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Abstract.  Optimal sensor placement techniques play a significant role in enhancing the quality of modal 
data during the vibration based health monitoring of civil structures, where many degrees of freedom are 
available despite a limited number of sensors. The literature has shown a shift in the trends for solving such 
problems, from expansion or elimination approach to the employment of heuristic algorithms. Although 
these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the 
requirement of high computational effort. Because a highly efficient optimisation method is crucial for better 
accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the 
sensor placement problem. The algorithm is developed based on the sensor locations‟ coordinate system to 
allow for the searching in additional dimensions and to increase SA‟s random search performance while 
minimising the computation efforts. The proposed method is tested on a numerical slab model that consists 
of two hundred sensor location candidates using three types of objective functions; the determinant of the 
Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode 
shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the 
algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA 
and Genetic Algorithm (GA) in the search for optimal sensor placement. 
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1. Introduction 
 

The configuration of sensors is one of the most decisive factors in ensuring the reliability of 

modal data in vibration based structural health monitoring. However, the measurement of large 

civil structures at every degree of freedom (DOF) is impossible due to practical and cost 

constraints. Thus, the employment of an optimal sensor placement technique prior to the data 

acquisition stage is essential in obtaining outputs with heightened accuracy from a limited number 

of sensors.  

Many quantitative methods for determining optimal sensor configuration have been developed 

for various engineering problems ranging from the analytical model updating of space stations to 

the health monitoring of civil structures. Studies related to optimal sensor placement have been 

performed across different engineering fields since the 1970s, the earliest approaches of which 
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include the covariance matrix approach (Yu and Seinfeld 1973), model reduction method 

(Henshell and Ong 1974), kinetic energy method (KE) (Salama et al. 1987) and effective 

independence method (EfI) (Kammer 1990). 

Although the optimisation methods for sensor placement appear to vary for different 

application types, most share the common objective of identifying structural dynamic behaviours 

as accurately as possible. Optimal sensor placement methods can generally be categorised into 

three major types according to their mechanisms of optimisation, which are i) direct ranking, ii) 

iterative expansion or elimination, and iii) discrete combinatorial optimisation. 

To date, the direct ranking technique remains the fastest way of selecting optimal sensor 

locations where all approaches under this category rank every potential sensor location according 

to certain performance index, and the highest ranked sensor locations are chosen for the final 

layout. Some examples of this technique include the eigenvector product method (EVP) and the 

driving point residue approach (DPR). Recent applications of EVP and DPR in optimal sensor 

placement can be found in El-Borgi et al. (2008), Liu et al. (2008) and Meng et al. (2007). As 

attractive as their fast computation may seem, the main drawback of these techniques is that the 

sensor distribution tends to concentrate within a small range of DOFs due to the high function 

value at the optimal excitation points, as reflected in Meo and Zumpano (2005). Hence, these 

sensor configurations may not capture entire mode shapes accurately as a result of poor sensor 

distribution. The solution may also mislead the user when selecting the most appropriate sensor 

locations, especially when considering a finely meshed grid of sensor locations. 

In the iterative elimination technique, every sensor location candidate is evaluated based on its 

contribution to a global performance index in a sequential manner, and the candidate that provides 

the smallest contribution is eliminated. This process is repeated until the number of candidates 

equals the desired number of sensors. On the other hand, expansion methods dictate that the sensor 

locations are gradually expanded to achieve the desired number of sensors. Typical examples of 

these techniques include the KE method and the EfI method as mentioned earlier. Li et al. (2007) 

compared the performance of both methods in determining the optimal sensor placement. The 

authors concluded that both methods provide an equal performance despite different sensor 

arrangements. Although the iterative expansion and elimination techniques are proved to be 

relatively fast in determining optimal solutions compared to the combinatorial optimisation 

technique, not many studies involving these techniques are able to provide highly accurate mode 

shape. This is due to their sub-optimal solutions which eventually lead to less accurate outcomes 

when identifying modal vectors. To overcome this problem, Li et al. (2012) proposed a new 

method by considering the dynamic characteristics and actual loading conditions of structure for 

the best modal and damage identification. Nevertheless, the authors suggested that further 

investigations need to be done to obtain a more conclusive assessment of the performance of the 

proposed method. Due to rapid development in modern computation, many researchers have 

applied heuristic algorithms to solve the sensor placement problem. Popular heuristic algorithms 

include simulated annealing (SA) (Kirkpatrick et al. 1983), tabu search (TS) (Glover and Laguna 

1989, Glover and Laguna 1990), and genetic algorithm (GA) (Furaya and Haftka 1996, Ponslet et 

al. 1993). An early study of optimal sensor placement techniques in the field of vibration based 

damage detection has been presented by Worden and Burrows (2001). The authors have applied 

and compared the performance of SA and GA in determining optimal sensor placement by 

reducing a cost function, called the probability of damage misclassification. Using a plate structure 

that consists of twenty potential sensor locations, the authors have concluded that optimisation 

using SA is slightly better than GA in terms of the quality of sensor distribution. Since then, many 
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improvements have been made in terms of the algorithms‟ performance, where most of them 

involve the improvement of GA, while efforts at fine-tuning the SA and other types of algorithms 

to address the sensor placement problem have been quite limited. For example, Guo et al. (2004) 

have implemented new strategies in GA to improve its convergence result, which involved 

improving the crossover operators and mutation process. The efficiency of the proposed method is 

demonstrated using the finite element model of a truss structure which consists of 14 nodes and 31 

elements. Swann and Chattopadhyay (2006) have proposed a new optimisation procedure 

employing GA to detect arbitrarily located discrete delamination in composite plates using 

distributed piezoelectric sensors. GA was used to place sensors at the correct locations to detect 

both the presence and the extent of damage. Liu et al. (2008) have designed a forced mutation GA 

to improve the standard GA performance with a two dimensional array solution coding method for 

a truss structure. Cha et al. (2011) proposed an improved GA, which used the gene manipulation 

and multi‐objective GA, to optimize the placement of sensors in frame structures to reduce active 

control cost and increase the structural control strategy‟s effectiveness. Although GA is 

demonstrated efficient in solving the problem of sensor placement, it is very time consuming due 

to complex optimisation process as a result of repeated evolution of the objective function and the 

population based nature of the search. Such disadvantage becomes more obvious when structures 

with many degrees of freedom are involved. Thus, in most cases, the number of sensor locations 

that is used to demonstrate the efficiency of GA has been relatively small. Attempts to overcome 

the problem of convergence time in GA include particle swarm optimisation (PSO) (Rao and 

Anandakumar 2007), virus evolution theory (Kang et al., 2008) and monkey algorithm (Yi et al. 

2012). However, the application of these methods to vibration based health monitoring of civil 

structures is quite limited. 

Because high efficiency is the utmost requirement in sensor placement, this study presents an 

improved SA algorithm to remedy the sub-optimal issues in the existing simple iteration methods. 

The algorithm is developed based on the sensor locations coordinate system to allow for searches 

in multiple dimensions rather than the one-dimensional searches available in conventional 

encoding methods. By performing simultaneous searches in multiple dimensions, the algorithm is 

capable of providing a better combination of sensor configurations while minimising iteration time. 

This study also introduces a normalised acceptance function to generalise the probability of 

accepting bad solutions at objective function values with different orders of magnitude. A 

numerical slab model with two hundred sensor location candidates is used to demonstrate the 

effectiveness of the proposed method. The results show that the proposed method significantly 

improves the optimisation of the objective functions compared to other methods. The results are 

also compared with the optimisation performance of a standard GA, and the determinant of the 

Fisher information matrix (FIM), the modal assurance criterion matrix (MAC), and the sum of the 

mean square errors of mode shapes (MSE) are applied to produce different optimal solution 

designs. Lastly, the difference between the finite element mode shapes and sensor placement 

interpolated mode shapes are calculated to evaluate the accuracy of the solutions obtained using 

different objective functions. 

 

 

2. Simulated Annealing algorithm 
 

2.1. Basic Concept 
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The combinatorial problem of sensor placement can be expressed as “finding the best possible 

combination of r sensors from n potential locations”. When the order of the sensor locations is not 

the main consideration, the number of possible combinations is idealised as n!/r!(n-r)!. The most 

direct approach to identify the best combination of sensor locations is by a random search, from 

which the solutions are generated and evaluated arbitrarily. However, this approach is inefficient 

due to the fact that the information learned from a given search is not utilised in future searches. 

Therefore, a modern heuristic algorithm such as SA is utilised to estimate the best solution.  

The basic concept of the SA algorithm is based on the study by Metropolis et al. (1953) and 

addressed by Kirkpatrick et al. (1983) on combinatorial optimisation problems. Conceptually, the 

SA algorithm is analogous to the physical process of annealing, where a material is re-heated to its 

melting point and subjected to a controlled cooling process that recrystallises its microstructure 

formation, eventually improving the material‟s properties. Similarly, the ultimate goal of the SA 

algorithm is to determine a global optimal solution to a problem that is governed by an objective 

function. Fig. 1 shows a typical flow diagram of the SA algorithm. 

 

 

 

 

Fig. 1 Basic flow diagram of the SA algorithm 
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The optimisation process begins with a predefined initial sensor configuration. From this 

configuration, the algorithm then randomly finds a new configuration in the vicinity of its 

neighbours. The radius of the random search is proportional to the annealing temperature at that 

time. Normally, the newly generated solution is constrained by a set of boundary conditions such 

as the upper and lower bounds. Next, this solution is compared to the previous configuration based 

on the objective function value. The better solution is always accepted, while the weaker solution 

is accepted only if a randomly generated number [0, 1] is greater than a probability value p as 

given in Eq. (1) 

p = exp (-dE/T)                 (1) 

where dE is the change in the objective function value and T is a temperature parameter that has 

the same unit as the objective function. Instead of accepting only the good solutions, it may 

consider a weaker solution to avoid becoming trapped within a local minimal region. The values of 

acceptance probability are close to 1 during the initial state when the temperature is high. 

Eventually, as the iteration proceeds and the temperature decreases, the value of acceptance 

probability approaches zero, indicating a low probability of accepting weak solutions. 

The high temperature at the early stage in SA optimisation offers the capability of identifying 

the global optimal solution‟s rough features. As the annealing temperature decreases with the 

random search distance, the rough feature of the solution is then refined. This process is continued 

until the temperature reaches a minimum at which the entire system is frozen or, in the case of 

optimisation, the optimum configuration is found. 

 

2.2 Improved solution encoding method 
 

The solution coding method is an essential communication tool for an algorithm to record 

information regarding the placement of sensors in optimisation iterations. When applying SA to an 

optimisation problem, the design of the neighbourhood structure is important because the 

neighbourhood ranges can significantly affect the accuracy of the solutions (Miki et al. 2006).  

The most common type of coding for multivariable problems is binary code, as shown in Table 

1(a), where nl denotes the total number of potential locations. This binary code defines the sensor 

location as a binary string, in which „1‟ indicates that a sensor is available and „0‟ indicates 

otherwise, as applied in Worden and Burrows (2001), Guo et al. (2004), Liu et al. (2006). In this 

method, the sensor configurations are arranged in ascending order by node number, which is 

represented in the decimal string format. A set of constraints is normally applied to prevent one or 

more sensors from appearing at the same location.  

 

 
Table 1(a) Binary solution encoding method 

Location 1 2 3 4 5 6 7 8 … nl 

Availability 0 1 0 1 0 0 0 0 … 1 

 
Table 1(b) Decimal solution encoding method 

Sensor 1 2 3 4 5 6 7 8 … ns 

Location 7 8 11 12 42 44 46 75 … 79 
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Another alternative is to use a decimal solution encoding method in SA (DSA) as shown in 

Table 1(b), where ns denotes the total number of sensors. The application of such a method to GA 

and PSO algorithms has been performed by Rao and Anandakumar (2007) and also Liu et al 

(2008), respectively. The disadvantage of these methods is that the search procedure is performed 

in a one-dimensional format, thus the SA‟s search space is limited to either the longitudinal or 

transverse directions as shown in Figs. 2(a) and 2(b). As a result, the search is unable to evaluate 

the complete combination of sensor locations, which substantially increases the computation time 

to find a global optimal result. 

 

 

 (a) Configuration 1 

 

 

  

 (b) Configuration 2 

 

Fig. 2 Random search procedure in the DSA algorithm: (a) transverse random search in sensor 

configuration 1 and (b) longitudinal random search in configuration 2 

 

 

This study proposes the use of a SA with a coordinate-based solution encoding (CSA) to 

overcome the issue of less spatial information encountered in conventional one-dimensional 

solution encoding. The basic concept of the CSA is to apply a random search of sensor points 

based on the geometry of the structure, which is performed by allowing the search procedure to 

move according to the actual coordinate system. To this end, a set of coordinate parameters (xi, yi 

and zi) are assigned to each individual sensor and the next solution is determined by xi+dx, yi+dy 

and zi+dz, where dx, dy, and dz, are the random search distances of the ith sensor. Fig. 3 illustrates 

the CSA method in two dimensions, in which 10 sensors are initially placed at nodes 5, 7, 14, 17, 

20, 23, 26, 32, 39, and 41 together with their coordinate values, such as xi, yi and zi. In this way, the 

394



 

 

 

 

 

 

Optimal sensor placement for mode shapes using improved simulated annealing 

next set of sensor configurations is randomly generated based on the coordinate values, such as 

x1+dx, y1+dy for the sensor at node 5 and x2+dx, y2+dy for the sensor at node 7, rather than using 

the DSA that gives 5+dx1 for the sensor at node 5 and 7+dx2 for the sensor at node 7.  

 

  

 

  Configuration 3 

 

 

Fig. 3 Optimal sensor configuration search for the CSA algorithm in a 2D structure 

 

 Set objective_function (i.e., determinant of Fisher information matrix) 

Set parameter n, N, T0 and α; where n is number of sensors, N is number of potential locations, T0 is initial temperature and α is the 

cooling factor 

Set stopping_criteria (i.e., maximum iteration or minimum change in function value) 

Initialise random sensor configuration in an ascending decimal format (Xi), which satisfies the inequalities 0 < Xi ≤ N and Xi ≠ Xi+1 

Do until stopping_criteria is “yes” 

 Convert Xi to its coordinate matrix (Xijk) 

 Randomise Xijk according to current temperature value 

 Convert Xijk back to ascending decimal format, which satisfies the inequalities 0 < Xi ≤ N and Xi ≠ Xi+1 

 If the new function value is better than current function value 

   Acceptance “yes” 

 If the new function value is poorer than current function value 

   For exp (-dE/kT) > randomly generated number between [0, 1] 

   Acceptance “yes”  

   Else 

   Acceptance “no” 

 Decrease the current temperature by multiplying it with the cooling factor (α) 

Fig. 4 CSA algorithm pseudo-code for sensor placement problem 
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As a result, CSA allows the sensor search procedure to move in all directions simultaneously 

instead of limited to vertical or horizontal direction as in the DSA method. Moreover, CSA has a 

better chance of avoiding premature convergence of the sensor configuration, especially towards 

the end of the algorithm when the temperature parameter is small, increasing the efficiency of 

determining the best sensor combination. The CSA algorithm‟s pseudo-code is given in Fig. 4 for 

ease of reproduction. 

 

2.3 Normalised acceptance function 
 

The acceptance function in SA controls the probability of accepting a bad solution p and the 

distance of the random search D. The Boltzmann‟s constant k is normally excluded from the 

acceptance function. In this way, the acceptance function does not work unless one of its 

parameters is normalised to make the ranges fall within the same order of magnitude. Therefore, 

the common approach in maintaining this balance is to assign an initial temperature equal to a 

randomly generated objective function value, as applied in Worden and Burrows (2001). 

In classical combinatorial problems such as the Travelling Salesman problem, the issue in 

implementing the SA algorithm that is mentioned above, does not exist because the objective 

function E, temperature T, and random search distance D are applied using the same unit, which is 

the distance travelled. However, in the situation where E and T do not have the same unit as D, a 

normalisation factor must be introduced for either E and T or T and D to produce output values 

with the same unit. This leads to the proper transition of acceptance function values. Therefore, 

this paper considers a normalisation factor (k) in calculating the acceptance function value (Pn) as 

given in Eq. (2) 

Pn= exp (-dEi/kTi)                   (2) 

where k = E0/T0, E0 is the randomly generated objective function value and T0 is the initial 

temperature. Hence, parameter T can be made equal to D without necessarily having the same unit 

as E due to the normalisation of dE and T by E0 and T0, respectively. With this approach, the 

acceptance function is applicable to all ranges of objective functions with different k values for 

different numbers of sensors. 

 

 

 

Fig. 5 Probabilities of the normalised acceptance function 
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Because good convergence characteristics in SA require the proper transition of the acceptance 

function, from random search behaviour (Pn =1) to greedy search behaviour (Pn =0), it is necessary 

to verify the proposed normalised acceptance function with respect to temperature and change in 

objective function value. For this reason, the acceptance function versus exponential temperature 

updates at specific values of the change in objective function is given in Fig. 5, which shows that 

the acceptance function values change from 1 to 0 smoothly. For example, the acceptance function 

values transition in a smooth s-shape from 1 to 0 when the change in the objective function value 

equals 0.001. Hence, appropriate SA convergence characteristics can be assured by applying the 

normalised acceptance function. 

 

2.4 Geometric cooling schedule 
 

The maximum search distance for a given number of sensors can be estimated by a priori 

knowledge of the average distance between the uniformly distributed sensors on the structure. 

Therefore, the initial temperature can be computed using the ratio of the total potential location to 

the given number of sensors. This process can substantially reduce computation time by avoiding 

excessive random searches during the early optimisation stage. A direct temperature update 

function is applied for this purpose, where the temperature parameter decreases exponentially with 

the increasing iterations and a corresponding cooling factor (α) as given in Eq. (3) 

Tn+1 = αTn               (3) 

where Tn is the temperature at the nth iteration. 

 

 

3. Objective functions 
 

Three objective functions are applied in this study to obtain different optimal design of sensor 

configurations. The first criterion is based on the determinant of the Fisher information matrix 

(FIM) as given in Eq. (4), where the 𝜙 represents the modal vectors partitioned to the sensor 

locations. This criterion is applied because it is popularly employed for optimal sensor placement 

to measure the contribution of each sensor location to the linear independence of the target modes 

(Kammer and Yao 1994). Another importance of FIM determinant is to obtain sensor locations that 

provide the best estimate of damage coefficients (Guo et al. 2004). Studies that applied FIM-based 

criterion can also be found in Meo and Zumpano (2005) and Rao and Anandakumar (2007), and 

Stephan (2012). 

FIM = |𝜙T
.𝜙|       (4) 

The second objective function aims to maximise the sum of orthogonality of modal vectors 

uses modal assurance criterion (MAC). This is because the MAC is the scalar constant that is used 

ideally to measure the correlation between mode shapes. Thus, many combinatorial sensor 

optimisation studies applied MAC as the objective function, for examples, in Rao and 

Anandakumar (2007), Liu et al. (2008) and Yi et al. (2012). In the current content, the second 

objective function applied in this study aims to maximise sum of MAC over the target modes as 

written in Eq. (5), where 𝜙FE is the finite element mode shapes, 𝜙SP is the sensor placement mode 

shapes and m denotes the number of target modes. Since the mode shapes data obtained from 

sensors are not complete to construct 𝜙SP, the cubic interpolation technique is used to estimate the 
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incomplete data based on the measured data from limited sensor locations. Thus, 𝜙SP  is obtained 

based on a combination of the interpolated mode shape values and the measured mode shape 

values. The cubic interpolation technique is chosen because it can provide a set of smooth curves 

that closely approximates the actual mode shapes using limited data. The cubic interpolation is 

also applied in Meo and Zumpano (2005) to obtain the complete mode shapes from the data of 

structure at selected sensor locations. 

MAC =   
|𝜙𝐹𝐸
𝑇 .𝜙𝑆𝑃

𝑇 |2

𝜙𝐹𝐸
𝑇 𝜙𝐹𝐸 .𝜙𝑆𝑃

𝑇 𝜙𝑆𝑃

𝑚
1               (5) 

The third objective function used in the optimisation works is by minimising the mean square 

errors (MSE) between the two modal vectors, 𝜙FE and 𝜙SP, as described above. The optimisation 

concept of MSE is similar to MAC, which is to measure the quality of sensor placement generated 

mode shapes. However, MSE measures the quality of sensor placement mode shapes in a more 

direct manner, making the calculation of objective function value relatively faster. Hence, the third 

objective function that used in this study is the sum of MSE over the target modes and is given in 

Eq. (6), where n represents the total number of sensor locations. 

MSE =   
 |𝜙𝐹𝐸−𝜙𝐶𝐼 |𝑛

1
2

𝑛
𝑚
1               (6) 

In addition to the above optimal criteria, there are also other alternatives for optimising the 

sensor locations. For examples, the objective functions that based on modal kinetic energy and 

modal strain energy, as also applied in Rao and Anandakumar (2007) and Liu et al. (2008), 

respectively. However, these criteria are similar to FIM determinant criterion, but those objective 

functions require extra input parameter, such as the global mass matrix and global stiffness matrix 

to perform the optimisation. For comparison purpose, therefore, only the FIM determinant, MAC 

and MSE objective functions are applied the present study. 

 

 

4. Numerical example 
 

4.1 Finite element model 
 

A numerical model of a rectangular concrete slab is used to demonstrate the efficiency of the 

proposed method. The slab is 7.0m long, 2.7m wide and 0.2m thick and it has an elastic modulus 

of E= 22.5 GPa, a mass density of ρ= 2450 kgm
-3

, and a Poisson‟s ratio of r = 0.15. 200 active 

nodes are selected as potential sensor locations. The analysis considers the first three vertical 

bending modes for demonstration purposes as illustrated in Fig 6, the natural frequencies of which 

are 41.95, 164.24 and 357.44 Hz, respectively. 

 

4.2 Performance analysis 
 

The results of decimal solution encoding (DSA) and coordinate-based solution encoding (CSA) 

are compared using 10 sensors with identical random initial configurations and a cooling factor of 

0.97. Figs. 7(a)-7(c) shows the comparison of the results using the three different objective 

functions, respectively. These results show that CSA provides a better convergence rate than DSA. 

For example, the FIM values obtained with CSA in Fig. 7(a) are higher than those obtained with 
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DSA during most of the iterations. This trend becomes consistent especially after 300 iterations, 

indicating that DSA locates the optimal sensor points more efficiently than DSA. Similar results 

are observed in Fig. 7(b), where the comparison of both encoding methods using the sum of the 

MAC values is presented. As the iteration proceeds, the proposed CSA method gives better 

objective function values than DSA in most of the iterations. The high MAC value indicates that 

the corresponding solution is more accurate at identifying the modal vectors. The same type of 

performance is identified in Fig. 7(c), where the sum of the MSE between two mode shapes plot is 

minimised. It is also noted that the MSE function values for CSA are lower than those for DSA, 

indicating that CSA is capable of providing lower estimation errors than DSA. In conclusion, CSA 

is found to be relatively superior at searching for the best sensor configuration. 

 

 

   
Mode 1 Mode 2 Mode 3 

Fig. 6 The first three vertical bending modes of the slab 

 

 

 

  
(a) Maximisation of the FIM function (b) Maximisation of the MAC function 

 
(c) Minimisation of the MSE function 

Fig. 7 Convergence curves obtained with DSA and CSA using three different objective functions 
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Table 2 Comparison of DSA, CSA and GA performance for different computation times 

Algorithm Parameter Period Optimal sensor configuration Function value 

DSA α 

0.97 60 sec. 16 31 36 41 56 73 76 88 156 191 2.31 

0.997 300 sec. 9 23 52 65 80 92 121 136 164 200 2.60 

0.999 600 sec. 11 56 65 84 104 121 148 160 169 200 2.54 

CSA 

 0.97 60 sec. 33 34 37 40 97 101 104 153 157 168 2.95 

α 0.997 300 sec. 33 36 39 80 97 101 152 153 157 169 2.84 

 0.999 600 sec. 33 36 39 40 92 104 105 156 160 161 2.95 

GA s 

5 60 sec. 40 57 58 78 90 96 97 141 154 184 2.42 

29 300 sec. 29 34 56 89 109 112 160 161 170 173 2.78 

60 600 sec. 25 31 36 88 89 109 168 169 170 173 2.82 

 

The optimisation performances of DSA, CSA and the standard GA are investigated to further 

demonstrate the applicability of the proposed method. Both SA methods (DSA and CSA) and the 

GA are executed for specified computation times to evaluate their performance in maximising the 

MAC function for a distribution of 10 sensors. The GA parameters applied in this study are elite 

count = 10% of the population size, crossover fraction = 0.7 and mutation rate = 10%. The test is 

carried out in three parts by varying the computation time between 60 seconds, 300 seconds and 

600 seconds. To compromise the specified computation time using SA and the GA, the cooling 

factors (α) of the SA and the population size (s) of the GA are randomly adjusted to achieve 

complete convergence of the solution before the given periods, respectively. A summary of the 

best objective function values obtained with DSA, CSA and the GA is given in Table 2. The results 

show that the MAC values of CSA are higher than those generated by DSA and the GA. It is also 

observed that CSA produces more consistent sensor placement than DSA and the GA, where the 

sensor configuration is almost similar at different computation times. Hence, CSA is evidently 

capable of providing better optimisation performance than DSA and the GA. 

 

4.3 Effect of the number of sensors 
 

In sensor placement optimisation, a larger number of sensors requires a longer function 

convergence time. Therefore, it is useful to explore the characteristics of convergence for different 

objective functions with different numbers of sensors. Three different quantities of sensor, 10, 15 

and 20, are used for this purpose. Fig. 8(a) shows the convergence results for DSA and CSA in 

terms of the FIM values for different numbers of sensors. The results show that the convergence 

delays as the number of sensors increases. For example, CSA converges at approximately 100 

iterations when 10 sensors are used, while 500 and 1500 iterations are required for 15 and 20 

sensors, respectively, indicating that a higher number of sensors requires a longer convergence 

time. Similar trends are also observed when using MAC and MSE as the objective functions, as 

shown in Figs. 8(b) and 8(c), respectively, where a higher number of sensors introduces a higher 

number of variables into the optimisation process and thus requires a longer convergence time to 

obtain the optimal function values. The results also show that CSA provides more accurate results 

than DSA for the different numbers of sensors in terms of all three objective functions. For 

example, in Figs. 8(a) and 8(b), the FIM and MAC values obtained using CSA using 10, 15 and 20 

sensors are significantly higher than those produced with DSA. The same situation occurs in Fig. 

8(c), where the MSE values using CSA and three different numbers of sensors are lower than those 

obtained using DSA, indicating that the CSA produces relatively less error. 
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(a) Maximisation of the FIM function (b) Maximisation of the MAC function 

 
(c) Minimisation of the MSE function 

Fig. 8 Convergence curves using DSA and CSA and different numbers of sensors 

 

 

 

Fig. 9 CSA optimisation using different cooling factor values. 

 

 

4.4 Effect of the cooling factor 
 

In SA, the quality of the solution is highly dependent on the cooling factor value. For example, 

a rapid cooling process dictates that the algorithm converge after a very short period of time, while 

the opposite is true for a slow cooling process. Therefore, a sensitivity test is performed to 

examine the effects of the cooling factor on the performance of the SA algorithm and to 

subsequently find the optimal cooling factor. The algorithm is executed at increasing cooling 

factor values of 0.7, 0.8, 0.9, 0.99 and 0.999, and the resulting convergence curves are shown in 

Fig. 9, which shows that the objective function values are relatively higher when the cooling factor 

is higher. For example, when maximising the MAC function value using cooling factors of 0.7, 0.8, 
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0.9 and 0.99, the best function values after 1000 iterations are 0.87, 0.90, 0.94 and 0.97, 

respectively. However, in the case of a cooling factor of 0.999, the function value experiences a 

large perturbation, requiring relatively more iteration convergence. Therefore, it is concluded that a 

higher cooling factor is needed to obtain a better optimisation result from the proposed algorithm, 

and the optimal cooling factor value is approximately 0.99. 

 

4.5 Optimal sensor configurations 
 

This section compares the optimal sensor configurations generated by the proposed CSA 

algorithm based on the three objective functions. Conceptually, for damage identification purpose, 

the optimum criterion should be related to maximum damage information indicating which sensor 

locations will have the highest sensitivity to potential damages to the structural system, as 

proposed by (Xia and Hao 2000). However, this aspect is not considered in this study. Figs. 

10(a)-10(c), 11(a)-11(c) and 12(a)-12(c) show the best configurations for 10, 15 and 20 sensors 

using FIM, MAC and MAC as the objective functions, respectively. When employing the FIM 

objective function with 10, 15 and 20 sensors, it is observed that the sensors are clustered around 

several regions of high excitation along the longitudinal edges, implying that although the FIM 

determinant value is high, the distribution of the sensors is inadequate for accurately capturing the 

modes of vibration, even though additional sensors are added. Such a distribution of the sensors is 

regarded as insufficient for detecting damage, especially local damage. A similar situation has been 

reflected in Meo and Zumpano (2005) when applying FIM-based methods (EfI and EfI with DPR) 

in their study. On the other hand, the optimal sensor distributions produced by the improved SA 

algorithm based on MAC and MSE, as shown in Figs. 11(a)-11(c) and 12(a)-12(c) are better 

distributed throughout the structure compared to the distribution created with the FIM objective 

function. These improved distributions allow the sensors to capture better vibration modes and 

provide more accurate damage detection. Based on the results obtained, it can be observed that the 

optimal sensor configurations of the three objective functions have significantly changed when 

more sensors were considered. This trend of results is obvious when applying the MAC and MSE 

objective functions. For example, the optimal position for 10 sensors may not applicable to 20 

sensors, and vice versa. This is because, to obtain the best objective function values, the 

optimisation process needs to rearrange the sensor location which resulted in different 

configurations for different numbers of sensor. 

The absolute differences between the finite element mode shapes (𝜙FE) and the sensor 

placement mode shapes (𝜙SP) obtained from the three objective functions are calculated to evaluate 

the accuracy of different objective functions in the optimisation of sensor placement using CSA. 

As mentioned earlier, the 𝜙SP is the estimated mode shapes based on the sensor points‟ data using 

cubic interpolation technique.. Tables 3(a)-3(c) displays the errors for the three objective functions 

under the corresponding target modes for the different numbers of sensor. Table 3(a) shows the 

calculated errors for FIM, MAC and MSE when 10 sensors are used in the sensor optimisation 

process. The comparison reveals that the FIM method gives higher error values than the MAC and 

MSE methods because FIM-based methods concentrate sensor positions in high excitation regions, 

such as at the peak values of mode shapes. The results also show that larger errors occur at higher 

modes with all three objective functions, indicating that higher modes of vibration contain larger 

mode shape interpolation errors. A similar trend occurs when the number of sensors is increased to 

15 and 20, as shown in Tables 3(b) and 3(c). The results also show that the error between the 

actual mode shape and the interpolated mode shape decreases as the number of sensor increases. 
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Thus, more measurement points are required in practice to accurately capture the higher modes 

because they are more geometrically complex. Based on the results, it can be concluded that the 

MAC and MSE methods provide significantly smaller interpolation errors than the FIM method, 

and the MAC method slightly outperforms the MSE method when applied to a large number of 

sensors, especially in the case of higher number of sensor. 

 

 

 

  
(a) 10 sensors (b) 15 sensors 

 

(c) 20 sensors 

Fig. 10 Optimal sensor placements designed by the FIM objective function 

 

 

  
(a) 10 sensors (b) 15 sensors 

 

(c) 20 sensors 

Fig. 11 Optimal sensor placements designed by the MAC objective function 
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(a) 10 sensors (b) 15 sensors 

 

(c) 20 sensors 

Fig. 12 Optimal sensor placements designed by the MSE objective function 

 

 

 
Table 3(a) Absolute differences between the finite element mode shapes and sensor placement mode shapes 

for 10 sensors 

Objective Function Mode 1 Mode 2 Mode 3 Total 

FIM 16.0603 137.3433 186.8573 340.2609 

MAC 4.2236 37.557 43.7709 85.5515 

MSE 2.9134 24.8512 34.4921 62.2567 

 

 
Table 3(b) Absolute differences between the finite element mode shapes and sensor placement mode shapes 

for 15 sensors 

Objective Function Mode 1 Mode 2 Mode 3 Total 

FIM 13.3993 101.807 136.2345 251.4408 

MAC 1.7195 9.9212 20.0819 31.7226 

MSE 2.4592 14.7618 21.4708 38.6918 

 

 
Table 3(c) Absolute differences between the finite element mode shapes and sensor placement mode shapes 

for 20 sensors 

Objective Function Mode 1 Mode 2 Mode 3 Total 

FIM 9.8462 63.5935 97.1403 170.5800 

MAC 1.4543 9.0181 16.8573 27.3297 

MSE 2.4173 11.6523 17.5037 31.5733 
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5. Conclusions 
 

This paper presents a combinatorial optimal sensor placement technique based on the SA 

algorithm. Innovations in SA, such as coordinate-based solution encoding and the normalised 

acceptance function are introduced to improve the algorithm‟s performance. The values of the 

proposed encoding method are based directly on the exact coordinate system of the structure to 

overcome the issues encountered from having less spatial information in conventional 1D 

encoding methods. By using the proposed method, a realistic neighbourhood structure of sensor 

locations can be formed and improve SA‟s random search mechanism. A normalisation of 

probability acceptance function is introduced to standardise different ranges of objective function 

values and to ensure the proper convergence characteristics of SA. 

The performance of two SA-based methods (DSA and CSA) and a GA-based method are 

investigated for specific computation times. The test results show that the proposed SA algorithm 

(CSA) is superior to DSA and the GA in terms of its objective function values. Adopting the 

proposed CSA as an optimisation template, three objective functions for optimal sensor placement 

are evaluated based on the absolute difference values between the finite element mode shapes and 

sensor placement mode shapes. This study finds that optimal sensor configurations designed by 

MAC and MSE functions have significantly smaller mode shape errors compared to those 

designed by the FIM function, and the MAC function shows slightly better performance when 

applied to a larger number of sensors. 
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