. 4(b).   

Figs. 5(a) and 5(b) show the variation of the effective elastic coefficients 𝐶12  and 𝐶23 of the 

PSF composite with 𝑣PSF and 𝛼. Both effective elastic coefficients are exponential functions of 

𝑣PSF . As it is expected from the 𝐶12 and 𝐶23 coefficients (see Table 1), the PSF composite with a 

larger volume of piezoelectric material has higher 𝐶12and 𝐶23 coefficients.   
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(a) 𝐶11  (b) 𝐶33  

Fig. 4 Variation of the effective elastic coefficients 𝐶11  and 𝐶33  of the PSF composite with the PSF 

volume fraction and aspect ratio, 𝛼 

 

 

  

(a) 𝐶12  (b) 𝐶23  

Fig. 5 Variation of the effective elastic coefficients 𝐶12  and 𝐶23  of the PSF composite with the PSF 

volume fraction and aspect ratio, 𝛼 

 

 

Figs. 6(a) and 6(b) show the variation of the effective elastic shear coefficients 𝐶66 and 𝐶55 

of the PSF composite with 𝑣PSF and 𝛼. Both effective elastic shearcoefficients are exponential 

functions of 𝑣PSF . In general, the predicted effective elastic shear coefficients are not highly 

sensitive to 𝛼. The transverse effective elastic shear coefficient, 𝐶66, is more sensitive to 𝛼 for 

high values of 𝑣PSF  while 𝐶55 is quite insensitive to 𝛼. 

The functionality of the PSF composites is due to the piezoelectric phase since these materials 

have relatively high dielectric constant and piezoelectric coupling coefficient while the flexibility 

and the strength of the PSF composites are due to the polymer matrix and the carbon fiber 

respectively. Figs. 7(a) and 7(b) show the variation of the effective dielectric coefficients 𝜅11 and 

𝜅33 of the PSF composite with 𝑣𝑡𝑃𝑆𝐹  and 𝛼. The predicted transverse permittivity (Fig. 7(a)) 
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shows an exponential increase with respect to 𝑣PSF  while the longitudinal permittivity (Fig. 7(b)) 

has a linear relationship. The transverse permittivity, 𝜅11, is quite insensitive to 𝛼. Figs. 8(a)- 8(c) 

show the variation of the effective piezoelectric coefficients 𝑒15 , 𝑒31  and 𝑒33  of the PSF 

composite with 𝑣PSF  and 𝛼. 𝑒15, 𝑒31 show an exponential increase with respect to 𝑣PSF  while 

𝑒33 has a linear relationship. 𝑒15  is insensitive to 𝛼 while the PSF composite with a larger 

volume of piezoelectric material has higher 𝑒31  and 𝑒33 . It is worth mentioning that for 

𝑣PSF = 0.8 and 𝛼 = 0.9, 𝑒33 = 13.82 which is about 95% of 𝑒33 = 14.41 of the piezoelectric 

(PIC255) phase. 

 

 

  

(a) 𝐶66  (b) 𝐶55  

Fig. 6 Variation of the effective elastic coefficients 𝐶66  and 𝐶55  of the PSF composite with the PSF 

volume fraction and aspect ratio, 𝛼 

 

 

 

  

(a) 𝜅11  (b) 𝜅33  

Fig. 7 Variation of the effective dielectric properties 𝜅11  and 𝜅33  of the PSF composite with the PSF 

volume fraction and aspect ratio, 𝛼 
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(a) 𝑒15  (b) 𝑒31  

 

(c) 𝑒33  

Fig. 8 Variation of the effective piezoelectric properties 𝑒15, 𝑒31  and 𝑒33  of the PSF composite with the 

PSF volume fraction and aspect ratio, 𝛼 

 

 

 

Fig. 9 Variation of the effective density 𝜌 of the PSF composite with the PSF volume fraction and aspect 

ratio, 𝛼 
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Fig. 9 shows the variation of the effective density, 𝜌, of the PSF composite with 𝑣PSF  and 𝛼. 

Here, 𝜌 is predicted by a volume averaging over the volume of the PSF composite UC  

 𝜌 =
1

𝛺
 𝜌

Ω

dΩ (21) 

A linear variation of 𝜌 with 𝑣PSF  is observed and as it is expected (see Table 1), the PSF 

composite with a larger volume of piezoelectric material has higher effective density. 

 

 

  

(a) Open-circuit natural frequency (b) Short-circuit natural frequency 

 

(c) Effective square EMCC 

Fig. 10 Variation of the natural frequencies 𝑓1,OC  and 𝑓1,SC  and the square EMCC 𝐾1
2 of the cantilever 

beam with the PSF volume fraction and aspect ratio, 𝛼 

 
 
4.2. Evaluation of the EMCC 
 

The cantilever beam presented in Fig. 2 is used to evaluate the EMCC. The beam has a length 

of 243.5 mm, a thickness of 2 mm and a width of 30 mm, and its material properties are: Young 

modulus 69 GPa, mass density 2700 kg 𝑚−3 and Poisson ratio 0.3.  

Figs. 10(a) and 10(b) show the variation of the natural frequencies of the cantilever beam with 

the PSF composite patches under the OC and SC boundary conditions for the first free-vibrations 
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mode. The natural frequency is sensitive to 𝛼 for high values of 𝑣PSF . PSF composite patch with 

a larger volume of piezoelectric material gives higher natural frequency. As discussed in 

Chevallier et al. (2008), OC and SC configurations yield very close results. Nevertheless the small 

difference is of paramount importance since it is a measure of the electro-mechanical coupling 

capability of the structure. Hence, the variation of the square EMCC (see Eq. (20)) is shown by 

Fig. 10(c). The EMCC is sensitive to the aspect ratio, 𝛼. The PSF composite patches with a larger 

volume of piezoelectric material has higher square EMCC. Similar results are observed for the 

second vibration mode of the smart cantilever beam. The first and second vibration modes are 

out-of-plane bending modes. For the third (in-plane bending) and fourth (torsion) modes, the 

application of the EP constraint make their electrode potential distribution average nil leading to 

identical SC and OC frequencies, hence a nil EMCC. The third and fourth modes become 

uncoupled when the EP is applied because their potential distributions are unsymmetric. These 

results are not reported here for brevity. 

 

 

 

5. Conclusions 
 

This work presents a linear computational homogenization framework to evaluate the energy 

conversion efficiency of a piezoelectric structural fiber (PSF) composite for multi-functional 

applications. The PSFs are composed of a carbon/SiC core fiber and a piezo-ceramic coating and 

are deployed unidirectionally into a polymer matrix. At the micro-scale, the electromechanical 

properties of piezoelectric structural fiber composites are predicted by the variational asymptotic 

method for unit cell homogenization (VAMUCH) micromechanics approach. With the VAMUCH, 

a two-dimension unit cell is sufficient to predict the full three-dimension anisotropic effective 

electromechanical properties of the PSF composite. Having obtained these effective 

electromechanical properties, a free-vibrations analysis (macro-scale) has been performed on a 

cantilever beam with a single pair of patches made by PSF composite. The free-vibrations analysis 

has been done under short-circuit and open-circuit conditions using the commercial FE codes 

ABAQUS. The electromechanical coupling coefficient (EMCC) is post-processed from these 

free-vibrations analysis. The results show that the EMCC is sensitive to the aspect ratio of the PSF. 

The PSF composite patches with a larger volume of piezoelectric material have higher EMCC. The 

proposed linear computational homogenization framework may be useful for the optimal design of 

active structure multi-functional composites which can be used for multi-functional applications 

such as structural health monitoring, power harvest, vibration sensing and control, damping, and 

shape control through anisotropic actuation.  
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