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Abstract. In this paper, we investigate the vibration control of multimodal structures and present an
efficient control law that requires less energy supply than active strategies. This strategy is called modal
global semi-active control and is designed to work as effectively as the active control and consume less
power which represents its major limitation. The proposed law is based on an energetic management of the
optimal law such that the controller follows this latter only if there is sufficient energy which will be
extracted directly from the system vibrations itself. The control algorithm is presented and validated for a
cantilever beam structure subjected to external perturbations. Comparisons between the proposed law
performances and those obtained by independent modal space control (IMSC) and semi-active control
schemes are offered.
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1. Introduction

Traditionally, there were two categories of vibration control based on the power flow in
dynamic subsystems namely passive and active. Active strategies have good performances but
necessitate an external power supply to apply control in opposite of the passive ones. A third
intermediate strategy has been introduced since the early nineties (Jolly and Margolis 1997) where
the system is not passive, yet, on average, more energy flows into it than out of it. It is called a
semi-active system (or sometimes semi-passive) (Takakbatake and Ikarashi 2013, Zhou et al.
2012). Among the semi-active systems, we find the regenerative systems which offer the
possibility of being self-sustainable which would reduce the dependence on an external energy
source as for active systems. Jolly and Margolis (1997) examined two practical implementations of
a regenerative subsystem which are base-excited suspensions and periodically excited compound
mounts. They showed that the proposed suspensions were able to exhibit positive average energy
absorption regardless of the nature of excitations in opposite of compound mounts which depend
on the input spectrum nature.

In fact, the system vibrations energy will be extracted, converted into a useful form and reused
to power a control law instead of being lost. The primary focus has been on regenerative dampers
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in automobile suspension systems. Gupta et al. (2006) presented two different regenerative
electro- magnetic shock absorbers (linear and rotatory) that use the dissipated energy resulting
from the roughness of the roads to enhance the damping. Snamina et al. (2009) investigated the
feasibility of a regenerative vibration control system constituted of a DC motor used as the energy
regenerative damper that converts the vibration energy into electric energy stored in a capacitor or
battery. They showed that the energy stored in the capacitor can be used to supply the transducer in
skyhook circuit in the case of a truck or cabin suspension. Huang et al. (2011) compared two
different control modes (Consumptive Full Active (CFA) and Regenerative Semi Active (RSA)
modes) for an electromagnetic suspension actuator. They used a main/inner-loop structure for the
active control, and the energy flow states of the actuator are analyzed by simplifying the inner-
loop control system. They demonstrated that the CFA mode can improve vehicle ride comfort by
more than 30 percent, despite battery energy consumption, and in RSA mode, the ride comfort can
be improved by up to 10 percent with the battery charged by regenerated energy. Recent works
introduced a regenerative control approach called” global semi-active control” (Ichchou et al.
2011). Based on the reuse of the energy coming from the system vibrations, the energy
management consists in switching between two control schemes that are the optimal active and the
semi-active ones. It seems to effectively enhance the vibrations control performances. They
offered the required algorithms to calculate the energy management term which will decide the
phase switching. Numerical results for discrete systems with a very limited number of degrees of
freedom like a quarter vehicle suspension or a deck system were given. They demonstrated that
vibration attenuation capacities of the proposed strategy approach those of the pure active one and
exceed those of the semi-active one. The stored energy seems to increase which lets hope to
significant reduction in the energy consumption for real systems.

In this paper, the vibration control is specifically applied to continuous flexible structures. In-
deed, emerging from their potential modes interferences, the control solution might be unstable. It
is here necessary to design a multi-mode controller that can effectively suppress vibrations at and
near specific natural frequencies of interest, but does not introduce unwanted vibrations at other
natural frequencies (i.e., spillover) (Inman 2001). Another specific issue to be addressed is a
consequence of these system’s high order. The higher the order is, the larger is the amount of real
time calculations is. This drawback can limit the controller performances or even prevent it from
working properly.

Practical requirement for the controller of this kind of structures is employing a minimum
number of sensor-actuator pairs using a simple design structure. The principal methods that can be
found in the literature for controlling multi-mode vibrations include: positive position feedback
control (PPF) (Wang 2003), independent modal space control (IMSC) (Meirovitch 1990, Nyawako
et al. 2011) and modified independent modal space control (MIMSC) (Fang et al. 2003). In IMSC
method, the control law is designed in the modal space for each mode independently which yield
to uncoupled motion equation in modal coordinate system. Thus, IMSC scheme requires an
appreciable less amount of calculation quantity than the coupled control and also, if the number of
controlled modes and actuators is the same, controllability is always satisfied and the control
spillover will be minimized which actually presents an important disadvantage restricting its
application field. So, MIMSC scheme was developed which is a time-sharing technique possible to
be applied when the number of actuators is inferior to the controlled modes. The main advantage
of MISMC method is the reducibility of the number of actuators, yet it requires a high
computation load imposed by the need to calculate and compare the energies in all modes of
interest at every time interval.
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As mentioned above, the idea of the control strategy is to use the vibrational energy of the
system in order to supply the controller in the case of multimodal structures which is called”
Modal global semi-active vibration control”. The vibrational energy is extracted via piezoelectric
transducers, converted into electric energy and stored in accumulators. If the available energy
amount is sufficient, then optimal control is addressed. Otherwise, vibrations are simply damped
(semi- actively) through extracting their energy and storing it until the next cycle. A similar work
has been recently offered by Makihara et al. (2012) where they developed a self-powered
semi-active strategy for multimodal vibrations suppression. Yet, they managed to design a digital
fully autonomous controller that requires no external energy even for the microprocessor, sensors,
switches in opposite to our study, where the re-injection of the stored energy was not undertaken.
In fact, they assumed that the piezoelectric transducer works as semi- active vibration suppressor
actuator and as power supply to drive the microprocessor, while, in our study, piezoelectric
transducers are only used as energy scavengers and switching is based on the energy amount test.
They also performed a comparison between their proposed digital and the conventional analog self
powered systems (Niederberger et al. 2006) and demonstrated that dig- ital systems have the
advantage of being programmable and able to implement any sophisticated control scheme and
advanced filtering algorithm, thus suitable for complex multi-input/multi- output systems
(Shimose et al. 2012). In addition, digital self-powered systems have excellent performances and
excellent stability.

Inspired from the controlling strategy developed for the continuous modal structures, the paper
firstly presents in section 2, the modeling of the system to be studied. The deduction of the relative
reduced-order model to be used is part of this first stage. In section 3, the definition of the global
semi-active control strategy is presented including the required mathematical tools, constraints to
respect, active calculation to derive the optimal law to track and energetic comparisons as well as
the development of the modal control algorithm. Finally, in section 4, numerical results discussing
the performances of the proposed law are compared to the fully-active and the semi- active ones.
The system energy transfer and distribution is also investigated emphasizing the storing phases of
the law.

2. Modal space representation

Flexible structures are inherently distributed parameter structures with infinite degrees of
freedom which request a high computational effort if using the full system model. That is why,
modal reduction methods are preferred. Yet, a feedback controller based on a finite reduced modal
model may destabilize the residual modes. This part of unmodeled dynamics may lead to spillover
problems on real applications (Meirovitch and Baruk 1983). Since an excited structure has
preferable modes of vibration which depend on the spectral content of the excitation, the lower
order modes are assumed to be the most significant to the system global response. This way, the
full order model can be reduced to those modes with a faithful restitution of the dynamic behavior.

In the following example, a cantilever beam subjected to external forces is considered for
vibration control study. The full model equations of motion are derived according to the following
Equation with Xx(t) being the generalized nodal displacement vector.

M .X(t) + C.x(t) + K.x(t) = Lu(t) (1)
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where: M, C and K are the structural mass, damping and stiffness matrices of the beam
respectively, X(t)and X(t) are the velocity and acceleration vectors respectively, L is the location

matrix of the control force u(t). The eigenvalue problem is then solved by using the modal
transformation matrix ¥ and the modal reduced displacement vector q=[q, g, .. g ]t :
(i=1 .. n)suchthatx = Y.q. The equations of motion relatives to the reduced n eigenmodes, are
now uncoupled and can be written as

G+ diag (25w;)d +diag (w)q = f (t) &)
where w, and ¢& are the natural eigenfrequency and the damping ratio of the i mode
respectively, —and  diag(2&w,) = (¥"MP)"™'C¥ , diagWw’)=(P¥'"M¥)'¥'KY and

f(t)=(¥"M¥) ¥ Lu(t). The modal control force f(t)=[f, f
control vectoru(t) . Consequently, each control force f; corresponding to mode i depends on all

the modal co- ordinates which leads to the problem of recoupling our decoupled equations.
Methods avoiding this recoupling issue are presented in section 2.1.
The state space approach is the basis of the current control theories and is strongly
recommended in the design and analysis of control systems with a great amount of inputs and

outputs (Williams et al. 2007). Let X (t) be the state vector such that X (t) =[q(t) q(t)]‘, Eq. (1)
can be written in the form of a linear, first-order state space differential equation

X (t) = AX (t) + Bf (t) (3)

f,]' is related to the physical

2

with
0 I } {0}
A=| -
~diag(w?) -diag(25w,) |

where A is the modal state matrix, B is the location matrix of the modal control forces, and | is the
n-rank identity matrix.

2.1 Independent Modal Space Control (IMSC)

Independent modal space control method is used to derive the global control force f (t), since

it has the advantage of restating the problem as a set of independent modal equations which will
permit decoupling equations and thus simplifying the controller design. For that, the global
control force f(t)will be composed of N¢ chosen modal feedback forces such that

f)=[f@® f,@t) .. f,®], i=1.N, and the modal feedback control force f;(t)depends on

the corresponding modal coordinates ¢;(t) and (;(t) through the following equation

fi(t)= —0.0 — gziQi 4

Thus, the global modal control force is written as
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f(t) =[diag(g,) diag(g,)]X(t)
= gX(t)

The global gain matrix g is calculated through an optimal scheme consisting on the
minimization of a quadratic performance index J

()

J:

O sy 8

(xTQX+fTRf)dt (6)

where Q is the positive definite or semi-positive definite weightening matrix and R is the positive
factor that weights the importance of minimizing the vibration with respect to the control forces.
Instead of minimizing the global performance index J, we chose to limit the study to N¢ modal

cost functions J; such that J =[J; J, --- J;],i=1---N_ (Zhang et al. 2008). These latter modal
cost functions depend on the modal control force f, (to minimize the control input effort), the

mode states g, (through minimizing the potential energy of the structure w?g?) and G, (through
minimizing the Kinetic energy qiz) and can finally be written as

Ji=[T[(wha? +7)+ n £ Jot, i=1.N, )

The closed-form solution g, and g, of the gain matrix which permit minimizing the
performance index J, can be obtained by the formulation given by Meirovitch (1981) such that

g, =—W +W, /W.2+l

1 i i i R
g, :\/—Zwi2+£+2vvi /Wi2+1
' R R

By substituting the expression of J,in Eq. (6), the expression of matrix Q and R can be
deduced to Q =[diag(w’) eye(N,)]and R=[diag(r)]respectively.

(8)

2.2 Modified Independent Modal Space Control (MIMSC)

Independent modal space control method is useful as it allows system decoupling and efficient
control of vibrations. However, it does not take into consideration the previous vibration history of each
mode meaning that we are not necessarily controlling the modes that are the most excited by the
disturbance forces at each time t. In addition, using IMSC method necessitates having as much actuators
as the modes to be controlled. To overcome these limitations, ISMC method was improved and the
energy of each mode is calculated at a specific interval of time so that the control will be directed to the
modes with the highest energy for the period of interest. This method is called Modified Independent
Modal Space Control (MIMSC) (Fang et al. 2003). Since only the highest energy mode checked at

instant t is attenuated, which is different from that corresponding to instant t =t , the number of
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actuators can also be reduced.
Now the reduced system model is obtained and the global control force f (t)determined, the

global semi-active vibration control scheme to use can be completely introduced.

3. Modal global semi-active vibration control law

The control strategy globally manages the system energy which consists of two categories: the
energy extracted from vibrations and stored in the accumulators and the dissipated energy used to
power the actuators in a way these latter switch between two control types which are the optimal
scheme and the semi-active one. Actuators will operate under the purely-active law when the
available energy allows them to or under the semi-active one if not which is possible through
extracting energy from vibrations and storing it in the accumulators. It is clear then that storage
devices are needed in this control scheme (called accumulators) as well as an energy management
device responsible of the switching operation between the two different control types. A major
advantage can be instantly deduced from the proposed law which is the reduction of the energy
consumption required for the control law. We will present in section 4 the performances of the
global semi-active scheme which approach very much those of the fully-active ones as well as the
energy evolution of the system.

3.1 Constraints on accumulators and actuators

In order to be able to apply the global semi-active control, storage (accumulators) and actuation
(actuators) devices are needed. Consequently, two constraints that may affect the control
performances have to be introduced. The first limitation is related to the stored energy amount
which itself depends on the accumulators capacities meaning that, at each time t, the stored energy
amount has to be bounded by two extreme values Emin and Emax such that

Eno SE(N)<E,, Ve[t t] ©)

The second limitation deals with the control force that the actuators are supposed to deliver. In
fact, the control is displayed by piezoelectric actuators (collocated piezoelectric patches bounded
on the beam) and the control force f (t)is proportional to the feedback control voltageV (t). In

this case, V (t)is the physical control force and matrix L includes the electro-mechanical constants

of the piezoelectric patches. The voltage limitation of the of the piezoelectric actuators results in
the limitation of the produced control force such that

|f]<f f max >0 (10)

max !

Moreover, for stability reasons, actuators saturation must be avoided i.e., they must be able to
function regardless of the available stored energy level and also extract energy from the system
even if one accumulator is already full. A Boolean function b(t) is therefore introduced to define
the sequence disconnection between actuators and accumulators, and we have b(t) = 1 when
actuators and accumulators are connected and optimal control force is delivered and b(t) = 0
otherwise i.e., actuators extract energy and store it in the accumulators which make them operating
like conventional semi-active actuators. The switching between these two states is decided in
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function of an energy management term I which will be introduced in the following section.
3.2 Algorithm of the control strategy

The minimization of the cost criterion J resulted in the determination of the optimal control
force further denoted f__ (t) (section 2.1), the knowledge of the initial conditions as well as the

gsa
definition of the constraints on the accumulators and actuators (section 3.1) permits setting the
global minimization problem denoted below as (P)

X = AX + Bf
E,.. <EM)<E_ vtelt, t]
(A ES- f max >0, when b(t)=0
X(t,) =X,, E(t,)=E,

In order to be able to apply the global semi-active control to a multimodal structure, the
optimization problem will be addressed for each mode apart (i.e., each mode will be considered as
a 1 d.o.f system). The needed power amount for the piezoelectric actuators to deliver the optimal
control force denoted f e, (1) corresponding to each mode i (which is supposed to be supplied

from the accumulators) is electrical and can be calculated by Shu et al. (2006) through the
following expression

2
Ei — bWCPZT M
2 (11)

_b WZCO;’ZZT (fu )

where W, and C,,, are the radial frequency of voltage, the piezoelectric constant and
capacitance respectively. The equivalent model of the system for mode i is represented in Fig. 1.

L
K, +Kp1:r§ Cil: ol %‘i(tF av(t)

7777777

Fig. 1 Equivalent model of the system in neighbour of mode i
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Consequently, we will have N, modal global minimization problems to solve through
minimizing their corresponding Hamiltonian functions H; relative to each mode separately, and we
get

Hi =(X.QX, + 5 f )+ A (AX, +b f, = X;)

+Fi(Ei—b Wom fj (B —En)+7 (E~En) (12)
a
"'(_ﬂli (fl - fmax)_‘_ﬂzi ( fi - fmax ))
with 4,7.,7,., 5., B, andI'; being the set of required Lagrange multipliers. A,B;,Q, are

the reduced state matrix, actuator location matrix and weightening matrix corresponding to mode
I respectively.
The minimization of H, with respect to the state coordinates gives the following expression of

4

oH;
x =(X{Q+4'A-4)=0
(13)
= 4 =-QX;~A'4
and the modal control force is obtained by
OH,

—:(fir +A'B ~Tb. PZTfj

: 2a°

(rf+B% -T,b. F’ZZTf) 0 (14)
2a

The minimization of H; with respect to the power amount provides the expression of I’ at
instant t

%:(_H 7, +fi)

0

(15)
:Fi =0, 7

The minimization problem relative to each mode i can then be written as
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X;=AX;+Bf,
j’. =-QX; - Atiﬂf.
—b'4
f=—"
WCPZT

ri_rib 2
2a

fi = 7/11. _7/2i
3.2.1 Available energy

In order to calculate the value of the available energy, we need to have a direct relationship
between T';and E,. So, we substitute the expression of the control force

2

WCPZT ] Bitﬂ’l (16)
o Woezr
Y298

E =b
: 2a°

An additional constraint relative to the energy management term I, arises from the previous
Eqg. (16). In fact, because I, is related to the amount of energy stored in the accumulators Ei , it
I ] to respect the physical limitations of both actuators

and accumulators. When these last conditions are satisfied, we can calculate the value of the
energy management term and we get

must rely in an eligibility interval [F

min

2

2 t

AR P .1 (17)
WCp; 20[2Ei
bwCp,;

However, it is necessary to study the state of the system at instant t where a control switching
is required i.e. the corresponding value of I'; which is equal to its previous value at instant t_,
causes a saturation of the accumulator and thus has to be readjusted to a new one denoted fi
satisfying Eg. (16). Let denote fi the displayed value of I';at the switching instant from which
we can deduce the value of the displayed control force ﬁwhich, itself, is not satisfying the
accumulator limitations, such that

-BiA(t,)

~ wC
h=I (tn)bTPzZT

Now, the value of the readjusted energy management term can be calculated from Eq. (17) and

fi(t,) = (18)
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we have

2 t
P ) =22 | BAt) (19)
WCp,r . 20°E,(t,)
i bwCppy

By replacing the expression of the displayed control force (Eq. (18)) in (Eq. (19)), we get
1 2a 20

fl(tn):—[bnﬁ(tn)—+f|(tn)J+ﬁ— (20)
2a° E (t,) WCp;; bwC,;
bwC,

The value of Ei (t,)in Eq. (20) enables us to calculate the value of the maximum available

2

instantaneous force further denoted . through the relationship Eq. (11) and the expression of the

readjusted value of I, can be finally obtained by
~ 2a2 ~
brl fi(tn)i_i_l—‘i(tn) 2
w 2a

I(t)= il A +r 21
) () e, ¢y

[Xt), fita), Bilt), Tifta 1))

Tt} = et 1}
Filta) = —=, Y(BEX(ta) _fi(tn)ﬁixi{f'n optimal foree

¥
, B2 = K(BL2), Ffen)) |

optimal controly ¥

I——|x‘ﬂ-n), [tn), Bltmir). Ciltn) oo

Fig. 2 Algorithm of modal global semi-active control
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The global management term I'at instant t,, when switching is required, is chosen to equal

~

the modal energy management term fi corresponding to the highest modal control force f, to be

applied i.e., the mode with the highest vibrations level. With this procedure, we are sure that at
each time path, we are addressing the mode that influences the most the overall response of the
beam and thus obtaining the best vibration attenuation performances with the lowest control effort.

From an industrial implementation consideration, readjusting the value of I, at each time path

is not practical and certainly not attractive. So, a suboptimal algorithm is developed in order to
avoid this heavy calculation effort and instead, the switching will occur as soon as a saturation in

the accumulator is depicted (i.e., limits of E, (t) are not respected). The algorithm is detailed in
Fig. 2.

4. Simulations and discussions

In this section, the capacity of the proposed modal global semi-active control (MGSA) to
efficiently attenuate a cantilever beam vibrations (see Fig. 3) is investigated and the performances
of this method are compared to the purely active ones obtained with IMSC scheme as well as to
the semi-active (SA) scheme. The SA scheme performed herein is driven by shock absorbers
producing an actuating force opposite to the vibration’s level (in our case the velocity level). The
power requirement is expressed by the product of the actuating force and the relative velocities at
the actuators’ ends. The modal response of the beam is initially reduced to the five first modes
which appeared to be the most energetic and here the most interesting to the overall response.

The corresponding natural frequencies are listed in Table 1. The time domain response of the
cantilever beam is given (transverse displacement) for two types of disturbance: harmonic and
random. The harmonic disturbance is a sinusoidal signal whose frequency is close to the first
natural frequency of the system. The frequency bandwidth of the random disturbance ranges from
10 to 600 Hz.

y s Accenmulaters
mechanic stored energy
vibratory energy

Ly e ’enmpermrhations
)
1
1

FRLRSRR LRy

acluator beam
(PZT patches)

control force Cemtroller

energy management

Fig. 3 Global semi-active of a cantilever beam
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Table 1 Natural frequencies of the beam
Model Mode2 Mode3 Mode4 Mode5

Frequency (Hz) 40.26 221.26 641.74 1.2310° 2.06 10°

Table 2 RMS values of the cantilever beam transverse displacement

RMS values Uncontrolled IMSC MIMSC
Beam Transverse displacement (m) 0.1638 10-7 0.1520 10-7 0.0348 107
_x10° Displacement variation
7 ' ! " uncontrolled
‘B‘ 1u—n 0.5 1 1.5 2
IMSC
Bo° 0.5 1 15 2
MIMSC
£ DIAMAAANAANAAM VWAMAAAAAAAAAAAAANAAAMARAAANANN

(a) Transverse displacement variation

Frequency response

— uncontrolled
IMsc
MIMSC

2 Frequency {Hz)
10

(b) Frequency response
Fig. 4 IMSC / MIMSC response comparisons

4.1 IMSC and MIMSC comparisons

The control here addresses the first three modes of the beam for the IMSC scheme and the
MIMSC one. The comparison between these schemes is based on the RMS values (Root Mean
Square) of the displacement and the velocity time responses. In addition, the frequency responses
are also analyzed. We notice that MIMSC provides better performances in the time domain (see
Fig. 4(a)) since for the specified chosen time interval, the mode with the highest energy (which is
governing the overall response of the beam) is controlled, so the vibration’s attenuation is
enhanced in comparison to IMSC scheme (see Table 2). However, for frequency responses,
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MIMSC (++ marked curve) scheme shows identical performances to the IMSC scheme (dashed
curve) for the first mode (see Fig. 4(b)).

This can be explained by the fact that, at each time, the first mode is the dominant one.
Therefore, it catches all the action of the controller. MIMSC scheme appears to be less efficient for
the mode 2 and 3, yet approaching the performances of the IMSC one.

For these reasons, the IMSC scheme will be the only scheme to draw the comparison with the
proposed modal global semi-active control (MGSA).

4.2 IMSC, MGSA and SA comparisons

In this work, the efficiency of the modal global semi-active law (MGSA) is intended to be
assessed. That is why, its performances are to be compared along with those of the semi-active
scheme (SA) to the IMSC active ones. One of the main aspects of the proposed control strategy
(MGSA) is to use harvested energy from the structure itself (Fig. 5) in order to supply the
actuators (Makihara 2012). The energy-harvesting circuit consists on an AC-DC rectifier (diode
bridge) followed by a filtering capacitance C, used to smooth the DC voltage (Shu et al. 2006).

4 Global stored energy

1.5 2

0 0.5

Fig. 5 Evolution of the stocked energy

CEl_ Rg TVS

Fig. 6 AC/DC harvesting circuit
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The harvested power is calculated through a resistive load R mounted in parallel to C,, as
shown in Fig. 6, and is expressed as follows

VE() .
R(t)= 'R()=Ei(t)

| (22)
where VCj (t) is the rectified voltage across the resistive load R and Ij (t) is the current flowing
into the circuit for the corresponding mode vibration i.

From this observation, one can expect this technique to reduce the structure’s vibrations by taking
some of its energy at least. Time responses (through RMS values) and frequency responses are used to
draw these comparisons. Fig. 7(a) indicates the frequency response comparisons when using the
different control strategies. It is noted that MGSA scheme is able to attenuate the vibrations of the
structure with performances approaching those of the IMSC scheme. The precise analysis of the FRF
around the first eigenfrequency (Fig. 7(b)) actually confirms this remark where MGSA control (++
dotted curves) is located between the uncontrolled (solid curve) and the IMSC (dashed curve)
responses.

This observation is even confirmed by the time response results of the beam for harmonic and
random excitations (Fig. 8). The RMS values for the three types of control (IMSC, MGSA and SA)
and the different types of excitations (harmonic and random) are summarized in Table 3. The
performances of the modal global semi-active strategy rank it between the active and the
semi-active schemes.

Frequency response

uncontrolled
active
+ + global semi-active|

Magnitude (d8)
) )

(&) Frequency response: IMSC (dashed) /MGSA (++ dotted) comparisons

Frequency respanse

-60f uncontrolled
active

T . gt + +global semi-active|

—80}

-100

Magnitude (d8)

-120|

1351

(deg)

0

asf-

L L L + £
10 10" 10" fgtduency (H2) o1 10" 10"

(b) Zoom of the first mode frequency response

Fig. 7 Frequency response of the beam
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ot Displacement, uncontrolled

o 0.z 04 06 o8 1 12 14 16 18 2
Displacement, controlled-IMSC

(&) Harmonic excitations

<16 Displacement variation

uncontrolled

0. .102 04 06 08 1 12 14 16 18 2
x 10

controlled-IMSC
E ofwwAwmsar M vt Wt

1 . s " . s " " . s
Q 40702 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

controlled-MGSA

] 0:2 0:4 0‘.6 Dt& ; 1:2 1‘.4 1 :6 1:8 2
s
(b) Random excitations

Fig. 8 IMSC/ MGSA time response comparisons of transverse displacement

Table 3 RMS values of the cantilever beam transverse displacement (IMSC / MGSA / SA)

449

displacement (m)

uncontrolled IMSC MGSA SA
Sinusoidal 0.1638 107 0.1520 107 0.1612 107 0.1632 107
Random 0.3277 10 0.0820 10 0.1991 10° 0.1996 107

5. Conclusions

Among the vibration control techniques, the active scheme is the most efficient in terms of
vibration reduction performances. However, it is limited by the high energy needs it requires. A
global semi-active control strategy was presented by Ichchou et al. (2011) with the aim to reduce the
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energetic requirements while maintaining good vibrations attenuation performances.

In this paper, the global semi-active control scheme was developed for flexible structures”
modal global semi-active control (MGSA)” and the corresponding algorithm was presented. The
MGSA strategy is based on a switching between a semi-active law and an optimal one according
to the level of the available energy in the accumulators. This energy is extracted from the system
vibrations then stored in the accumulators.

The main advantage of the proposed control scheme is its low power requirement since it
re-uses the energy of vibrations to supply the actuators. If the stored energy is sufficient to follow
the optimal scheme, this last is applied. Otherwise, the controller switches to the semi-active one
(dissipative one). The control law was addressed to a cantilever beam and the results showed its
good performances approaching those of the optimal law and exceeding those of the semi- active
one. Moreover, a reduction in the energy consumption is noticed. It presents an attractive
achievement in comparison with the pure active strategy.

Future implementations or real full-size flexible structures are considered, using piezoelectric
transducers mounted on the vibrating structure to extract its energy and convert it into a useful
form (electric energy).

The aim is to increase the stored energy amount in the accumulators. Thus, the control
performances of the law will be enhanced and the energy needs further reduced.
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