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Abstract.    This paper numerically investigates the feasibility of an active mass damper (AMD) system 
using the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, 
for effectively suppressing the excessive vibration of a building structure under wind loading. Because of its 
several attractive features such as the simplicity and the excellent robustness to unknown system dynamics 
and disturbance, the TDC algorithm has the potential to be an effective control system for mitigating the 
vibration of civil engineering structures such as buildings and bridges. However, it has not been used for 
structural response reduction yet. In this study, therefore, the active control method combining an AMD 
system with the TDC algorithm is first proposed in order to reduce the wind-induced vibration of a building 
structure and its effectiveness is numerically examined. To this end, its stability analysis is first performed; 
and then, a series of numerical simulations are conducted. It is demonstrated that the proposed active 
structural control system can effectively reduce the acceleration response of the building structure. 
 

Keywords:    structural control; adaptive control; time delay control; unknown dynamics; vibration 
mitigation 

 
 
1. Introduction 
 

The reduction of excessive responses of a structure caused by various dynamic loads such as 
earthquakes and strong winds has been a main issue for many years in the field of structural 
engineering. It becomes more important since many super high-rise buildings are being 
constructed and planned over the world recently. High-rise buildings are susceptible to strong 
winds because of their dynamic characteristics such as inherent low damping ratios and low 
natural frequencies.  

It is common and effective that inertial control-type dampers (e.g., tuned mass damper, active 
mass damper, hybrid mass damper, etc.) are applied to mitigate the undesirable vibration by 
increasing effective damping ratio of the building. Among them, an active mass damper (AMD) 
has a high control efficiency, good adaptability and relative insensitivity to site conditions, thus 
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more than 40 buildings have implemented those since Kyobashi Seiwa building in Japan was 
equipped with AMD firstly in the world in 1989 (Kobori et al. 1991a, b).  

A lot of control algorithms for an AMD system have been studied (Datta 2001). The most 
popular control algorithm is based on linear optimal control theory which has a closed-loop system 
such as LQG and H2 (Yang 1975, Chang and Soong 1980, Burl 1999). In these algorithms, the 
control input is to be chosen in such a way that predefined appropriate criteria is minimized. These 
algorithms need an exact mathematical model of the structure, which leads severe robust problem. 

Robust control methods such as H∞ and μ-synthesis can solve that problem by inserting the 
uncertainties into the algorithm; however, an approximate structure model is required for the better 
performance and also a complex design procedure should be taken (Burl 1999, Spencer et al. 1994, 
Zhou and Doyle 1998). The pole assignment technique is an approach to choose the gain matrix in 
such a way that the eigenvalues of the modified matrix take a set of values prescribed by a 
designer. In the independent modal space control method, a control system is designed similarly to 
classical linear optimal control methods; however, the design process takes place in the modal 
space. 

The above mentioned control algorithms generally deal with well-known linear time-invariant 
systems. However, it is obvious that the system parameters are poorly known, time varying or 
nonlinear in practical applications. For civil engineering structures, especially, the modeling error 
due to the limited degrees of freedom, nonlinear excursions or time dependent degradation could 
result in the significant loss of the control effectiveness. Several control methodologies have been 
developed for resolve those problems. The sliding mode control (SMC) algorithm which can deal 
with nonlinear systems is one of them. In the SMC algorithm, a sliding surface is generated 
consisting of a linear combination of state variables and controllers are designed such that they 
drive the response trajectory on to the sliding surface based on the Lyapunov stability criterion 
(Yang et al. 1994). Intelligent control algorithms such as neural network or fuzzy logic are another 
powerful strategy (Chen et al. 1995, Teng et al. 2000). They do not provide strictly optimal control, 
but are better in terms of practical applications, more versatile and flexible compared to the 
classical control theories. Adaptive control is an approach that modifies control law used by a 
controller (Mareels and Poldman 1996, Ioannou and Sun 1996). In the adaptive control algorithm, 
uncertain plant and controller parameters are estimated recursively with measured information, 
and then the control input is computed so that the plant output closely follows the desired 
response. 

Time delay control (TDC) belongs to robust and adaptive control algorithms. It was first 
proposed in the field of mechanical engineering for motion control (Youcef-Toumi and Ito 1987a, 
1988). The control input for the TDC algorithm consists of two parts of canceling the uncertainties 
and adding the desired trajectory and the reference model dynamics. In the first part, the direct 
estimation of a function representing the uncertain system dynamics and disturbances, which is 
achieved using values of control inputs, state variables and their derivatives at the previous time 
step (i.e., time-delayed values), is used to eliminate the unknown system dynamics and 
disturbances simultaneously. And then, through the second part, the desired dynamics are achieved. 
It is especially useful for systems with slow dynamics such as civil engineering structures such as 
buildings and bridges, because it calculates the control input by estimating approximately 
unknowns simply from the information just in a few previous time steps. The TDC algorithm does 
not require a complex procedure for identifying exact system dynamics or complex calculation; 
thus, it is very simple and has excellent robustness properties to unknown dynamics and 
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disturbances. It can be also used for the nonlinear system (Youcef-Toumi and Ito 1987b). Several 
studies for application of the TDC algorithm such as control of robot manipulator, electrohydraulic 
servo system, and DC servo motor system were carried out (Hsia and Gao 1990, Chang et al. 1995, 
Chin et al. 1994, Chang and Lee 1994). Only a few researchers adopted the TDC algorithm for the 
vibration isolation table (Shin and Kim 2009, Sun and Kim 2012). However, the researches for 
vibration mitigation of large-scale structures such as buildings, bridges and towers using the TDC 
algorithm have not been done yet in the field of civil engineering. 

This paper proposes an active mass damper (AMD) system employing the time delay control 
(TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively 
reducing the wind-induced vibration of a building structure and its feasibility is numerically 
investigated. The structural control problem is defined and the TDC algorithm for structural 
control is introduced. And then, a simple stability analysis is performed. The effectiveness of the 
control system using the TDC algorithm is investigated through a series of numerical simulations. 

 
 

2. Structural control system using TDC algorithm 
 
2.1 Analytical model of building and active mass damper system 
 
An n-degree-of-freedom (n-DOF) building structure is considered in this study. It is assumed 

that only one active control system is implemented at the top floor and the responses of the 
structure can be measured only at the top floor in view of practical situation. 

The equation of motion for the n-DOF building structure with the active mass damper system at 
the top floor is described by the following equation 

(t)F(t)fE(t)K(t)C(t)M ecc  xxx            (1) 

where M, C and K are the mass, damping and stiffness matrices of the structure, respectively; 
)11(fc   and )1n(Fe   are the control force and the external force vector such as the wind force, 

respectively; T
n21 ][ xxx x is the displacement vector of the structure; 

T
c ]1000[E   is a constant matrix defining the location of the control force. Let 

)1n(φ j   be the j-th mode shape vector, which is normalized as 1(n)φ j  . Then, applying the 

modal transformation 

T
n21

jn21

(t)],(t),(t),[(t)

1(n)φ,]φ,,φ,[φΦ

(t)Φ(t)

qqq 








q

qx

                   (2) 

and substituting it into Eq. (1), it is transformed into the following modal equation 

(t)FΦ(t)f(t)K(t)C(t)M e
T

c  1qqq              (3) 

where MΦΦM T , CΦΦC T  and KΦΦK T  are the modal mass, damping and stiffness 

matrices, respectively; )1n(  1  is a vector whose elements are all unity. Eq. (3) can be converted 
into the state-space form as follows 
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(t)H(t)fB(t)A(t) c  zz               (4) 

where T](t)(t)[(t) qqz   is the state vector and 

(t)FΦM(t)h,
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             (5) 

in which jω  and n)~1j(ξ j   are the j-th natural frequency and the corresponding damping 

ratio, respectively. Since Eq. (4) is decoupled, it can be separated as follows 

n~1j,(t)H(t)fB(t)A(t) jcjjjj  zz         (6) 

where T
jjj ](t)(t)[(t) qq z  and 
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    (7) 

where j
T
jj φMφm   is the j-th modal mass. Summation n equations of Eq. (6) throughout and 

substituting Eq. (8) into it, we obtain Eq. (9). 


j

j
T

n21n (t)(t)(n)]φ,(n),φ(n),[φ(t) qx q            (8) 
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and (t))(t),(fr qq   is the function of modal responses, nx  is the top floor displacement of the 

building. In Eq. (9) (t))(t),(f qq   can be regarded as the unknown system dynamics. 
 
2.2 TDC algorithm 
 
In this study, the TDC algorithm is used to cancel the undesired system dynamics (t))(t),(f qq   

and disturbances (t)Dn  in Eq. (9), and generate the desired dynamics of the reference model. Let 
us define the reference model that generates the desired trajectory as a linear time-invariant system 
as described below 
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(t)rB(t)A(t) mm  mm xx               (11) 

where )12( mx  denotes the state vector of the reference model, 1)(1r   is the command input, 
set here to zero, and 
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where mω  and mξ  are the natural frequency and damping ratio of the reference model, 
respectively.  

The control objective is to force the error which difference between the actual trajectory in Eq. 
(9) and the desired one in Eq. (11) to vanish with the following error dynamics equations: 

(t)A(t)(t)(t) m exxe nm                 (13) 

By substituting Eqs. (9) and (11) into Eq. (13), the following equation can be obtained as 

 (t)AD(t)(t)fB(t))(t),(f(t)A(t) nmcnm xqqee           (14) 

By letting the latter term in Eq. (14) be 0, the control input (t)fc  is given by 

 (t)A(t)d(t))(t),(f
b

1
(t)f nmrrr

r
c xqq               (15) 

 

 

Fig. 1 Block diagram of the TDC algorithm 
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In this equation, (t))(t),(fr qq  , (t)dr  and rb  are unknown. Let rb̂  be the estimate of rb , 

and assume (t))(t),(fr qq   and (t)dr  are continuous and have slow dynamic characteristics.  

Then, (t)d(t))(t),(f rr qq   in Eq. (15) can be replaced approximately with 

Δt) (t dΔt))(tΔt),(t(f rr  qq  , where Δt  is a time delay very small relative to the time 
characteristics of the system, and it is determined from Eq. (9) as follows 

)Δt(tfb̂Δt)(t

Δt) (t dΔt))(tΔt),(t(f(t)d(t))(t),(f

crn

rrrr





x

 qqqq
          (16) 

Substituting Eq. (16) and rb̂  into Eq. (15), we get 

 (t)AΔt)(t
b̂

1
Δt)(tf(t)f nmrn

r
cc x x              (17) 

Thus, the control input can be obtained with the states and their derivatives which are measured 
directly or estimated via integration or observer system. Fig. 1 presents the block diagram of the 
TDC algorithm. 

 
2.3 Stability analysis 
 
Stability is one of the most important performance qualities of a control system and means the 

ability of a system to approach one of its equilibrium points once displaced from it (Tewari 2002). 
At this section, the stability of the proposed control system is discussed in detail. 

Substituting Eq. (17) into Eq. (9), we get 
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In the above equation, t)(tf(t)f cc   can be obtained from Eq. (17); thus, we obtain 
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To investigate the stability, the external force, (t)dr , is set to zero, then the above equation can 
be rewritten as follows 
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Δt)(t
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For small Δt , t(t))(t),(fΔt))(tΔt),(t(f(t))(t),(f rrr  qqqqqq  , and if Δt  is chosen small 

enough such that 0t(t))(t),(fr qq  , then the second term in the right hand side of Eq. (20) can be 
ignored in comparison to the other terms. Thus, Eq. (20) can be simplified to 
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 xxx                   (21) 

Rewriting Eq. (21) with t  replaced by Δtt  , and subtracting it from Eq. (21), the following 
equation is obtained 
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Once again, t(t)Δt)(t(t) nnn  xxx   for small Δt , and if Δt  is chosen small enough such 

that 1tC  , then the second term in the right hand side of Eq. (20), t(t)C n x  can be 

ignored in comparison to (t)nx .  
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It can be seen that Eq. (23) is the discrete state-space equation by letting 
Δt)(t(t)(t) nn  xxy  .  

Δt)(t
b̂/b10

00
(t)

rr











 yy                (24) 

The characteristic equation can be derived as follows 
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The system is stable if all roots of Eq. (25) are inside of the unit circle according to the stability 
analysis of a discrete system; thus, the range of possible rb̂  is 

rr b
2

1
b̂                (26) 

In other words, if a designer selects rb̂  as larger than rb
2

1 , then the system is stable.  

In order to apply the TDC algorithm, therefore, rb̂ should be determined first by considering 
the inequality condition of Eq. (26) for guaranteeing the stability of a control system. As presented 
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in Eq. (10), 
n

j
jr m1/b , where j

T
jj φMφm   is the j-th modal mass. Because mode shapes are 

normalized such that 1(n)φ j  , the first modal mass, 1m , is the smallest. Therefore, the following 

inequality can be derived 

n1

n

j j
r m

n

m

n

m

1
b                    (27) 

where nm  denotes the mass of the n-th floor. Thus, if we choose rb̂  as 
nm

n , then the stability 

condition of Eq. (26) is satisfied obviously. The mass of the n-th floor, nm , can be assumed easily, 
and it does not need to be exact.  

 
 

3. Numerical simulations 
 
3.1 Structure model 
 
Fig. 2(a) presents the full-scale five-story steel frame building structure considered in the 

simulation. The structure is simplified as a 5DOF structure model and an AMD is installed at the 
top floor as shown in Fig. 2(b) based on the dynamic characteristics of the structure (i.e., the 
lowest five natural frequencies and the corresponding damping ratios) are presented in Table 1. 
These dynamic properties were obtained through the system identification using experimental 
data. 

 
 

 
 

 

(a) Building structure (b) 5DOF structure model 

Fig. 2 Five-story steel frame building structure 
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Table 1 Dynamic properties of the structure 

Mode no. Natural frequency (Hz) Damping ratio (%) 

1 0.52 1.98 

2 1.73 2.01 

3 2.95 1.98 

4 3.68 1.93 

5 5.38 1.98 

 
 
3.2 Dynamic load 
 
In the simulation, an artificially generated time history of wind load was used as an external 

force. The wind load can be expressed as (Dyrbye and Hansen 1996) 

22 )('
2

1
)('

2

1
)( tvACtvVACVACtF       (28) 

where VAC ,,,  and 'v  are an air density, wind force coefficient, area, mean and fluctuation 
wind velocity, respectively. The first term of right hand side in Eq. (28) means the static wind load 
and the other terms denote the wind load fluctuation, and the static wind load is neglected in this 
study. 

A wind velocity fluctuation is defined as the sum of three vectors of along-, cross-wind and 
vertical directions in general, only along-wind direction component is considered in this simulation 
though. The power spectral density of the along-wind velocity fluctuation can be written as 
follows (Kaimal et al. 1972) 
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              (29) 

where   is the angular frequency, z  is the height,  zV  is the mean wind velocity at the 

height of z , and *U  is the shear velocity. Then, the time history of a wind velocity fluctuation, 

)(' tv , can be obtained using spectral representation method, which is referred to 
Shinozuka-Deodatis method as follows (Shinozuka and Deodatis 1991, Deodatis 1996) 

    
N

i
iii tStv  cos2)('              (30) 

where   is frequency step, N  is the number of frequency points, and   is phase angle 
randomly defined at the range of 0 ~ 2π. The time history and power spectrum of the generated 
wind load where   and N  are set to 0.0767 and 8192 respectively, are presented in Figs. 3 
and 4, respectively. 

313



 
 
 
 
 
 

Dong-Doo Jang, Hyung-Jo Jung and Yeong-Jong Moon 

 

Fig. 3 Time history of the generated wind load 
 
 

 
Fig. 4 Power spectrum of the generated wind load 

 
 
3.3 Simulation results 
 
In order to verify the effectiveness of the proposed control system, a series of numerical 

simulation are carried out. The reference model (i.e., mA  in Eq. (12)), which generates the 
desired trajectory, should be designed carefully. In this simulation, the natural frequency and the 
damping ratio of the reference model were chosen as 0.1 Hz and the critical (i.e., 1ξm  ), 
respectively, by considering the first natural frequency of the structure (i.e., 0.52 Hz). The time 
delay, t , was set as the sampling time (i.e., 0.001 s). It is assumed that each story of the building 
structure is subjected to the same wind load shown in Fig. 3. 

It is well known that there is a trade-off between control effectiveness (response reduction) and 
economy (control force requirements) (Soong 1990). That is, a control system usually requires the 
larger control force in order to reduce the response more effectively. On the other hand, if 
economy is more important, its control effectiveness will deteriorate due to the smaller control 
force. Fig. 5, in which (a) top floor’s maximum acceleration normalized with respected to the 
uncontrolled case and (b) maximum control force, clearly shows this trade-off condition of the 
proposed control system. As seen from the figures, the normalized maximum acceleration at the 
top floor increases as the ratio rr b/b̂  increases from 0.51 to 8000, whereas the required 
maximum control force decreases as the ratio increases. 
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(a) Normalized maximum acceleration (b) maximum control force 

Fig. 5 Normalized maximum acceleration and control force versus rr b/b̂  

 
 
 

 
(a) 1b/b̂ rr   

 

(b) 100b/b̂ rr   

 

(c) 8000b/b̂ rr   

Fig. 6 Acceleration responses at the top floor with different values of rr b/b̂  
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Fig. 6 shows time histories of the acceleration at the top floor in three different values of 

rr b/b̂  (i.e., 1, 100, and 8000). If a small value of the ratio is chosen as shown in Fig. 6(a), the 
acceleration response can be almost completely mitigated; on the other hand, much larger control 
force is needed (see Fig. 5(b)). When the ratio is very large as shown in Fig. 6(c), the control 
performance is very poor, because the control input value is very small (see Fig. 5(b)). Thus, a 
designer should carefully trade off the control performance against the capacity of control system. 

For example, let us assume that the mass of the 5th floor (i.e., nm ) is 20,000 kg. Then, 

rr b500025.0
000,20

5
b̂  , which satisfy the stability condition (i.e., Eq. (26)). A numerical 

simulation was carried out with the calculated value. Fig. 7 represents (a) the acceleration response 
at the top floor, (b) the corresponding control force, and (c) PSD of the acceleration at the top floor, 
respectively. As seen from the figures, the maximum response is almost completely mitigated with 
the reasonable magnitude of the control force. Therefore, it is verified that the proposed control 
system is quite effective in reducing the unwanted wind-induced vibration of a building structure. 

 
 

 
(a) Acceleration at the top floor 

 
(b) Control force 

(c) PSD of the acceleration at the top floor 

Fig. 7 Numerical simulation results in the case of rr b/b̂ =5 
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4. Conclusions 
 
In this paper, an AMD system employing the TDC algorithm is proposed in order to effectively 

mitigate the excessive vibration of a building structure under wind loading and its effectiveness is 
numerically examined. To this end, the stability analysis of the proposed control system is first 
performed. And then, a series of numerical simulations are conducted with a 5DOF structure 
model and an artificially generated wind loading. It is demonstrated from the numerical 
simulations that the proposed active structural control system could effectively suppress the 
acceleration response of the building structure. 

In order to more clearly validate the applicability of the AMD system with the TDC algorithm 
for structural control, additional studies related to several practical issues such as the time delay 
( t ) and allowable control gain range should be conducted because they may affect the control 
performance as well as the stability of the control system. In addition, the experimental validation 
of the proposed control system should be performed. 
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