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Abstract.    In this paper, we investigate the vibration control of multimodal structures and present an 
efficient control law that requires less energy supply than active strategies. This strategy is called modal 
global semi-active control and is designed to work as effectively as the active control and consume less 
power which represents its major limitation. The proposed law is based on an energetic management of the 
optimal law such that the controller follows this latter only if there is sufficient energy which will be 
extracted directly from the system vibrations itself. The control algorithm is presented and validated for a 
cantilever beam structure subjected to external perturbations. Comparisons between the proposed law 
performances and those obtained by independent modal space control (IMSC) and semi-active control 
schemes are offered. 
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1. Introduction 
 

Traditionally, there were two categories of vibration control based on the power flow in 
dynamic subsystems namely passive and active. Active strategies have good performances but 
necessitate an external power supply to apply control in opposite of the passive ones. A third 
intermediate strategy has been introduced since the early nineties (Jolly and Margolis 1997) where 
the system is not passive, yet, on average, more energy flows into it than out of it. It is called a 
semi-active system (or sometimes semi-passive) (Takakbatake and Ikarashi 2013, Zhou et al. 
2012). Among the semi-active systems, we find the regenerative systems which offer the 
possibility of being self-sustainable which would reduce the dependence on an external energy 
source as for active systems. Jolly and Margolis (1997) examined two practical implementations of 
a regenerative subsystem which are base-excited suspensions and periodically excited compound 
mounts. They showed that the proposed suspensions were able to exhibit positive average energy 
absorption regardless of the nature of excitations in opposite of compound mounts which depend 
on the input spectrum nature.  

In fact, the system vibrations energy will be extracted, converted into a useful form and reused 
to power a control law instead of being lost. The primary focus has been on regenerative dampers 
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in automobile suspension systems. Gupta et al. (2006) presented two different regenerative 
electro- magnetic shock absorbers (linear and rotatory) that use the dissipated energy resulting 
from the roughness of the roads to enhance the damping. Snamina et al. (2009) investigated the 
feasibility of a regenerative vibration control system constituted of a DC motor used as the energy 
regenerative damper that converts the vibration energy into electric energy stored in a capacitor or 
battery. They showed that the energy stored in the capacitor can be used to supply the transducer in 
skyhook circuit in the case of a truck or cabin suspension. Huang et al. (2011) compared two 
different control modes (Consumptive Full Active (CFA) and Regenerative Semi Active (RSA) 
modes) for an electromagnetic suspension actuator. They used a main/inner-loop structure for the 
active control, and the energy flow states of the actuator are analyzed by simplifying the inner- 
loop control system. They demonstrated that the CFA mode can improve vehicle ride comfort by 
more than 30 percent, despite battery energy consumption, and in RSA mode, the ride comfort can 
be improved by up to 10 percent with the battery charged by regenerated energy.  Recent works 
introduced a regenerative control approach called” global semi-active control” (Ichchou et al.  
2011). Based on the reuse of the energy coming from the system vibrations, the energy 
management consists in switching between two control schemes that are the optimal active and the 
semi-active ones. It seems to effectively enhance the vibrations control performances. They 
offered the required algorithms to calculate the energy management term which will decide the 
phase switching. Numerical results for discrete systems with a very limited number of degrees of 
freedom like a quarter vehicle suspension or a deck system were given. They demonstrated that 
vibration attenuation capacities of the proposed strategy approach those of the pure active one and 
exceed those of the semi-active one. The stored energy seems to increase which lets hope to 
significant reduction in the energy consumption for real systems. 

In this paper, the vibration control is specifically applied to continuous flexible structures. In- 
deed, emerging from their potential modes interferences, the control solution might be unstable. It 
is here necessary to design a multi-mode controller that can effectively suppress vibrations at and 
near specific natural frequencies of interest, but does not introduce unwanted vibrations at other 
natural frequencies (i.e., spillover) (Inman 2001). Another specific issue to be addressed is a 
consequence of these system’s high order. The higher the order is, the larger is the amount of real 
time calculations is. This drawback can limit the controller performances or even prevent it from 
working properly. 

Practical requirement for the controller of this kind of structures is employing a minimum 
number of sensor-actuator pairs using a simple design structure. The principal methods that can be 
found in the literature for controlling multi-mode vibrations include: positive position feedback 
control (PPF) (Wang 2003), independent modal space control (IMSC) (Meirovitch 1990, Nyawako 
et al. 2011) and modified independent modal space control (MIMSC) (Fang et al. 2003). In IMSC 
method, the control law is designed in the modal space for each mode independently which yield 
to uncoupled motion equation in modal coordinate system. Thus, IMSC scheme requires an 
appreciable less amount of calculation quantity than the coupled control and also, if the number of 
controlled modes and actuators is the same, controllability is always satisfied and the control 
spillover will be minimized which actually presents an important disadvantage restricting its 
application field. So, MIMSC scheme was developed which is a time-sharing technique possible to 
be applied when the number of actuators is inferior to the controlled modes. The main advantage 
of MISMC method is the reducibility of the number of actuators, yet it requires a high 
computation load imposed by the need to calculate and compare the energies in all modes of 
interest at every time interval. 
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As mentioned above, the idea of the control strategy is to use the vibrational energy of the 
system in order to supply the controller in the case of multimodal structures which is called” 
Modal global semi-active vibration control”. The vibrational energy is extracted via piezoelectric 
transducers, converted into electric energy and stored in accumulators. If the available energy 
amount is sufficient, then optimal control is addressed. Otherwise, vibrations are simply damped 
(semi- actively) through extracting their energy and storing it until the next cycle. A similar work 
has been recently offered by Makihara et al. (2012) where they developed a self-powered 
semi-active strategy for multimodal vibrations suppression. Yet, they managed to design a digital 
fully autonomous controller that requires no external energy even for the microprocessor, sensors, 
switches in opposite to our study, where the re-injection of the stored energy was not undertaken. 
In fact, they assumed that the piezoelectric transducer works as semi- active vibration suppressor 
actuator and as power supply to drive the microprocessor, while, in our study, piezoelectric 
transducers are only used as energy scavengers and switching is based on the energy amount test. 
They also performed a comparison between their proposed digital and the conventional analog self 
powered systems (Niederberger et al. 2006) and demonstrated that dig- ital systems have the 
advantage of being programmable and able to implement any sophisticated control scheme and 
advanced filtering algorithm, thus suitable for complex multi-input/multi- output systems 
(Shimose et al. 2012). In addition, digital self-powered systems have excellent performances and 
excellent stability.  

Inspired from the controlling strategy developed for the continuous modal structures, the paper 
firstly presents in section 2, the modeling of the system to be studied. The deduction of the relative 
reduced-order model to be used is part of this first stage. In section 3, the definition of the global 
semi-active control strategy is presented including the required mathematical tools, constraints to 
respect, active calculation to derive the optimal law to track and energetic comparisons as well as 
the development of the modal control algorithm. Finally, in section 4, numerical results discussing 
the performances of the proposed law are compared to the fully-active and the semi- active ones.  
The system energy transfer and distribution is also investigated emphasizing the storing phases of 
the law. 

 
 
2. Modal space representation 

 
Flexible structures are inherently distributed parameter structures with infinite degrees of 

freedom which request a high computational effort if using the full system model. That is why, 
modal reduction methods are preferred. Yet, a feedback controller based on a finite reduced modal 
model may destabilize the residual modes. This part of unmodeled dynamics may lead to spillover 
problems on real applications (Meirovitch and Baruk 1983). Since an excited structure has 
preferable modes of vibration which depend on the spectral content of the excitation, the lower 
order modes are assumed to be the most significant to the system global response. This way, the 
full order model can be reduced to those modes with a faithful restitution of the dynamic behavior. 

In the following example, a cantilever beam subjected to external forces is considered for 
vibration control study. The full model equations of motion are derived according to the following 
Equation with ( )x t being the generalized nodal displacement vector. 

. ( ) . ( ) . ( ) ( )M x t C x t K x t Lu t                           (1) 
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i

where: M, C and K are the structural mass, damping and stiffness matrices of the beam 
respectively, ( )x t and ( )x t are the velocity and acceleration vectors respectively, L is the location 

matrix of the control force ( )u t . The eigenvalue problem is then solved by using the modal 

transformation matrix  and the modal reduced displacement vector  1 2 ...
t

iq q q q , 

 1 ...i n such that .x q  . The equations of motion relatives to the reduced n eigenmodes, are 

now uncoupled and can be written as 

2(2 ) (( ) ( )i i iq diag w q diag w q f t                        (2) 

where iw  and i are the natural eigenfrequency and the damping ratio of the ith mode 

respectively, and 1(2 ) ( )T T
i idiag w M C      , 2 1( ) ( )T T

idiag w M K     and 
1( ) ( ) ( )T Tf t M Lu t    . The modal control force  1 2( ) ...

t

if t f f f  is related to the physical 

control vector ( )u t . Consequently, each control force if corresponding to mode i depends on all 

the modal co- ordinates which leads to the problem of recoupling our decoupled equations.  
Methods avoiding this recoupling issue are presented in section 2.1. 
The state space approach is the basis of the current control theories and is strongly 

recommended in the design and analysis of control systems with a great amount of inputs and 

outputs (Williams et al. 2007). Let ( )X t be the state vector such that  ( ) ( ) ( )
t

X t q t q t  , Eq. (1) 

can be written in the form of a linear, first-order state space differential equation 

( ) ( ) ( )X t AX t Bf t                               (3) 

with 

2

0 0
,

( ) (2 )i i i

I
A B

diag w diag w I
   

        
 

where A is the modal state matrix, B is the location matrix of the modal control forces, and I is the 
n-rank identity matrix. 

 
2.1 Independent Modal Space Control (IMSC) 
 
Independent modal space control method is used to derive the global control force ( )f t , since 

it has the advantage of restating the problem as a set of independent modal equations which will 
permit decoupling equations and thus simplifying the controller design. For that, the global 
control force f ( t ) will be composed of Nc chosen modal feedback forces such that 

 1 2( ) ( ) ( ) ... ( ) , 1...
t

i cf t f t f t f t i N  and the modal feedback control force ( )if t depends on 

the corresponding modal coordinates ( )iq t  a n d  ( )iq t through the following equation 

1 2( )
i ii i if t g q g q                                    (4) 

Thus, the global modal control force is written as 
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 1 2( ) ( ) ( ) ( )

( )

f t diag g diag g X t

gX t




                     (5) 

The global gain matrix g is calculated through an optimal scheme consisting on the 
minimization of a quadratic performance index J 

 
0

T TJ X QX f Rf dt


                             (6) 

where Q is the positive definite or semi-positive definite weightening matrix and R is the positive 
factor that weights the importance of minimizing the vibration with respect to the control forces. 

Instead of minimizing the global performance index J, we chose to limit the study to Nc modal 

cost functions Ji such that   c
t

i NiJJJJ   1 ,      21  (Zhang et al. 2008). These latter modal 

cost functions depend on the modal control force if (to minimize the control input effort), the 

mode states iq (through minimizing the potential energy of the structure 2 2w q ) and iq (through 

minimizing the kinetic energy 2
iq ) and can finally be written as 

 2 2 2 2

0
, 1...i i i i i i cJ w q q r f dt i N

                           (7) 

The closed-form solution 1g and 2g of the gain matrix which permit minimizing the 

performance index iJ can be obtained by the formulation given by Meirovitch (1981) such that 

2 2
1

2 2
2

1

1 1
2 2

i

i

i i i

i i i

g w w w
R

g w w w
R R

   

    

                         (8) 

By substituting the expression of iJ in Eq. (6), the expression of matrix Q and R can be 

deduced to 2( ) ( )cQ diag w eye N    and  ( )iR diag r respectively. 

 
2.2 Modified Independent Modal Space Control (MIMSC) 
 

Independent modal space control method is useful as it allows system decoupling and efficient 
control of vibrations. However, it does not take into consideration the previous vibration history of each 
mode meaning that we are not necessarily controlling the modes that are the most excited by the 
disturbance forces at each time t. In addition, using IMSC method necessitates having as much actuators 
as the modes to be controlled. To overcome these limitations, ISMC method was improved and the 
energy of each mode is calculated at a specific interval of time so that the control will be directed to the 
modes with the highest energy for the period of interest. This method is called Modified Independent 
Modal Space Control (MIMSC) (Fang et al. 2003). Since only the highest energy mode checked at 

instant t is attenuated, which is different from that corresponding to instant *t t , the number of 
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actuators can also be reduced.  
Now the reduced system model is obtained and the global control force ( )f t determined, the 

global semi-active vibration control scheme to use can be completely introduced. 
 
 

3. Modal global semi-active vibration control law 
 
The control strategy globally manages the system energy which consists of two categories: the 

energy extracted from vibrations and stored in the accumulators and the dissipated energy used to 
power the actuators in a way these latter switch between two control types which are the optimal 
scheme and the semi-active one. Actuators will operate under the purely-active law when the 
available energy allows them to or under the semi-active one if not which is possible through 
extracting energy from vibrations and storing it in the accumulators. It is clear then that storage 
devices are needed in this control scheme (called accumulators) as well as an energy management 
device responsible of the switching operation between the two different control types. A major 
advantage can be instantly deduced from the proposed law which is the reduction of the energy 
consumption required for the control law. We will present in section 4 the performances of the 
global semi-active scheme which approach very much those of the fully-active ones as well as the 
energy evolution of the system. 

 
3.1 Constraints on accumulators and actuators 
 
In order to be able to apply the global semi-active control, storage (accumulators) and actuation 

(actuators) devices are needed. Consequently, two constraints that may affect the control 
performances have to be introduced. The first limitation is related to the stored energy amount 
which itself depends on the accumulators capacities meaning that, at each time t, the stored energy 
amount has to be bounded by two extreme values Emin and Emax such that 

min max 0( ) , fE E t E t t t                            (9) 

The second limitation deals with the control force that the actuators are supposed to deliver. In 
fact, the control is displayed by piezoelectric actuators (collocated piezoelectric patches bounded 
on the beam) and the control force ( )f t is proportional to the feedback control voltage ( )V t . In 

this case, ( )V t is the physical control force and matrix L includes the electro-mechanical constants 
of the piezoelectric patches. The voltage limitation of the of the piezoelectric actuators results in 
the limitation of the produced control force such that 

max , max 0f f f                          (10) 

Moreover, for stability reasons, actuators saturation must be avoided i.e., they must be able to 
function regardless of the available stored energy level and also extract energy from the system 
even if one accumulator is already full. A Boolean function b(t) is therefore introduced to define 
the sequence disconnection between actuators and accumulators, and we have b(t) = 1 when 
actuators and accumulators are connected and optimal control force is delivered and b(t) = 0 
otherwise i.e., actuators extract energy and store it in the accumulators which make them operating 
like conventional semi-active actuators. The switching between these two states is decided in 
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Consequently, we will have Nc modal global minimization problems to solve through 
minimizing their corresponding Hamiltonian functions Hi relative to each mode separately, and we 
get 

   
   

    
1 min 2 max2

1 ax 2 max

.
2 i i

i i

t t
i t i i i i i i i i i i

tPZT
i i i i i i

i m i

H X Q X f r f A X b f X

wC
E b f f E E E E

f f f f



 


 

    

       
 

    



              (12) 

with 1 2 1 2, , , ,
i i i ii     and i being the set of required Lagrange multipliers. , ,i i iA B Q  are 

the reduced state matrix, actuator location matrix and weightening matrix corresponding to mode 
i  respectively. 

The minimization of iH with respect to the state coordinates gives the following expression of 

i  

  0t ti
i i i i i

i

t
i i i i i

H
X Q A

X

Q X A

 

 


   



   





                      (13) 

and the modal control force is obtained by 

2

2

2

.
2

. 0
2

2

t t ti PZT
i i i i i i

i

t PZT
i i i i i i

t
i i

i
PZT

i i

H wC
f r B b f

f

wC
r f B b f

B
f

wC
r b










       

     
 


 



                     (14) 

The minimization of Hi with respect to the power amount provides the expression of i at 

instant t  

                      

 1 2

1 2

0
i i

i i

i
i

i

i

H

E
 

 


    



   




                       (15) 

The minimization problem relative to each mode i can then be written as 
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2

1 2

2

i i

i i i i i
t

i i i i i

t
i i

i
PZT

i i

i

X A X B f

Q X A

b
f

wC
r b

 




 

 
  






  







 

3.2.1 Available energy 
In order to calculate the value of the available energy, we need to have a direct relationship 

between i and iE . So, we substitute the expression of the control force 

2

2

2

.
2

2

t
i iPZT

i
PZT

i i

BwC
E b

wC
r b






 
 

  
  
 

                           (16) 

An additional constraint relative to the energy management term i arises from the previous 

Eq. (16). In fact, because i is related to the amount of energy stored in the accumulators iE , it 

must rely in an eligibility interval  min max  to respect the physical limitations of both actuators 

and accumulators. When these last conditions are satisfied, we can calculate the value of the 
energy management term and we get 

2

2

2

2
.

2

t
i i

i i
PZT i

PZT

B
r

wC E

bwC





 
 
    
 
 
 


                         (17) 

However, it is necessary to study the state of the system at instant nt where a control switching 

is required i.e. the corresponding value of i which is equal to its previous value at instant 1nt 

causes a saturation of the accumulator and thus has to be readjusted to a new one denoted ˆ
i

satisfying Eq. (16). Let denote i the displayed value of i at the switching instant from which 

we can deduce the value of the displayed control force if
 which, itself, is not satisfying the 

accumulator limitations, such that 

2

( )
( )

( )
2

t
i i n

i n
PZT

i i n

B t
f t

wC
r t b













                           (18) 

Now, the value of the readjusted energy management term can be calculated from Eq. (17) and 
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Table 1 Natural frequencies of the beam 

 Mode1 Mode2 Mode3 Mode4 Mode5 
Frequency (Hz) 40.26 221.26 641.74 1.23 103 2.06 103 
 
 

Table 2 RMS values of the cantilever beam transverse displacement 

RMS values Uncontrolled IMSC MIMSC 

Beam Transverse displacement (m) 0.1638 10-7 0.1520 10-7 0.0348 10-7 

 
 

 

(a) Transverse displacement variation 
 

(b) Frequency response 

Fig. 4 IMSC / MIMSC response comparisons 
 

 
4.1 IMSC and MIMSC comparisons 
 
The control here addresses the first three modes of the beam for the IMSC scheme and the 

MIMSC one. The comparison between these schemes is based on the RMS values (Root Mean 
Square) of the displacement and the velocity time responses. In addition, the frequency responses 
are also analyzed. We notice that MIMSC provides better performances in the time domain (see 
Fig. 4(a)) since for the specified chosen time interval, the mode with the highest energy (which is 
governing the overall response of the beam) is controlled, so the vibration’s attenuation is 
enhanced in comparison to IMSC scheme (see Table 2). However, for frequency responses, 
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The harvested power is calculated through a resistive load R mounted in parallel to Ce, as 
shown in Fig. 6, and is expressed as follows 

2 ( )
( ) ( )iC

i i

V t
P t E t

R
  

                            (22) 

where VCi (t) is the rectified voltage across the resistive load R and Ii (t) is the current flowing 
into the circuit for the corresponding mode vibration i.   

From this observation, one can expect this technique to reduce the structure’s vibrations by taking 
some of its energy at least. Time responses (through RMS values) and frequency responses are used to 
draw these comparisons. Fig. 7(a) indicates the frequency response comparisons when using the 
different control strategies. It is noted that MGSA scheme is able to attenuate the vibrations of the 
structure with performances approaching those of the IMSC scheme. The precise analysis of the FRF 
around the first eigenfrequency (Fig. 7(b)) actually confirms this remark where MGSA control (++ 
dotted curves) is located between the uncontrolled (solid curve) and the IMSC (dashed curve) 
responses. 

This observation is even confirmed by the time response results of the beam for harmonic and 
random excitations (Fig. 8). The RMS values for the three types of control (IMSC, MGSA and SA) 
and the different types of excitations (harmonic and random) are summarized in Table 3. The 
performances of the modal global semi-active strategy rank it between the active and the 
semi-active schemes. 

 
 

 

(a) Frequency response: IMSC (dashed) /MGSA (++ dotted) comparisons 
 

(b) Zoom of the first mode frequency response 

Fig. 7 Frequency response of the beam 
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(a) Harmonic excitations 
 

(b) Random excitations 

Fig. 8 IMSC/ MGSA time response comparisons of transverse displacement 
 

 
Table 3 RMS values of the cantilever beam transverse displacement (IMSC / MGSA / SA) 

displacement (m)
 uncontrolled IMSC MGSA SA 

Sinusoidal 0.1638 10-7 0.1520 10-7 0.1612 10-7 0.1632 10-7 

Random 0.3277 10-3 0.0820 10-3 0.1991 10-3 0.1996 10-3 

 
 

5. Conclusions 
 
Among the vibration control techniques, the active scheme is the most efficient in terms of 

vibration reduction performances. However, it is limited by the high energy needs it requires. A 
global semi-active control strategy was presented by Ichchou et al. (2011) with the aim to reduce the 
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energetic requirements while maintaining good vibrations attenuation performances. 
In this paper, the global semi-active control scheme was developed for flexible structures” 

modal global semi-active control (MGSA)” and the corresponding algorithm was presented. The 
MGSA strategy is based on a switching between a semi-active law and an optimal one according 
to the level of the available energy in the accumulators. This energy is extracted from the system 
vibrations then stored in the accumulators. 

The main advantage of the proposed control scheme is its low power requirement since it 
re-uses the energy of vibrations to supply the actuators. If the stored energy is sufficient to follow 
the optimal scheme, this last is applied. Otherwise, the controller switches to the semi-active one 
(dissipative one). The control law was addressed to a cantilever beam and the results showed its 
good performances approaching those of the optimal law and exceeding those of the semi- active 
one. Moreover, a reduction in the energy consumption is noticed. It presents an attractive 
achievement in comparison with the pure active strategy. 

Future implementations or real full-size flexible structures are considered, using piezoelectric 
transducers mounted on the vibrating structure to extract its energy and convert it into a useful 
form (electric energy). 

The aim is to increase the stored energy amount in the accumulators. Thus, the control 
performances of the law will be enhanced and the energy needs further reduced. 
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