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Abstract.   Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range 
of possible applications. Since the knowledge of the material behavior is vital regarding the possible 
applications, experimental and theoretical studies have been conducted to investigate the properties of this 
promising material. The aim of the present research is the calculation of mechanical properties and of the 
mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed 
on basis of a molecular mechanics approach. Within this approach two different issues were taken into 
account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is 
captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is 
modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction 
in the applied modeling techniques, the results for the Young’s modulus for several SWCNTs are presented 
and are discussed extensively. The obtained numerical results are compared to results available in literature 
and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different 
models are given and the resulting differences in the numerical findings are shown. Within the investigation 
of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent 
bond are considered. The presented results of this decomposition provide a deeper understanding of the 
governing deformation mechanisms in SWCNTs. 
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1. Introduction 
 

1.1 General properties 
 

The interest on carbon based nano materials originated from the discoveries made by Iijima 
(1991), who observed that carbon nanotubes are produced during arc discharge between carbon 
electrodes. It has to be noted that the actual discovery of carbon nanotubes was made by the soviet 
scientists Radushkevich and Lukyanovich (1952). During their carbon-related research, they found 
carbon nanotubes with diameters of around 50 nm. However, it was the work of Iijima which was 
the ignition for the fast-growing interest in carbon nanotube research, since he delivered two 
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important contributions regarding the understanding of carbon nanotubes. These contributions are 
(i) the conclusion that carbon nanotubes are produced during arc discharge (Iijima (1991)), and (ii) 
the attempt to fill carbon nanotubes with metals, which resulted in the production of single wall 
carbon nanotubes (Iijima and Ichihashi (1993)). 

A single wall carbon nanotube can be imagined as a cut-out of a layer of graphene which is 
rolled up into a seamless tube. Hence, carbon nanotubes show the same hexagonal structure as 
graphene does. The reason for the numerous research efforts are the predicted outstanding 
mechanical (e.g., see Treacy et al. (1996)), electrical (e.g., see Tans et al. (1997)) and thermal (e.g., 
see Berber et al. (2000)) properties of the carbon nanotubes. Hence, numerous ideas for 
applications in many fields of engineering and science have been proposed. The present research 
focuses on the mechanical behavior of the carbon nanotubes; a possible application in this field 
could be their use as reinforcing material in composites. This can be done for example by simply 
adding a particular amount of carbon nanotubes into the matrix material. A review concerning this 
kind of carbon nanotube composites can be found in Thostenson et al. (2001). Another possibility 
is the use of fibers spun from carbon nanotubes, which are discussed as possible successors of the 
widely used carbon fibers. A review on the current state of research in the technology of carbon 
nanotube fibers was given recently by Lu et al. (2012). Regarding the electro-mechanical behavior 
it was found that carbon nanotubes respond to electrical fields with an active deformation. 
Baughman et al. (1999) realized a carbon nanotube actuator based on bucky paper submerged in a 
liquid electrolyte. Bucky paper can be described as a kind of felt made from carbon nanotubes. 
The actuation mechanism (expansion) is based on an electrochemical double-layer charging. 
Carbon nanotube fibers have also been recently proposed by Foroughi et al. (2011) as torsional 
actuators. Furthermore, individual nanotubes respond to electrical stimulation as well, and can 
hopefully be used as actuators on the nanoscale. Regarding an individual carbon nanotube actuator, 
the extension of the nanotube is a result of charge injection in the carbon nanotube structure which 
leads to an extension of the covalent bonds within the carbon nanotube. 

The outstanding mechanical properties mentioned above include a remarkably high Young’s 
modulus and excellent strength. Values of around 1 TPa for the Young’s modulus have been found 
with theoretical approaches, e.g., Tserpes and Papanikos (2005), and experimental studies, e.g., 
Wu et al. (2008). Regardless if a theoretical or experimental approach is chosen, the determination 
of these properties poses several challenges which will be discussed within the present research. 

 
1.2 Modeling 
 
During the past years, several methods regarding the calculation of the mechanical properties 

of carbon nanotubes have been proposed. Due to the size of the nanotubes, the question arises to 
what extent quantum mechanical models have to be used, or whether classical models are 
applicable. Therefore the approaches made so far can be divided into quantum-mechanical 
methods and methods stemming from classical mechanics. As examples for quantum-mechanical 
approaches the works of Hernández et al. (1998), Sánchez-Portal et al. (1999), Kudin et al. (2001), 
and more recently Chandraseker and Mukherjee (2007) should be mentioned. Chandraseker and 
Mukherjee (2007) used a density-functional-theory (DFT) approach to calculate the Young’s 
modulus and the shear modulus. Furthermore, they used a classical approach to calculate these 
properties in order to compare the results gained with these two different methods. In the group of 
classical mechanics methods one can find on the one hand approaches which model the nanotubes 
as a continuum, while on the other hand atomistic approaches, for instance based on molecular 
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mechanics, are available. 
In their continuum approach Odegard et al. (2002) developed an equivalent continuum model 

based on plates. Cinefra et al. (2011) used a refined shell model based on Carrera’s Unified 
Formulation to investigate the free vibration response of double wall carbon nanotubes. 

Some of the molecular mechanics models make use of the Finite Element Method framework, 
e.g., Li and Chou (2003), Tserpes and Papanikos (2005), Meo and Rossi (2006) and 
Giannopoulos et al. (2008). All these researchers aimed at the determination of mechanical 
properties of single wall carbon nanotubes. While Li and Chou (2003) and Tserpes and 
Papanikos (2005) applied truss-beam elements to model the covalent bonds in the carbon 
nanotubes, the models of Meo and Rossi (2006) and Giannopoulos et al. (2008) used 
combinations of spring elements. The approach of the present work is based on molecular 
mechanics and uses truss-beam elements. As a result the nanotube geometry and the material 
behavior of the covalent bonds in the carbon nanotubes can be treated separately. 

In order to get better results for the radial elasticity and the Poisson’s ratio, Chen et al. (2010) 
extended the molecular mechanics model of Li and Chou (2003). As in the original model, they 
used truss-beam elements, but extended the existing theory to account for a non-circular cross 
section. 

 
1.3 Outline of the present work 
 
The present work is structured as follows: A brief description of carbon nanotubes is given 

in section 2. The general structure of carbon nanotubes is illustrated and the existing types of 
carbon nanotubes are distinguished. On the basis of these types the construction of the unit cell as 
the basic construction element of the carbon nanotubes is explained. 

The description of the applied models is given in section 3. The general overview of the 
model clarifies why the modeling can be divided into two parts which are (i) the representation of 
the nanotube geometry and (ii) the model of the covalent bond. Concerning the nanotube 
geometry, two different models are used in the present research, and are illustrated in section 3.1. 
These are on the one hand the roll-up model and on the other hand the exact polyhedral model 
developed by Cox and Hill (2007). The comparison of these two geometric models is one 
important topic of the present research. The approach to model the covalent bonds in the 
nanotubes is based on the works of Li and Chou (2003) and Tserpes and Papanikos (2005), and is 
summarized in section 3.2. 

Section 4 presents the results of the numerical simulations based on the described modeling 
techniques. The major goal of this study is the determination of the mechanical properties and 
of the mechanical behavior of single wall carbon nanotubes. Hence, the Young’s modulus for 
several single wall carbon nanotubes of different types with various diameters is computed on 
the basis of a virtual tensile test. These results are compared to results available in literature. As 
a special feature of the present research, these mechanical properties are calculated based on the 
two different geometrical models explained above. The numerically obtained deviations are 
analyzed by closely observing the nanotube geometry which is determined by the bond length 
and the bond angle. 

Another focus of this work is formed by the investigation of the deformation behavior of 
single wall carbon nanotubes. To do this, the carbon nanotubes are subjected to a tensile force 
which results in an extension of the carbon nanotube. This deformation is then subdivided into 
the contributions stemming from covalent bond deformations. Hence, this approach grants a 
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deeper insight into the mechanical behavior of carbon nanotubes. 
In the conclusion (Section 5), the results of the numerical investigations are summarized. 

 
 
2. Brief description of carbon nanotubes 

 
As already mentioned, one can imagine the carbon nanotube as a layer of graphene which is 

rolled up into a seamless tube. As a result, the carbon nanotube shows a hexagonal structure 
comparable to that of graphene, where one carbon atom is located at each edge of the hexagons. 
Due to the sp2 - hybridization of the carbon atoms, each carbon atom is connected to its three 
neighbors via covalent bonds. One can distinguish between single and multi wall carbon 
nanotubes (SWCNT/MWCNT). As the name states, the SWCNTs are made out of a single 
graphene layer, while MWCNTs are numerous SWCNTs stacked together on a common axis. 
Furthermore, one can distinguish between three SWCNT subtypes called the 
• armchair 
• zig-zag 
• chiral 

type. These SWCNTs can be derived from different unit cells. The unit cell is constructed as a 
cut-out of a graphene layer which is rolled up into a tube. To describe this cut-out, a chiral vector 
C and a translational vector T have to be defined. Additionally, in literature, e.g., in Dresselhaus 
et al. (1995), often a chiral angle θ is given, see Fig. 1. 

The unit cell is uniquely defined by a pair of two integers (n, m) which specify the chiral 
vector with respect to the coordinate system given by the basis vectors a

1 and a
2
. With the 

knowledge of the chiral vector C one can calculate the translational vector T. Now, the cut-out of 
the graphene layer can be rolled up in the direction of C. For more details concerning the 
geometrical nanotube properties and how to calculate the translational vector, the interested reader 
is referred to the work by Dresselhaus et al. (1995). 

Fig. 1 shows how the unit cells for different types of SWCNTs are constructed. Based on this 
figure it is possible to reproduce the calculation of the chiral vector C on the basis of the associated 
index pairs. For armchair SWCNTs the translational vector is always given as T = (−1, 1) while 
for zig-zag tubes it is T = (−1, 2). For chiral SWCNTs the translational vector has to be calculated 
according to Dresselhaus et al. (1995). 
 
 
3. Modeling approach 

 
As a starting point, the carbon nanotube is given in its chemical representation with the carbon 

atoms and the covalent bonds, see Fig. 2. The behavior of the bonds can be described by a chemical 
force field representation. A chemical force field is applied in computational chemistry for instance 
for the conformational analysis of molecules. For that purpose, various parameters are used. These 
parameters are named chemical force constants kr , kθ , kτ, see Fig. 2. More details on the application 
and the origin of these constants are given in section 3.2. The goal of the present research is a 
mechanical representation of the carbon nanotubes based on the given chemical description. Since 
the mechanical properties are of interest, a transfer of the chemical model into a mechanical model 
has to be gained, see Fig. 2. 
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The modeling approach can be divided into two parts which can be considered independently of 
each other. These two parts are (i) the nanotube geometry and (ii) the representation of the covalent 
bond. The first thing to consider is the nanotube geometry which is basically given by the position 
of the carbon atoms in the nanotube. In this work two different geometrical models have been used 
and compared, see section 3.1. 

Secondly, a proper representation for the covalent bond needs to be found. The approach which 
was applied here is the molecular structural mechanics (MSM) approach as it was first suggested by 
Li and Chou (2003) with extensions made by Tserpes and Papanikos (2005), see section 3.2. 

These efforts aim on the determination of the global mechanical properties of single wall 
carbon nanotubes. 
 
 
 

armchair (5,5) zig-zag (6,0) chiral (4,2) 

   

 

 

Fig. 1 Schematic representation of the construction of a unit cell for armchair, zig-zag and chiral nanotubes.
The chiral vector C is given as red colored arrow, while the translational vector T is green colored. The 
pictures below the construction sketches show a three-dimensional view of the constructed unit cells 
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3.1 Geometric models 
 
The geometry deals with the position of the carbon atoms in the nanotube. For dynamic 

investigations, the atoms could be modeled as point masses. However, since the present research 
only includes static numerical simulations, the carbon atoms are simply represented as nodes 
where the covalent bonds are connected. In the present research two different geometric models are 
compared. These are the roll-up and the exact polyhedral model. 

The roll-up model, see Fig. 3(a), is commonly used. It stems from the idea of using a rolled up 
cut-out in a graphene layer as already discussed in section 2. The disadvantage of this model is that 
curvature effects result in unequal bond lengths in the nanotube. This error decreases for increasing 
nanotube diameters. 

The other presented model, the exact-polyhedral model, was proposed by Cox and Hill (2007) 
in order to create a geometric model in which all bonds are of the same specific length, see Fig. 
3(b). It uses tetrahedrons placed on helices to fulfill this condition. The tetrahedrons are subjected 
to a special transformation which changes the position and orientation of the tetrahedrons in space 
depending on the chirality (n, m) of the tube being constructed. 

Fig. 4 reveals the error made with the roll-up model. For example, the transformation during the 
roll-up of a covalent bond perpendicular to the nanotube axis is observed, see the bond between the 
blue colored atoms in Fig. 3(a). Prior to the roll-up of the graphene sheet, the length between the 
two atoms is equal to one bond length aC−C . Due to the roll-up in the marked direction, it is 
obvious, that the once straight connection between the atoms is transformed into the red-colored 
circular arc given in Fig. 4 (right). The length of this arc is aC−C . However, in the nanotube the 
direct connection - instead of the arc - between these atoms has to be identical to one bond length 
aC−C . From these considerations it can be deduced that in the roll-up model the direct connection 
between the investigated atoms is too short. This effect can be observed for all bonds which are not 

Fig. 2 Modeling approach, schematic representation 
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parallel to the nanotube axis. 
Owing to the special approach of the exact polyhedral model, this problem doesn’t occur there. 

The exact polyhedral model yields the correct bond length as shortest connection between the two 
considered atoms, see Fig. 4 (right). For details regarding this geometric model see Cox and Hill 
(2007). 

 
 
 

 

 
(a) roll-up model (b) exact polyhedral model 

Fig. 3 Geometric models used in this paper 
 
 

 

 

Fig. 4 Schematic representation of the resulting error due to the improperly considered curvature of the 
nanotube as it arises when using the roll-up model. For comparison purposes the correct bond 
length as calculated by the exact polyhedral model according to Cox and Hill (2007) is also 
depicted 
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3.2 Representation of the covalent bond 
 
After describing the modeling of the geometry (section 3.1), it is necessary to take the 

modeling of the covalent bond in SWCNTs into account, see Fig. 2. The bond is modeled in this 
research with the molecular structural mechanics approach according to Li and Chou (2003) and 
Tserpes and Papanikos (2005). An overview of the applied method is given in this section of the 
paper. 

As already mentioned, the starting point of the modeling efforts is a chemical force field 
description characterizing the covalent bond with help of the chemical force constants kr , kθ and kτ. 
To transfer this chemical representation into a mechanically applicable representation, the 
molecular structural mechanics approach is applied. In this approach the covalent bond is 
represented by a (Euler-Bernoulli) truss-beam element with six degrees of freedom (three 
translational ux, uy , uz and three rotational ϕx, ϕy, ϕz degrees of freedom per node) at each node. As 
a result, it is necessary to compute all the properties for the beam material as well as the beam 
geometry from the chemical force field description. The properties of the beam and its material 
which have to be computed are: 
• the Young’s modulus E of the truss-beam element describing the covalent bond, 
• the shear modulus G of the truss-beam element describing the covalent bond, 
• the diameter d of the truss-beam element, when a circular cross section of the truss-beam      

element representing the bond is assumed, 
• the length l of the truss-beam element. 
The chemical force field description allows the calculation of an overall potential U which 

describes the conformation of the analyzed structure and also describes changes in the 
conformation (deformation) when the structure is subjected to loads. The overall potential U is 
assembled from several contributions stemming from the possible deformations of each single bond 
in the investigated structure. Additionally, van-der-Waals and electrostatic interactions have to be 
taken into account. The possible bond deformations include (see also Fig. 5): 
• bond stretching, 
• bond angle bending, 
• bond torsion and 
• inversion or out-of-plane torsion. 
 

 

 

Fig. 5 Possible bond deformations of a single covalent bond 
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Fig. 6 Bond stretch potential measured versus the bond length r. Actual relation and approximations 
 

 
Due to these bond deformations, van-der-Waals and electrostatic interactions the overall potential 

U reads 


ticelectrostaWaalsdervaninversiontorsionbending  anglestretching

 



elvdWr UUUUUUU         (1) 

For the modeling of SWCNTs as it is done in this paper, the van-der-Waals and electrostatic 
interactions are not taken into account. For the sake of completeness it should be noted here that 
the van-der-Waals bonds cannot be neglected when MWCNTs are modeled. For the SWCNTs it 
has to be mentioned that in accordance with the approach of Li and Chou (2003) the inversion 
potential Uω and the bond torsion potential Uφ are combined into a single contribution Uτ, so that 
the overall potential U used within the present research is given by 

   UUUU r                           (2) 

One of the major aspects in modeling the covalent bond is the choice of proper potentials for 
each of these contributions. On the basis of the bond stretch as an example some considerations 
regarding the potential representation are shown. Fig. 6 shows the actual relationship for the bond 
stretch potential Ur measured versus the distance between two bonded atoms r. In this figure it 
can be recognized that the harmonic approximation, 

 2
2

1
rkU rr                                      (3) 

which makes use of a quadratic function, is only valid for small deformations around the 
equilibrium bond length. The parameter kr is the chemical force constant responsible for the bond 
stretch behavior, and ∆r is the change in the distance of the two bonded atoms. Another possibility 
is the application of the Morse-Potential which was used in the work of Meo and Rossi (2006) 
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 21 r
er eDU                                 (4) 

This has the disadvantage that it comes with a higher numerical effort. In this equation De and β 
are parameters which have to be chosen in accordance with the covalent bond being modeled. 
Depending on the chemical element of the connected atoms, different values for the parameters 
have to be used. Since our investigations only consider small deformations so far, the use of harmonic 
approximations is adequate. This type of potential is not only applied for the bond stretching, but 
also for the bond angle bending and the bond torsion. The above-mentioned combination of the 
bond torsion and inversion potentials follows the idea of Li and Chou (2003). This combination is 
done by adding the corresponding chemical force constants. Hence, the potentials read as follows 

  2
2

1
rkU rr           (5)

  2
2

1   kU  (6)

      22

2

1

2

1    kkkU  (7)

 
In these equations kr, kθ , kφ and kω are the chemical force constants responsible for the bond 

stretching, bond angle bending, bond torsion and bond inversion. The constant kτ is the result of the 
addition of kφ and kω. The variables ∆r, ∆θ and ∆φ are the extension of the bond, the angle change 
due to bending as well as the change of the torsional angle. The quantitative values of these 
chemical force constants are determined in dependence of the chosen chemical force field and 
furthermore in dependence of the atom type. Here, the atom type is the chemical element of the two 
connected atoms as well as the specific type of the covalent bond indicated by its hybridization. 
Hence, for SWCNTs it is necessary to choose force constants which were determined to describe the 
covalent bond between carbon atoms with sp2 -hybridization. In this research a force field with 
chemical force constants according to Cornell et al. (1995) is used. Hence, the values of the 
chemical force constants are 

 

2
s

kg
2

Åmol

kcal
13.652938 rk  

 

 
2

rad
2

s

2
Åkg

2
radmol

kcal
60.87126 k

   
 

 

 
2

rad
2

s

2
Åkg

2
radmol

kcal
81.2740 k  

 

where 1 Å = 10−10 m. 
As next step the chemical representation and the mechanical description, based on a 

truss-beam element, of the covalent bond are compared regarding its possible deformations. On 
the basis of the bond-stretching, for example, it can be explained how a bridging between the 
chemical and the mechanical description can be established, see Fig. 7. 
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Fig. 7 Comparison of the bond stretching description in the chemical and mechanical representation 

 
 

In this figure it can be recognized that the stretching of the bond in the chemical representation 
is equivalent to the stretching of the truss-beam element. Both phenomena can be described via 
their potentials. On the one hand there is the chemical potential describing the stretching of the 
covalent bond. On the other hand the stretching of the truss-beam element is described by a 
mechanical potential which is given as the elastic strain energy. Hence, these two potentials can be 
equated which yields the desired transfer between the chemical and the mechanical/geometrical 
properties. 

This procedure can be performed in an analogous manner for the bond angle bending and the 
bond torsion. The result is a set of three equations connecting the chemical properties with the 
mechanical/geometrical ones 

 

l

EA
kr      (8)

 

l

EI
k   (9)

 

l

GJ
k   (10)

 
These equations contain the material parameters assigned to the covalent bonds, which are the 

Young’s modulus E and the shear modulus G, the cross-sectional area A, the moment of inertia I, 
the torsional moment of inertia J and the length of the truss-beam element l. When a circular cross 
section of the bond is assumed, it is possible to determine all parameters of the truss-beam element 
with the Eqs. (8), (9) and (10) and the properties of the cross section 

695



 
 
 
 
 
 

Oliver Eberhardt and Thomas Wallmersperger 

 

 2

4 bdA


  (11)

 4

64 bdI


  (12)

 4

32 bdJ


  (13)

 
Here db is the diameter of the bond cross section, which should not be mistaken with the 

global nanotube diameter used later in the present research. The length of the truss-beam element 
can be identified as the original bond length aC−C = 1.421 Å. It has to be mentioned here that this 
original bond length is used to calculate the truss-beam parameters for all the bonds, also when using 
the roll-up model which yields improper bond lengths. Hence, the undesired differences in the bond 
lengths in the roll-up model only have impact on the nanotube geometry. Summarizing, by using 
Eqs. (8)-(13) the parameters for the covalent bond E, G, db and l are obtained 

 
 

 k

lk
E r

4

2

  (14)

  

2

2

8 



 k

klk
G r  (15)

 

r
b k

k
d 4  (16)

 
CCal   (17)

 
As all the properties required to represent the covalent bond with the truss-beam elements are 

now defined, this concludes the modeling of the covalent bond. 
 
 
4. Numerical results of the mechanical properties and deformation behavior 

 
4. 1 Young’s modulus 
 
One major goal within the carbon nanotube research is the determination of the global 

mechanical properties of the individual carbon nanotubes and especially of the Young’s modulus. 
As a result of this, a virtual tensile test was conducted in order to calculate this property. This was 
done by fixing the nanotubes at one end while pulling at the other one with a tensile force resulting 
in 1% tensile strain of the investigated SWCNT. The application of these boundary conditions is 
shown in Fig. 8. The study was conducted for several armchair and zig-zag nanotubes with different 
diameters within the framework of the FE-package ABAQUS. 

One has to face several challenges in the calculation of the mechanical properties and especially in 
the calculation of the Young’s modulus. The reasons for these difficulties are due to the assumptions 
made and also due to the definition of the Young’s modulus which requires a scaling with respect to 
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the cross-sectional area. These assumptions are: 
• Linear elastic material behavior of the overall nanotube according to Hooke’s law. Since 

small deformations of the tube are considered, this statement seems reasonable. 
Furthermore, the applied harmonic potentials also require the assumption of small 
deformations since they describe a linear material behavior of the bonds within the 
nanotube. 

• A uniform distribution of the tensile stress on the CNT cross section. 
• The cross section of the carbon nanotube is a hollow cylinder with a wall thickness t. 
These considerations lead to a still ongoing discussion regarding the imagined cross section of 

the carbon nanotube. The challenge is, that it is not yet explained how a cross section, or, to be 
more specific, how a wall thickness can be defined for a structure which has a thickness of only one 
atomic layer. The most commonly used assumption for this wall thickness is the use of the interlayer 
spacing of graphite which is 0.34 nm. This assumption is also used in this paper, keeping in mind 
that the topic is still under discussion, see Fig. 9. 

It also has to be mentioned here, that these problems not only occur in theoretical but also in 
experimental studies concerning the mechanical properties of carbon nanotubes. Perhaps it would 
be better to determine not the Young’s modulus but a stiffness (EA) or an elastic spring constant 
EA/L, with the overall length L of the nanotube, as for the calculation of this stiffness it is not 
mandatory to define a cross section of the nanotube. However, since the results given in this 
research should be comparable to results available in literature, this research will state the Young’s 
modulus with respect to the above-mentioned assumptions regarding the nanotube cross section. 
 

(a) 

 

(b)

 

Fig. 8 Schematic representation of the mechanical boundary conditions for armchair (a) and zig-zag (b) 
nanotubes 

 

 

Fig. 9 Virtual cross section assigned to the carbon nanotube 
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Concerning the calculation of the Young’s modulus one has to follow the assumptions given 
above. The elasticity law for linear elastic material behavior yields 

  E  (18)

where σ, E and ε denote the carbon nanotubes stress, Young’s modulus and strain. The strain in 
longitudinal direction of the tube can be written in dependence of the numerically obtained extension 
of the nanotube ∆H, and the undeformed investigated nanotube length H 

 
  

H

H
  (19)

Furthermore the stress σ can also be written as 

 

A

F
         (20) 

where F is the tensional force the nanotube is subjected to, and A is the cross-sectional area. The 
cross-sectional area is calculated based on the wall thickness t and the circumference of the nanotube 
π  d  by 

 
tdA   (21)

As a result of this, the nanotube diameter d can be interpreted as the mean diameter of the 
annulus cross section. 

With all the assumptions and considerations given above the Young’s modulus can be determined 
by 
 

Htd

HF
E





  (22)

The numerical tests were performed with an approximate aspect ratio of H/d = 21. 
Consequently, the lengths of the investigated nanotubes range from 51.16 Å ((3,0), roll-up) up to 
342.11 Å ((12,12), roll-up). This given aspect ratio ensures that the nanotube is long enough to 
reduce boundary effects. To be more precise, the evaluated length used to calculate the Young’s 
modulus is not the whole nanotube length but a reduced length in the region of the nanotube where 
edge effects already decayed. This decay happens within the area of three unit cells from the 
nanotube ends for zig-zag nanotubes and six unit cells for armchair tubes, respectively. The edge 
effects are evaluated by comparing the deformed dimensions of a unit cell near the end with the 
deformed dimensions of one in the middle of the nanotube. 

The mentioned modeling approaches and assumptions lead, when conducting a virtual tensile 
test with armchair and zig-zag carbon nanotubes, to the following results for the Young’s modulus, 
see Fig. 10 and Tables 1 and 2. 

Fig. 10 shows that the Young’s modulus of small diameter armchair tubes is higher than the one 
of small diameter zig-zag tubes. For increasing diameters the values for the Young’s modulus of the 
armchair and the zig-zag tubes converge to approximately 1 TPa which is also near the commonly 
accepted value of graphene. When comparing the results for both different geometric models used in 
this research, one can notice that the Young’s modulus calculated on the basis of the roll-up model 
is larger than the one calculated using the exact polyhedral model, see Tables 1 and 2. It can also 
be observed that the deviation decreases with increasing diameters of the nanotubes. This is due to 
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the fact that when the diameter is increased, the geometry generated with the roll-up model matches 
the geometry of the exact polyhedral model better. Another difference can be recognized when 
comparing the progression of the Young’s modulus of armchair tubes in dependence of the diameter 
for both geometrical models. The results for the Young’s modulus based on the roll-up model 
basically show no dependence on the nanotube diameter at all. However, the results using the exact 
polyhedral model show a dependence on the diameter in terms of an increasing Young’s modulus 
with increasing diameter. The reason for these deviations can solely be the usage of the two 
different geometric models and the therefore resulting geometrical deviations. These deviations 
include (i) differences in the bond lengths (roll-up model) and (ii) differences in the calculated 
nanotube diameters. These deviations are discussed in more detail in section 4.2. 

In Fig. 11 a comparison between the results of the present research and some results available in 
literature is given. It can be observed, that all obtained values for the Young’s modulus are ranged 
in the area of around 1 TPa. Differences can be recognized when having a closer look at the 
dependence of the Young’s modulus with respect to the diameter. Some results show no or a weak 
dependence, while our results and the results computed by Tserpes and Papanikos (2005) show the 
already described dependence on the nanotubes diameter. This is an aspect in carbon nanotube 
research which is still under discussion. Furthermore it has to be noted that the deviations in the 
results for the Young’s modulus are partly due to the circumstance that the results in literature are 
based on the roll-up geometric model. The results of the present research depicted in Fig. 11 are 
obtained by applying the exact polyhedral model. 

 
 
 

Fig. 10 Numerical results of the Young’s modulus versus the nanotube diameter for armchair and zig-zag   
tubes when modeled with different geometrical approaches 

 
 

699



 
 
 
 
 
 

Oliver Eberhardt and Thomas Wallmersperger 

 

 
 

Table 1 Results for Young’s modulus of armchair SWCNTs 

(n,m) droll-up [Å] dpolyhedral [Å] Eroll-up [MPa] Epolyhedral [MPa] 
%100

polyhedral

 polyhedraluproll




E

EE

 
(2,2) 2.7139 2.9022 1 047 318 925 693 13.1 
(3,3) 4.0709 4.1956 1 044 141 989 103 5.6 
(4,4) 5.4278 5.5211 1 043 023 1 011 871 3.1 
(5,5) 6.7848 6.8593 1 042 504 1 022 509 2.0 
(6,6) 8.1417 8.2038 1 042 221 1 028 315 1.4 
(7,7) 9.4987 9.5519 1 042 051 1 031 825 1.0 
(8,8) 10.8556 10.9022 1 041 940 1 034 106 0.8 
(9,9) 12.2126 12.2540 1 041 865 1 035 672 0.6 

(10,10) 13.5696 13.6068 1 041 810 1 036 793 0.5 
(11,11) 14.9265 14.9603 1 041 770 1 037 623 0.4 
(12,12) 16.2835 16.3145 1 041 740 1 038 254 0.3 

 
 
 
 

Fig. 11 Young’s modulus versus nanotube diameter for armchair and zig-zag tubes. The results from the 
present research are based on the exact polyhedral model, the results given by other authors are 
based on the roll-up model with an assumed wall thickness of 0.34 nm. The results given here 
contain the works of Muc (2010), Theodosiou and Saravanos (2007), Wu et al. (2009) and 
Tserpes and Papanikos (2005) 
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Fig. 12 Orientation of the tetrahedrons in the nanotube unit cells and their dimensions 
 
 
 
4.2 Deformation behavior 
 
In this section an attempt is made to identify the possible bond deformations in the carbon 

nanotube structure in order to get a better understanding of the deformation behavior of carbon 
nanotubes. It is useful to focus on a single tetrahedron inside the carbon nanotube. The reason for 
this is that it is possible to describe the deformation of the whole nanotube by the deformation of 
a single representative tetrahedron, see Fig. 12. This approach is shown in the present research by 
two different applications. The first one is the comparison of the results when using different 
geometrical models. The other application of this approach is to get a better understanding of the 
deformation mechanisms governing the mechanical behavior of carbon nanotubes. 

Fig. 12 shows a representative tetrahedron in the unit cells of armchair and zig-zag carbon 
nanotubes. This figure also depicts the geometry of the tetrahedron, which is defined by the bond 
lengths and angles. The lengths are named r1 and r2 and the bond angles are θ1 and θ2. It can be 
noticed that only two bond lengths and bond angles are distinguished. The explanation for this is 
that the nanotube deforms under tensile load in a way in which only two different values for the 
bond stretch and the bond angle occur. Furthermore, the curvature effects in tubes modeled with the 
roll-up geometric model lead to two different bond lengths in the undeformed state of armchair and 
zig-zag tubes. More details concerning the deformation behavior are given later in this section. 

 
4.2.1 Comparison of the geometrical models 
Regarding the comparison of nanotube properties when using different geometrical approaches, 

it is useful to focus at first on the properties of only one particular carbon nanotube, for instance, 
the (6, 0) zig-zag nanotube with a length of 25 unit cells. The nanotube is tested in a virtual tensile 
test and was subjected to 1% of tensile strain. When comparing the results for the Young’s modulus 
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of this tube, see Table 3, it can be seen that the Young’s modulus for the tube modeled with the 
roll-up model is higher than the Young’s modulus for the one modeled with the exact polyhedral 
model. This difference can be explained with a closer look at the dimensions of the undeformed 
tetrahedron in the nanotubes as it is given in Table 3. In this table, a difference in the bond lengths 
r1 and r2 in the undeformed state of the nanotube when using the roll-up model is shown. As 
already shown in section 3.1, the occurrence of unequal bond lengths is an undesired effect of the 
roll-up model as a result of the improperly accounted curvature during the rolling of the graphene 
sheet. The same problem can be observed when comparing the bond angles θ1 and θ2 in the 
undeformed state of the tube using the roll-up model. The exact polyhedral model doesn’t show this 
issue, since it computes equal bond lengths and angles. The unequal dimensions occurring in the 
roll-up model result in a different load distribution inside the nanotube when compared to the 
exact polyhedral model and hence in the deviation of the values for the Young’s modulus. For 
larger diameters the geometrical deviations decrease and also the differences in the Young’s 
modulus become smaller. As example for this effect refer to Table 4, where the undeformed 
dimensions of a (6, 6) armchair SWCNT with a length of 70 unit cells are given. Compared to the 
(6, 0) zig-zag tube, the (6, 6) armchair tube has a larger diameter resulting in smaller deviations 
between the roll-up and the exact polyhedral model. 

 
 
 

Table 2 Results for Young’s modulus of zig-zag SWCNTs 

(n,m) droll-up [Å] dpolyhedral [Å] Eroll-up [MPa] Epolyhedral [MPa] %100
polyhedral

 polyhedraluproll




E

EE
 

(3,0) 2.3503 2.6795 871 930 605 892 43.9 
(4,0) 3.1338 3.3797 935 472 778 011 20.2 
(5,0) 3.9172 4.1130 970 011 867 866 11.8 
(6,0) 4.7006 4.8632 990 389 919 155 7.7 
(7,0) 5.4841 5.6231 1 003 280 950 872 5.5 
(8,0) 6.2675 6.3890 1 011 904 971 762 4.1 
(9,0) 7.0509 7.1588 1 017 937 986 219 3.2 

(10,0) 7.8344 7.9314 1 022 315 996 625 2.6 
(11,0) 8.6178 8.7060 1 025 587 1 004 359 2.1 
(12,0) 9.4013 9.4820 1 028 096 1 010 260 1.8 
(13,0) 
(14,0) 
(15,0) 
(16,0) 
(17,0) 
(18,0) 
(19,0) 
(20,0) 

10.1847 
10.9681 
11.7516 
12.5350 
13.3185 
14.1019 
14.8853 
15.6688 

10.2592 
11.0373 
11.8161 
12.5955 
13.3754 
14.1556 
14.9363 
15.7171 

1 030 060 
1 031 626 
1 032 894 
1 033 935 
1 034 800 
1 035 527 
1 036 142 
1 036 669 

1 014 865 
1 018 525 
1 021 483 
1 023 907 
1 025 918 
1 027 604 
1 029 032 
1 030 252 

1.5 
1.3 
1.1 
1.0 
0.9 
0.8 
0.7 
0.6 
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4.2.2 Investigation of bond deformation in armchair and zig-zag nanotubes 
Besides the investigation of the two presented geometrical models the understanding of the 

deformation mechanisms of the carbon nanotubes is another interesting topic. The basic question to 
deal with in this context is how the deformed tube arises from the original configuration. To get a 
deeper understanding of this it is necessary to look at the unit cells in the nanotubes and in 
particular to focus on the deformations of each single covalent bond. At this level it is possible to 
distinguish the bond deformations into the three types mentioned before, namely the 
• bond stretching, 
• bond angle bending and the 
• bond torsion. 
Hence, it was investigated in which bonds of the armchair and zig-zag tubes the mentioned 

bond deformations occur. An overview on the deformations in the unit cell of armchair and zig-zag 
nanotubes is given in Fig. 13. Even though the figure depicts a (6, 6) armchair and a (10, 0) zig-zag 
unit cell, the considerations made in this section are valid for arbitrary armchair and zig-zag 
nanotubes. A more detailed view of the bond stretching and bond angle bending of the investigated 
tubes is given in Fig. 14. In the following, the possible bond deformations are analyzed and 
described in detail. 

 
Bond stretching: Bond stretching can be found in both, armchair and zig-zag nanotubes. 

However, the armchair and the zig-zag tubes show a different behavior of the bond stretching. 
Starting with the armchair tubes, a stretching can be noticed only in the covalent bonds which 

are not perpendicular to the nanotube axis (blue color), see Fig. 13 (left). For a closer look of the 
bond stretch behavior, the original bond lengths given in Fig. 14(a) are used as starting point. With 
this geometry in mind it is possible to extract from Fig. 14(c) that the blue colored bonds with the 
original length r2 both show the same extension ∆r2 of the bond. The black colored bonds with the 
original bond length r1 show no bond stretching at all. 

Table 3 Undeformed dimensions of a representative tetrahedron in a (6, 0) zig-zag tube 

undeformed state roll-up exact polyhedral %100
 

polyhedral

polyhedraluproll




X

XX
 

r1 [nm] 0.142100 0.142100 0 
r2 [nm] 0.140888 0.142100 0.86 
  [°] 113.05 117.65 4.07 
 2  [°] 120.28 117.65 2.19 

E [MPa] 990 389 919 155 7.70 

Table 4 Undeformed dimensions of a representative tetrahedron in a (6, 6) armchair tube 

undeformed state roll-up exact polyhedral %100
 

polyhedral

polyhedraluproll




X

XX
 

r1 [nm] 0.141380 0.142100 0.51 
r2 [nm] 0.142055 0.142100 0.03 
  [°] 120.06 119.24 0.68 
 2  [°] 118.85 119.24 0.33 

E [MPa] 1 042 221 1 028 315 1.4 
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armchair  zig-zag 

 

undeformed unit cell 

 

 

bond stretching 

 

 

 

 
bond angle bending 

 

 

bond torsion 

‘  

 

deformed shape 

 

Fig. 13 Deformation mechanisms in armchair and zig-zag carbon nanotubes. The red arrows in the 
undeformed unit cell indicate the direction of the tensile test 
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armchair zig-zag 

(a) 

 

(b)

 

(c) 

 

(d)

 

(e) 

 

(f)

 

(g) 

 

(h)

 

Fig. 14 Detailed view at the deformations occurring in armchair and zig-zag carbon nanotubes. The 
deformed configuration is represented by dotted lines 
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In the zig-zag nanotubes all the bonds show an extension. Again, the original bond lengths are 
given in Fig. 14(b). In these tubes two different values for the tube extension can be distinguished 
(blue and red colored), see Fig. 14(d). Here, the red bonds in the direction of the nanotube show 
larger bond extensions ∆r1 than the blue bonds, in which a bond extension of ∆r2 can be observed. 

 
Bond angle bending: Bond angle bending can be found in both investigated nanotube types. In 

Fig. 13, a decrease of the bond angle is depicted with a blue colored triangle, while an increase is 
shown by a green triangle. For armchair and zig-zag type SWCNTs two different bond angle 
changes can be observed. 

Concerning the behavior of the armchair tubes, the considerations again start by looking at the 
original dimensions of the bond angles which are given in Fig. 14(a). As it can be observed in Fig. 
13, two different bond angle changes have to be taken into account. These bond angle changes are 
given in detail in Figs. 14(e) and 14(g). Here, an increase of the angle θ1 and a decrease of the two 
angles θ2 is observed. It has to be noted that the increase of θ1 is not equal to the decrease of the 
two θ2 angles since the tetrahedron where these angles are defined in, is a spatial structure. 

Regarding the zig-zag nanotubes, the original dimensions are given in Fig. 14(b). Analogous to 
the armchair tubes, the zig-zag tubes show two different bond angle changes. From Figs. 14(f) and 
14(h) a decrease of the angle θ1 and an increase of the angles θ2 can be extracted. Due to the 
reasons given above, the decrease and the increase of the corresponding angles are not equal. 

 
Bond torsion: Armchair tubes do not show any bond torsion at all. In zig-zag tubes it is 

possible to observe bond torsion in the blue colored dotted bonds. These are the bonds which are 
not orientated in the direction of the tube axis. 

The geometry of the representative tetrahedron is defined by the bond lengths and bond angles 
only. Within this research it is assumed that bond torsion affects the bond angle change. This is the 
reason why no separate detail figures for the bond torsion are given in Fig. 14. 

 
Fig. 13 also shows the deformed shape of the unit cell, when the whole carbon nanotube is 

subjected to a tensile force. 
Tables 5 and 6 present the deformed dimensions of representative tetrahedrons in a (6,0) 

zig-zag and a (6,6) armchair tube. For comparison with the undeformed dimensions please refer to 
Tables 3 and 4. The conclusions given in this section are valid for the whole investigated unit cell. 
Furthermore, they are valid for every unit cell of the nanotube with a sufficient distance from the 
nanotube ends where edge effects already decayed. Estimated reference values for this distance are 
six unit cells for armchair and three unit cells for zig-zag nanotubes. 

 
 

Table 5 Deformed dimensions of a representative tetrahedron in a (6, 0) zig-zag tube 

deformed state roll-up exact polyhedral %100
 

polyhedral

polyhedraluproll




X

XX

r1 [nm] 0.143371 0.143320 0.04 
r2 [nm] 0.141208 0.142386 0.83 
 1  [°] 112.46 117.08 3.95 
 2  [°] 120.61 117.98 2.23 
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Table 6 Deformed dimensions of a representative tetrahedron in a (6, 6) armchair tube 

deformed state roll-up exact polyhedral %100
 

polyhedral

polyhedraluproll




X

XX

r1 [nm] 0.141380 0.142100 0.51 
r2 [nm] 0.143060 0.143095 0.02 
 1  [°] 120.64 119.83 0.68 
 2  [°] 118.57 118.96 0.33 

 
 

4. Conclusions 
 
In the present research a molecular mechanics approach was applied to single wall carbon 

nanotubes (SWCNTs) in order to (i) calculate their mechanical properties (Young’s modulus) and 
to (ii) provide a deeper understanding of the governing deformation mechanisms. 

In the molecular mechanics approach two different issues were taken into account: (i) the 
nanotube geometry and (ii) the representation of the covalent bonds. Regarding the nanotube 
geometry, two different geometrical models, the roll-up and the exact polyhedral model according 
to Cox and Hill were applied. The bond representation was based on the molecular structural 
mechanics approach by Li and Chou. A virtual tensile test was conducted for several armchair and 
zig-zag nanotubes with different diameters. Beside the main targets mentioned above, the 
numerical simulation was used to illuminate the deviations arising from the application of the 
different geometrical models. Regarding these topics of the present research, the following 
conclusions can be drawn: 

 
Young’s modulus 
• The Young’s modulus calculated in the present research is in excellent agreement with 

results available in literature. 
• The dependence of the Young’s modulus versus the diameter still needs further investigation 

since the results available in literature show different progressions. 
• The calculation of a stiffness instead of the Young’s modulus is proposed in order to avoid 

assumptions which cannot be conciliated with physical basics. 
 

Comparison of the geometrical models 
• When comparing the results of the Young’s modulus calculated with the two different 

applied models, one can observe that: 
– Nanotubes modeled with the roll-up model show a higher Young’s modulus than the 

nanotubes based on the exact polyhedral model. 
– Armchair tubes show a different dependence of the Young’s modulus versus the 

diameter for the different applied geometrical models. 
– The deviations arising when different geometrical models are applied decrease for 

increasing nanotube diameters. 

707



 
 
 
 
 
 

Oliver Eberhardt and Thomas Wallmersperger 

 

Investigation of bond deformation in armchair and zig-zag nanotubes 
• The decomposition of the nanotube deformation into the contributions stemming from each 

individual bond provides a deeper insight into the deformation mechanisms of carbon 
nanotubes. 

 
In further research an enhanced decomposition of the nanotube deformations will be 

investigated, in which the role of the bond torsion is illuminated in more detail. After the 
clarification of the bond torsion influence, other load cases besides tensile loading will be 
investigated in order to extend the understanding of the deformation behavior of carbon nanotubes. 
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