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Abstract.  Given a body undergoing a stress-strain status as consequence of external excitations, sensors 
can be deployed on the accessible lateral surface of the body. The sensor readings are regarded as input of a 
numerical model of reduced order (i.e., the number of sensors is lower than the number of the state variables 
the full model would require). The goal is to locate the sensors in such a way to minimize the deviations 
from the response of the true (full) model. One adopts either accelerometers as sensors or devices reading 
relative displacements. Two applications are studied: a plane frame is first investigated; the focus is 
eventually on a 3D body. 
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1. Introduction 
 

For long time numerical optimization tools were all proposed in the class of the gradient-based 

methods (Borzì and Schulz 2011, among others). Genetic algorithms opened the way to the so 

called “heuristic” methods (Yang 2008) whose potential allowed several authors to reformulate 

standard optimization problems involving strong nonlinearities, integer variables and logic options 

in the definition of the objective function. Among these problems the placement of sensors (in 

structural monitoring (Papadimitriou 2004)) and devices (in structural passive control) is ongoing 

a significant re-flourishing.  

This paper is focused on the sensor placement and adopts a heuristic optimization tool, but the 

reasoning toward the formulation of the problem differs from the standard one in two aspects: 

1) a preliminary effort is addressed to the identification of the suitable number of observed 

variables to be considered; given a global numerical model of a structural system, find the order of 

the reduced order model (Schilders et al. 2008, Calberg et al. 2011): it gives the number of 

variables to be observed;  

2) the global numerical model is reduced by a balanced truncation (Casciati and Faravelli 2014) 

rather than by paying attention only to the first harmonics in the structural response; the reduced 

order model is written in terms of state variables which can be derived either from the true 

response or from the response detected by the sensors at given positions. The sensor placement 
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which minimizes the discrepancies in the state variable reconstruction is regarded as the most 

suitable. 

On the back of the proposed approach there are implicit assumptions which are made explicit 

below: 

a) the mechanical system is linear or is linearized in a narrow range of behaviour;  

b) the focus is on assigned load conditions in terms of position and direction, being the 

amplitude (of the oscillations in time) free.  

The paper is organized by relying on the literature for the three required ingredients: namely, 

optimization tools, sensor placement and model order reduction, so that in section 2 the proposal 

for the twoclass of sensors is simply formulated. Section 3 shows the application to a plane frame, 

while section 4 is devoted to a 3D case. 

 

 

2. Proposed formulation of the problem 

 
Following (Casciati and Faravelli 2014), for a dynamic system discretized by finite elements, 

the state space formulation sees 2N first order ordinary differential equations, where 2N is the 

order of the model, which is two times the number N of the system degrees of freedom 

𝒛   𝑡 =  𝑨 𝒛 𝑡 +  𝑩 𝒖(𝑡)            (1) 

where 𝒛 is the state variable vector of size 2N, the superimposed dot denotes time derivative, 𝒖 

is the vector of the external excitations, of size p, and A and B are time invariant matrices of sizes 

2N by 2N and 2N by p, respectively. The state variables are not supposed to have any physical 

meaning. But they are linked to any set of observables variables y(t) (denoted as “observed 

variables”) by a second set of equations, this time of the algebraic type 

𝒚  𝑡) =  𝑪 𝒛(𝑡 +  𝑫 𝒖(𝑡)           (2) 

A common selection for y is to contain N (relative to the base) displacements followed by N 

(relative) velocities. Further observed variables could be the absolute accelerations which come, as 

a further vector of length N, from the equilibrium equations: be computed as the vector of the 

(absolute) accelerations, provided no external action enters the equilibrium equation (i.e., p=1 and 

u(t) represents the base excitation only) 

𝒚𝑎 𝑡 = −  
𝑲

𝑴
    

𝒄

𝑴
  𝒚 𝑡 + 𝑩𝑎  

𝒖 

𝑴
           (3)  

where M, c and K are the matrices of mass, damping and stiffness, respectively. 𝒖  denotes the 

vector of the external excitation without any ground motion component (which is already 

accounted in the r.h.s.). Matrix 𝑫 is assumed to be zero in the following. 

 
2.1 Model order reduction (MOR) 
 

Equations from (1) to (3) can be re-written adding the index “R“ (for reduced) to all the 

quantities except the observed variables (Casciati and Faravelli 2013) when the reduced order 

model is pursued by balanced truncation 

 𝒛 𝑅 𝑡 =  𝑨𝑅  𝒛𝑅 𝑡 +  𝑩𝑅𝒖 (𝑡)               (4) 
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𝒚  𝑡) =  𝑪𝑅  𝒛𝑅(𝑡        (5) 

  𝒚𝑎 𝑡 = −  
𝑲

𝑴
    

𝒄

𝑴
  𝒚 𝑡 +𝑩𝑎  

𝒖 

𝑴
           (6)  

The number of state variables is now 2n, with n significantly lower than N. 

Alternatively, model order reduction can be achieved by identifying some degrees of freedom 

as masters, to which other degrees of freedom are linked. This occurs for instance when all the 

storey nodes of a plane frame are given the same horizontal displacement. In this case the number 

of actually detectable observed variables is reduced, as well as the dimension of mass, damping 

and stiffness matrices. Equations from (1) to (3) can be re-written adding the index “ρ”, with the 

number of state variables 2ν, with ν significantly lower than N 

𝒛 𝜌 𝑡 =  𝑨𝜌  𝒛𝜌 𝑡 + 𝑩𝜌𝒖 (𝑡)           (7) 

𝒚𝜌  𝑡) =  𝑪𝜌  𝒛𝜌(𝑡            (8) 

  𝒚𝑎𝜌  𝑡 = −  
𝑲𝜌

𝑴𝜌
    

𝒄𝜌

𝑴𝜌
  𝒚𝜌 𝑡 +𝑩𝑎𝜌  

𝒖 

𝑴𝜌
              (9) 

As a further option, one can apply the balanced truncation scheme to the Eqs. (7)-(9), writing 

an even more reduced model for the initial dynamic system, with the number of state variables 2νR , 

with νR significantly lower than N, n and ν  

  𝒛 𝜌𝑅  𝑡 =  𝑨𝜌𝑅  𝒛𝜌𝑅  𝑡 +  𝑩𝜌𝑅𝒖 (𝑡)           (10) 

𝒚𝜌  𝑡) =  𝑪𝜌𝑅  𝒛𝜌𝑅 (𝑡                (11) 

  𝒚𝑎𝜌  𝑡 = −  
𝑲𝜌

𝑴𝜌
    

𝒄𝜌

𝑴𝜌
  𝒚𝜌 𝑡 +𝑩𝑎𝜌  

𝒖 

𝑴𝜌
           (12) 

where equations from (1) to (3) are re-written adding the indexes “Rρ”. 

 

2.2 Looking for the solution of the inverse problem: the required number of sensors  
 

For sake of exemplification, consider a plane frame of three stories subject to horizontal base 

excitation. It is easy to obtain (Casciati et al. 2012) that 2νR = 6. The inverse problem requires that 

one selects 6 observed values linked to the state variables 𝒛𝜌𝑅  by an invertible matrix, so that the 

state variables can be obtained from the knowledge of the time histories of those observed values, 

as obtained, for instance, from sensors. A sensor measures one of the three kinematic quantities 

displacement, velocity or acceleration. But one has not the possibility to place 6 accelerometers, 

since the storey degrees of freedom are simply 3. In addition to the three accelerometers one has to 

place 3 sensors measuring either displacements or velocities. A simplification would be to derive 

the relative velocity time history from the absolute acceleration record by removing the base 

contribution (i.e., a further sensor is required) and subsequent integration. Translating words in 

formulae, the attention is focused on absolute accelerations and relative velocities at given 

locations, provided Ba is nul 

  
𝒚 𝑎𝑅
𝒚 𝑣𝑅

 =  
𝑪 𝑎𝑅𝜌

𝑪 𝑣𝑅𝜌
 𝒛𝑅𝜌 =  

 𝑪 𝑎𝑅𝜌11  𝑪 𝑎𝑅𝜌 12 

 𝑪 𝑣𝑅𝜌21  𝑪 𝑣𝑅𝜌22 
  
𝒛𝑅𝜌1

𝒛𝑅𝜌2
     (13) 
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where the accent denotes that a special selection of observed variables has been chosen and the 

vector 𝒛𝑅𝜌  is simply divided in two vectors of the same length. Then the following algebra 

applies 

𝒛𝑅𝜌1 =  𝑪 𝑎𝑅𝜌 11 
−1
 𝒚 𝑎𝑅 −  𝑪 𝑎𝑅𝜌12 𝒛𝑅𝜌2                    (14) 

𝒚 𝑣𝑅 = 𝒗(𝑡) =  𝑪 𝑣𝑅𝜌11 𝒛𝑅𝜌1 +  𝑪 𝑣𝑅𝜌12 𝒛𝑅𝜌2 

where 

   𝒗(𝑡) =  𝒗(𝑡 − 𝛥𝑡) + (𝒚 𝑎𝑅 − 𝒂𝐛)𝛥𝑡  =  𝑪 𝑣𝑅𝜌11 𝒛𝑅𝜌1 +  𝑪 𝑣𝑅𝜌12 𝒛𝑅𝜌2 =     

=  𝑪 𝑣𝑅𝜌11  𝑪 𝑎𝑅𝜌11 
−1
𝒚 𝑎𝑅 −  𝑪 𝑣𝑅𝜌11  𝑪 𝑎𝑅𝜌 11 

−1
 𝑪 𝑎𝑅𝜌 12 𝒛𝑅𝜌2 +  𝑪 𝑣𝑅𝜌12 𝒛𝑅𝜌2 

From the last equation, after re-arranging , one obtains 

   𝒛𝑅𝜌2 = 

  𝑪 𝑣𝑅𝜌12 −  𝑪 𝑣𝑅𝜌11  𝑪 𝑎𝑅𝜌 11 
−1
 𝑪 𝑎𝑅𝜌 12  

−1
 𝒗 𝑡 − 𝛥𝑡 +  𝒚 𝑎𝑅 − 𝒂𝐛 𝛥𝑡 −   𝑪 𝑣𝑅𝜌11  𝑪 𝑎𝑅𝜌 11 

−1
𝒚 𝑎𝑅  (15) 

Eqs. (14) and (15) express the state variables 𝒛𝑅𝜌 , in number of 2νRρ as function of the νRρ 

observed accelerations 𝒚 𝑎𝑅 . It is worth noticing that 𝒚 𝑎𝑅  denotes the absolute acceleration and 

therefore also the base acceleration 𝒂𝐛 must be monitored “by a further sensor”. 

An alternative way consists adopting sensors measuring displacements from where the relative 

velocity time histories are obtained by numerical derivation. Translating words in formulae, once 

again, the attention is focused on relative displacements and velocities at given locations, and no 

assumptions on Ba are required 

 
𝒚 𝑣𝑅
𝒚 𝑑𝑅

 =  
𝑪 𝑣𝑅𝜌

𝑪 𝑑𝑅𝜌
 𝒛𝑅𝜌 =  

 𝑪 𝑣𝑅𝜌11  𝑪 𝑣𝑅𝜌12 

 𝑪 𝑑𝑅𝜌21  𝑪 𝑑𝑅𝜌22 
  
𝒛𝑅𝜌1

𝒛𝑅𝜌2
    (16) 

where 𝒚 𝑣𝑅  is replaced by 

 

   𝒚 𝑣𝑅 =  (𝒚 𝑑𝑅 (𝑡) − 𝒚 𝑑𝑅 (𝑡 − 𝛥𝑡)𝛥𝑡−1   
 

Therefore  

                         

 
 

 
𝒛𝑅𝜌2  =                                                                                                                                                                                   

 − 𝑪 𝑣𝑅𝜌11  𝑪 𝑑𝑅𝜌 11 
−1
 𝑪 𝑑𝑅𝜌 12 +  𝑪 𝑣𝑅𝜌12  

−1
 (𝒚 𝑑𝑅(𝑡) − 𝒚 𝑑𝑅(𝑡 − 𝛥𝑡)𝛥𝑡−1 −  𝑪 𝑣𝑅𝜌11  𝑪 𝑑𝑅𝜌 11 

−1
𝒚 𝑑𝑅 

𝒛𝑅𝜌1 =  𝑪 𝑣𝑅𝜌11 
−1
 𝒚 𝑑𝑅 −  𝑪 𝑣𝑅𝜌12 𝒛𝑅𝜌2                                                                                                                       

   (17) 

Eq. (17) expresses the state variables 𝒛𝑅𝜌 , in number of 2νRρ as function of the R observed 

relative displacements 𝒚 𝑑𝑅 .  

 It would be only tedious for the reader to retype Eqs. (14) and (15) or Eq. (16) for the cases in 

which the model is governed by state variables 𝒛𝑅, in number of n, or 𝒛𝜌  in number of . The 

general conclusion is that the number of sensors required is equal to one half of the number of the 

state variables. 

 

2.3 Looking for a sensors placement criterion 
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When the structural monitoring is on, the sensors collect, at given positions, the time histories 

𝒚   and 𝒚  𝑎  , which coincides with those in Eqs. (2) and (3), provided the full model is correct and 

the  sensors do not generate noise. From the knowledge of these time histories one can obtain 

estimates of the time histories of the state variables, i.e., in the two cases of relying on 

accelerometers or relative displacement sensors, respectively: 

 
 
 

 
 𝒛 
 
𝑅𝜌2  =                                                                                                                                                                                   

 − 𝑪 𝑣𝑅𝜌11  𝑪 𝑎𝑅𝜌 11 
−1
 𝑪 𝑎𝑅𝜌 12 +  𝑪 𝑣𝑅𝜌12  

−1
 𝒗 𝑡 − 𝛥𝑡 +  𝒚  𝑎𝑅 − 𝒂𝐛 𝛥𝑡 −  𝑪 𝑣𝑅𝜌11  𝑪 𝑎𝑑𝑅𝜌 11 

−1
𝒚  𝑎𝑅 

𝒛  𝑅𝜌1 =  𝑪 𝑎𝑅𝜌 11 
−1
 𝒚  𝑎𝑅 −  𝑪 𝑎𝑅𝜌 12 𝒛  𝑅𝜌2                                                                                                                       

   (18) 

 
 
 

 
 𝒛 
 
𝑅𝜌2  =                                                                                                                                                                                   

 − 𝑪 𝑣𝑅𝜌11  𝑪 𝑑𝑅𝜌 11 
−1
 𝑪 𝑑𝑅𝜌 12 +  𝑪 𝑣𝑅𝜌12  

−1
 (𝒚  𝑑𝑅(𝑡)− 𝒚  𝑑𝑅(𝑡 − 𝛥𝑡)𝛥𝑡−1 −  𝑪 𝑣𝑅𝜌11  𝑪 𝑑𝑅𝜌 11 

−1
𝒚  𝑑𝑅 

𝒛  𝑅𝜌1 =  𝑪 𝑣𝑅𝜌11 
−1
 𝒚  𝑑𝑅 −  𝑪 𝑣𝑅𝜌12 𝒛  𝑅𝜌2                                                                                                                       

   (19) 

In the previous equations, the accent “  ” reminds that the result is achieved for a given sensor  

placement, while the accent “  ” reminds that the values are read by sensors or are elaborated by  

such readings. For a given excitation time history, one obtains the time histories 𝒛   from the 

sensors, i.e., by integrating the ordinary differential Eq. (1) in the absence of noise and the time 

histories 𝒛𝑅𝜌   by integrating the ordinary differential Eq. (10). 

The most suitable placement of the sensors is pursued as the one which minimize the 

discrepancies between computed and estimated state variables, or in mathematical form, the one 

which minimize the objective function 

    =     𝐳i∗−𝐳  i∗ 
2𝑇

i=1  

𝑁
               (20)  

where the “*” denotes that each quantity is made dimensionless by dividing its value by the 

maximum value in the actual time history made of T steps. One is led therefore to minimize Eq. 

(20) over all the sets (as the accent “  ” says) of potential allocations of the accelerometer sensors, 

which are in number one half of the state variable number required by the balanced reduced order 

theory, plus the ground acceleration sensor. 

Equivalently, one can repeat the process by using  displacement sensors which are in number 

one half of the state variable number required by the balanced reduced order theory. The 

minimization of Eq. (20), due to the strong nonlinearity of the problem, requires the adoption of a 

suitable numerical tool, as the genetic algorithm adopted in (Casciati 2008) or any suitable tool 

among those introduced in (Yang 2008) or more generally in the broad literature covering the 

optimization tools. 

Before the theoretical developments above illustrated are applied to numerical examples, a 

remark applies. For any given structural problem, once the model order is established, one could 

decide to introduce such a number of sensors. If they were reading the response of the reduced 

order model, in a linear context, the state variable time histories would be exactly estimated. But 

the sensors read the actual response of the structural system (even forgetting intrinsic sensor noise) 

and this will be shown to affect the results in a way which depends on the nature of the sensors, i.e., 

accelerometers or relative displacement transducers. 
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3. A 2D numerical example 

 
The benchmark building analyzed in this paper was first introduced in (Othori et al. 2004). It is 

made by a 20 stories steel frame (as sketched in Figs. 1 and 2), with an inter-storey height of 3.96 

m (except for the first storey which is 5.49 m high) for a total height of 80.77 m above the ground 

level, and with a rectangular plan of sizes 30.48 m by 36.58 m, namely, 5 bays of 6.10 m each 

along the N-S direction and 6 bays along the E-W direction. Under the ground level one meets two 

additional levels, B1 at the bottom and B2, with an inter-storey height of 3.65 m. The steel 

yielding stress is 345 MPa. The masses to be considered are 5.32x10
5
 kg at the ground level, 

5.52x10
5
 kg for all the intermediate levels and 5,84x10

5
 kg at the top level. The total mass over the 

ground level is 1, 11 x10
7
 kg. 

The original frame was subjected to several ground acceleration time histories. For the 

purposes of this paper, it is enough to consider a single accelerogram, i.e., the N-S component of 

the acceleration recorded during the El Centro seismic event of May 18, 1940. The peak 

acceleration is 3.417 m/sec
2 
. The dynamic analyses carried out introduce a time discretization of 

step 0.02 sec. 

After the same horizontal displacement is given to all the nodes of the same storey, the reduced 

(via balanced truncation) model requires 20 states variables in Eqs. from (10) to (12) (Othori et al. 

2004, Casciati and Faravelli 2014), which means that the number of sensors to be deployed 

according to the proposal of this paper is 10.  

 

3.1 Number of sensors equal to the reduced model order 
 

Assume first to decide to deploy 20 accelerometers, each at a different storey. If they read the 

acceleration response computed by the reduced order model, the readings can be organized in a 

vector of length 20 which at each time step assumes the values obtained by multiplying the 

associated sub-matrix of C and the vector of the 20 state variables at the same time step. Thus 

inverting the sub-matrix the state variables can be accurately estimated: the implemented Matlab 

code would result in a value of of 2.34*10
-8 

which can be regarded as a numerical tolerance. But 

this just occurs without round-off error: the computed matrix determinant is quite close to zero and 

replacing the reading with the actual response, i.e., the accelerations one obtains from the full size 

model (with 792 state variables!), the calculation becomes inaccurate and the value of jumps up 

of several order of magnitude. The situation does not change, for such an inverse problem, by 

placing 6 sensors for each storey (i.e., a total of 120 sensors!) and using their average as storey 

input, average which in (Casciati and Faravelli 2014) is shown to be consistent with the 20-states 

storey response. 

The same reasoning applies when deploying relative displacement sensors. The numerical 

tolerance associated with the readings of the reduced order model response is 6.16*10
-6

, but again 

the selected rows of matrix C result in a singular squared matrix.  

A feasible problem inversion can be found by mixing acceleration and velocity sensors, or 

displacement and velocity sensors, but the solution comes with an associated error and this error 

should be minimized along a search pattern. The approach proposed in previous section: 

(1) assumes that the velocity in a location is estimated from either the absolute acceleration or the 

relative displacement in that location; 

(2) accepts the additional error coming from this velocity estimation; 

(3) pursues a sub-optimal solution under these additional constraints. 
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3.2 Positioning 10 sensors on 10 different stores 
   

The main results obtained by the approach proposed in the previous section are summarized in 

Fig. 1 for both the two ways of selecting the sensors devices, reading either accelerometers or 

displacements. 

Three remarks apply. 

(1) The solutions have a sub-optimal character: indeed, the optimization tool in (Casciati 2008) is 

driven by some tolerances and stop options which actually suggest not to proceed further; 

(2) The sensor location is fully defined by the storey level: indeed the monitored degree of 

freedom is the horizontal one and all the nodes in the storey have the same horizontal 

displacement in the reduced numerical model to which the balanced truncation applies; 

(3) When presenting this results to the audience of a conference, an attending senior professional 

designer stand up and said: “the sensor locations you found are exactly the ones I would have 

proposed on the basis of my expertise”. The authors consider this a positive comment of their 

proposal. Nevertheless, entering more complex systems, as done in the last section of this paper, 

even a deep expertise would not cover the full understanding of the structural problem. 

 

 

 

 

 

Fig. 1 Results for the case study; reduced model of order 20 (i.e., 10 sensors are required): )a) absolute 

acceleration sensors opt  0.1050 with monitored stores 1, 2, 6, 7, 9, 10, 14, 16, 18, 20 and (b) 

relative displacement sensors opt0.0587 with monitored stores 1,3, 5, 8, 9, 11, 12, 16, 18, 20 

 

 

 

349



 

 

 

 

 

 

Fabio Casciati and Lucia Faravelli 

 

Fig. 2 Results for the case study; reduced model of order 66 (i.e., 33 sensors are required): relative 

displacement sensors are adopted with opt = 0.2271 and monitored potential sensor locations 2, 4, 

5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 

37, 38, 39, 40 

 

 

3.3 Positioning 33 sensors 
 

The previous section was using Eqs. from (10) to (12). In this section one moves to Eqs. from 

(4) to (6), where the direct balanced truncation results in a reduced order model of order 66. This 

means that one has to place 33 sensors in any node detecting accelerations or displacements for the 

two in-plane directions, as well as for the rotation. After several numerical trials it became evident 

that once again only sensor of the horizontal motion were significant, which would result in 

selecting 33 positions among 120 potential locations. Indeed the configuration of the structure 

involves that the response in nodes of the same storey is the same on the internal columns while 

different from that one records on the external columns. This suggested to reduce the number of 

potential locations to 40, namely the 20 nodes (from the bottom to the top) in the left external 

column and 20 nodes on the third column from the left (where the master nodes were located to 

obtain the reduced model discussed in the previous subsection). 

Despite the drastic simplification of the search problem, a trivial application of the process was 

leading to value of  very high, i.e., significant errors in the state variables reconstructions. The 

errors were in amplitude when relative displacement sensors are considered and in outset when 

acceleration sensors are considered. Indeed the measured signals (i.e., the response of the full 

model) are rich of frequencies and must be processed in order to obtain consistent results. The data 

processing suggests to use a low pass filter for displacement measurements and a high pass filter 

for acceleration measurements. 

The results obtained after cutting the frequencies above 5 Hz on the full model relative 

displacements at the sensor locations (which are regarded as recorded displacements) are 
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Sensor placement driven by a model order reduction (MOR) reasoning 

summarized in Fig. 2. 

 

 

4. A 3D numerical example 

 
The finite element package Marc-Mentat (MSC 2013) offers the option to save the structural 

matrices in a file. This allows one to build a finite element mode of any complexity in the Mentat 

pre-processor resulting in the assemblage of mass, stiffness and damping matrices, which can be 

then exported into Matlab to pursue the model reduction step. In that follows, one just consider a 

hexahedral medium (the soil) supporting a slender block simulating a pylon or an antenna: it is a 

very common model any designer meets in studying soil-structure interaction (Casciati and Borja 

2004). The soil is discretized into five by five 3D elements in each of three layers (75 elements and 

144 nodes), while the antenna comes with 4 elements along the vertical direction (4 elements and 

20 nodes, with 4 of them common to the soil surface; see Fig. 3). The damping matrix is given by 

assigning 2% to the damping ratio for the firth and fifth mode. Homogeneous materials are 

assumed with different density and elastic properties. The horizontal ground acceleration only acts, 

along direction x, on the bedrock supporting the system. 

A reduced model of 20 states was found as suitable by the balanced truncation method and the 

placement of 10 sensors along one of the four vertical vertices was investigated. The optimal 

solution is given in Fig. 3. 

 

 

 

 

Fig. 3 Result for the 3D case study when displacement sensors are used: reduced model of order 20 (i.e., 

10 sensors are required) and opt = 0.2534, with monitored degrees of freedom 1, 3, 8, 10, 11, 12, 

13, 14, 15, 16. (diamond is for measurements along x; four-pointed star is for measurements along 

z and six-pointed star means measurements along x and z) 
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5. Conclusions 
 

This paper provides the developments by which the application of a model order reduction 

(MOR) scheme leads one to selecting the number and the locations of sensors in view of the 

structural system monitoring. 

In the numerical examples, the technique is applied to a plane frame subject to base ground 

excitation and a 3D problem. The focus is then on the selection of the potential sensor sites. The 

numerical results are supporting the theoretical treatment of the problem in section 2. Nevertheless, 

a full exploitation of the proposal in this paper still requires that more attention is paid to the 

numerical optimization tool. Future developments will therefore be focused on the selection of the 

more convenient scheme among the several today proposed in the literature which covers heuristic 

optimization methods.  
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