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Abstract.  The purpose of this paper is to identify through experiments the finite element (FE) model of a 
building structure using a magnetorheological (MR) fluid damper. The FE model based system identification 
(FEBSI) technique evaluates the control performance of an MR damper that has nonlinear characteristics as 
equivalent linear properties such as mass, stiffness, and damping. The Bingham and Bouc-Wen models were 
used for modeling the MR damper and the equivalent damping increased by the MR damper was predicted 
by applying an equivalent linearization technique. Experimental results indicate that the predicted equivalent 
damping matches well with the experimentally obtained damping. 
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1. Introduction 
 

The magnetorheological (MR) fluid damper has either nonlinear force-displacement or a 

force-velocity relationship and its applicability to the control of civil structures has been 

investigated by many researchers (Dyke et al. 1996). Unlike linear damping devices, the control 

performance of nonlinear damping devices such as MR dampers is strongly dependent on the 

frequency and magnitude of the excitation load. Accordingly, the dynamic characteristics of the 

controlled structure and excitation load should be considered in the design of MR dampers (Jansen 

and Dyke 2000). If such nonlinear properties of the MR damper could be replaced by the 

equivalent linear system, the design procedure would be simplified and the amount of time 

required could be significantly reduced. Extensive researches have been conducted on an 

equivalent linear system to replace the nonlinear system. For a nonlinear hysteretic system excited 

by random signal, Caughy (1960) developed an equivalent system minimizing the root mean 

square of error and closely examined the characteristic of response with Gaussian distribution. Li 

and Reinhorn (1995) obtained the transfer function of a structure with a friction damper, and then 

expressed the effects of the friction damper as increased stiffness and damping matrices. Soong 

(1997) expressed the effect of the tuned mass damper as the increase of structural damping, and 

Yalla (2001) replaced the nonlinear damping coefficient of the tuned liquid column damper for an 

equivalent linear damping coefficient, which is obtained using an iteration procedure. Chang et al. 

(1993) proposed the equivalent damping ratio of a structure with viscous elastic dampers using the 
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modal strain energy method. Lee et al. (2004) presented a general method for evaluating the 

equivalent damping ratio of a system with nonlinear damping devices as well as linear damping 

devices. Chopra (2005) showed that the equivalent viscous damping can model the steady-state 

harmonic response of a system with Coulomb friction.  

The purpose of this paper is to identify through experiments the finite element (FE) model of a 

building structure with an MR fluid damper. While general system identification methods provide 

system matrices which merely duplicate the input-output relationship but have no physical 

meanings, the FE model based system identification (FEBSI) technique estimates the mass, 

stiffness, and damping matrices of a structure (Friswell and Mottershead 1995). The 

force-displacement relationship of a practical MR damper is nonlinear and is generally described 

using the Bingham or Bouc-Wen model (Yang 2001). In this study, the equivalent damping 

coefficient of an MR damper was predicted by applying an equivalent linearization technique, and 

the value was compared with the experimentally obtained value from shaking table tests. The FE 

model of an uncontrolled system was first constructed using modal information for the natural 

frequency, damping ratio, and mode shape; the increased damping by the MR damper was then 

obtained by updating the damping matrix of the uncontrolled system to adjust the first modal 

damping ratio. 

 

 

2. Equivalent linearization technique 
 

2.1 Equivalent linear system 
 

A nonlinear system can be substituted for an equivalent linear system as follows. 

                   xcxkl)x,x(g eqeqo
                           (1) 

where ),( xxg   denotes the non-linear system and lo, keq, and ceq are the mean component, 

equivalent stiffness, and equivalent damping, respectively. x and x denote the displacement and 

velocity, respectively. The error between the non-linear and equivalent linear systems is generally 

defined as follows in terms of the mean square and the values of lo, keq, and ceq are determined to 

minimize this error. 
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where x  is the standard deviation of x and denotes the Gausian probability density function 
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Fig. 1 Force-velocity relationship of 6 models for MR damper 

 

 

2.2 Model for MR damper and equivalent linearization 
 

Many models such as Bingham, biviscous, hysteretic biviscous, simple Bouc-Wen, Bouc-Wen 

with mass element, and phenomenon models have been developed for capturing the force 

characteristics of the MR dampers(Stanway et al. 1987, Gamota and Filisko 1991, Wereley et al. 

1998, Bouc and Wen 1976, Spencer et al. 1997).  

Yang (2001) presented the parameters for the dynamic models of the large scale 200 kN MR 

dampers. In this section, the analyses results obtained by using these models are compared for a 

three-story building structure. Fig. 1 shows the MR damper force-velocity relationship obtained by 

using the dynamic models used by Yang (2001) under a 1 inch, 0.5 Hz sinusoidal displacement 

excitation with an input current of 2 A. The hysteretic characteristics of the 6 models are different 

from each other, but the maximum values of the damping force are almost equivalent. Particularly, 

Bingham and biviscous models have a disadvantage: they cannot describe the hysteretic behavior.  
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Fig. 2 shows the time histories of the third floor displacement and absolute acceleration 

responses of the three story building structure with the MR damper at the first floor, and the peak 

values of inter-story displacement. The absolute accelerations are listed in Table 1. The considered 

building structure has identical story properties for all stories. Story mass, stiffness, and damping 

are, respectively, 100 metric ton, 98000 kN/m, and 140.7 kN·sec/m, and the El Centro (1942, NS 

component) earthquake is used as the input load. Fig. 2 and Table 1 show that the structural 

responses are significantly reduced by the use of the MR damper. However, the fact that the 

difference between the controlled structural responses of each model cannot be identified in Fig. 2 

indicates that the essential parameter is not the shape of hysteretic curve but the magnitude of 

maximum control force. Accordingly, in this study whose purpose is not to accurately model of the 

MR damper, but to express the performance of the MR damper as equivalent linear properties such 

as stiffness and damping, the Bingham model and simple Bouc-Wen model are considered from 

hence. 

 

 

 

Fig. 2 Time histories of displacement and acceleration responses of the 3 story building 

 

 
Table 1 Peak responses of 3 story building 

 
Floor 

No 

Control 
(1) (2) (3) (4) (5) (6) 

Max. Inter-story 

Disp. (cm) 

1 4.2 1.8 1.8 1.8 1.6 1.7 1.7 

2 3.2 1.5 1.5 1.5 1.4 1.4 1.5 

3 1.9 0.9 0.9 0.8 0.8 0.8 0.8 

Max. Acc. (cm/s2) 

1 975 461 468 495 461 499 522 

2 1477 672 662 665 618 649 661 

3 1814 880 872 831 769 806 811 

(1) Bingham (2) biviscous (3) hysteretic biviscous (4) simple Bouc-Wen 

(5) simple Bouc-Wen with mass element (6) phenomenological model 
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The Bingham model is given as a sum of coulomb friction and linear damping forces 

xc)xsgn(fF c
 1                               (7) 

where cf  and c are the maximum friction force and damping coefficient, respectively, and sgn

)( is a sign function. 

Since Eq. (7) only has correlation with velocity, the equivalent stiffness is zero and only 

equivalent damping exists. Equivalent damping can be obtained using Eq. (5) when the response 

has Gaussian distribution. 

cfc c

x

eq 


12
                           (8) 

The hysteresis of the MR damper can also be modeled using the Bouc-Wen Model. 

kxxczF  2                              (9) 

where k and c are, respectively, the stiffness and the damping, and z is the non-dimensional 

variable used to describe the hysteresis of the MR damper.  is a variable depending on the input 

current to the MR damper. The variable z is governed by the following nonlinear differential 

equation. 

xAzxzzxz
nn

 



1

                       (10) 

where γ, β, A, and n are the parameters determining the shape of the hysteretic curve. Fig. 3 shows 

the z -displacement and z -velocity relationships in terms of various n and A for the system with 

γ=0.5 and β=0.5. Harmonic displacement with unit radial frequency and unit maximum magnitude 

is given. Figure 4 shows the corresponding equivalent stiffness and damping. 

Figs. 3(a) and 3(d) with A=1 indicate that z is almost equal to the displacement, as presented in 

Fig. 4, showing that only equivalent stiffness exists and equivalent damping is close to zero when 

A=1. Figs. 3(a)-3(c) show that the positive correlation of z with displacement gradually decreases 

with increasing A, and this phenomenon is also presented in Fig. 4 by the decrease of equivalent 

stiffness with increasing A, except for n=3. The reason why equivalent stiffness increases for n=3 

is not that the positive correlation of z with displacement increases, but simply that the magnitude 

of z increases with increasing A for n=3. Also, the increase of n reduces the equivalent stiffness 

and damping, which results not from any variation in the form of a hysteretic curve, but also from 

the increase of magnitude of z with increasing n. In other words, this phenomenon is a type of 

scale problem which is governed by the relative magnitudes of γ, β, and A.  

The trends shown in Figs. 3 and 4 indicate that various types of nonlinear hysteretic curves can 

be modeled using the Bouc-Wen model and they can be expressed as equivalent linear stiffness 

and damping. The parameters of the Bouc-Wen model used for describing the MR damper are 

generally determined for z to show similar behavior to that shown in Fig. 3(c) (Yang 2001). If 

stiffness in an MR damper occurs, the stiffness is modeled simply by using linear stiffness as 

indicated by Eq. (9) rather than by using a Bouc-Wen model of which z shows similar behavior to 

that of Fig. 3(a). Consequently, the variable z of the Bouc-Wen model used for describing the 

hysteresis behavior of the MR damper plays a part in increasing equivalent damping. 
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Fig. 3 z -displacement and z -velocity relationships (γ=0.5, β=0.5) 

 

 

 

Fig. 4 Equivalent stiffness and damping (γ=0.5, β=0.5) 

 

 

3. Experimental setup 
 

3.1 Structure and measurement system 
 

The experimental test using a shaking table was conducted in the Dynamics Laboratory at 

Dankook University, Seoul, Korea. A three-story and single-bay steel frame was used, as shown in 

Fig. 5. Since it was assumed that the masses are concentrated at each floor, the diagonal mass 

matrix could be constructed by directly measuring the mass of the each floor. The diagonal 

elements of the mass matrix are in regular sequence 26.24 kg, 26.24 kg and 23.12 kg. The height 

of the structure is 155 cm and the plan size is 60cm×60cm. Stiffnesss and damping matrices of 

uncontrolled structure shown in Fig. 3 can be constructed using the mass matrix, mass normalized 

eigenvector and eigenvalue matrices obtained by white noise excitation test (Hwang et al. 2005).  

The accelerometers were positioned on each floor to measure the lateral absolute accelerations 

of the floor. The data acquisition was performed using a real-time digital signal processor (DSP) 
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with sampling frequency 100 Hz.  

 

 

 

Fig. 5 Shaking table and 3 storey building model 

 

 

Fig. 6 MR damper implementation 

 

 

3.2 MR damper installation 
 
An MR damper RD-1097-01 manufactured by Lord Corporation is installed at the first floor of 

the structure. Fig. 6 shows the time history of the force generated by MR damper, 

force-displacement curve, and force-velocity curve obtained under the 1.5 Hz harmonic excitation 

(Lee et al. 2007). The parameters of Bingham model which best describe the behavior of the used 

MR damper are Co=10N∙s/m for all currents and fc=8 N, 11.5 N, 20 N, 30 N, and 39 N for 0 A, 0.1 

A, 0.2 A, 0.3 A, and 0.4 A, respectively. It is observed that the MR damper shows similar behavior 

to that of a friction damper and its maximum friction force varies from 8 N to 39 N according to 

the applied input current. The relative displacement of the first floor to the base is transferred to 

the MR damper, of which the ends are connected to an H-section column rigidly mounted on the 

base and jig fixed to the first floor. 
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Fig. 7 Force of MR damper; (a) time-history, (b) force-displacement curve and (c) force-velocity curve 

(1.5 Hz) (Lee at al. 2007) 

 
 

 

Fig. 8 Transfer function from base acceleration to floor acceleration: (a) 1st floor, (b) 2nd floor and (c) 3rd 

floor 

 
 
4. Finite element based system identification 

 

System identification is used to construct the system matrix which can describe the relationship 

between input and output exactly. By applying this system identification technique to a structure 

with a damper, the effect of the damper on the structure can be quantitatively evaluated. In this 

study, the equivalent stiffness and damping increased due to the MR damper are experimentally 

obtained by using the modal information on a 3-story building structure installed with an MR 

damper. Low-pass filtered white noise, of which the cut-off frequency is 25 Hz, is used as an input 

signal. The data was measured at a sampling time of 0.01 seconds for 100 seconds. Various control 

algorithms such as modified bang-bang, clipped optimal and sliding mode control have been used 
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for maximizing the performance of the MR damper (Jansen and Dyke 2000).  

In previous study by Lee et al. (2011), the performance of the passive-on MR dampers on 

reducing displacement response was compared with the other semi-active MR dampers. When the 

maximum force of the MR damper was less than 30% of the maximum base shear force, the 

passive-on MR damper can show almost equivalent performance to the semi-active MR dampers. 

Therefore, in this study, only passive-on state was considered.  

Fig. 8 plots the transfer function from the base acceleration to the absolute acceleration of each 

floor. Passive-off and passive-on are cases in which the input currents to the MR damper are 0A 

and 0.1 A, respectively. It is observed that the MR damper reduces the acceleration response of the 

building structure and the passive-on state is observed to be the most effective control performance. 

Also, Fig. 8 indicates that the first, second, and third modes definitely exist for uncontrolled and 

passive-off systems, while the second modal response of the passive-on system is significantly 

reduced. If the information on mode shape, frequency, and damping ratio of all modes is available, 

stiffness and damping matrices can be obtained. In this study, the modal information is obtained 

using the curve-fitting of the transfer function used by Li and Reinhorn (1995) for the system 

identification of a building structure with a friction damper; stiffness and damping matrices are 

then constructed as follows. It is assumed that the mass matrix is previously known and the mode 

vector is mass-normalized. 

K = MΦΩΦTM                           (11) 

C = MΦΛΦTM                            (12) 

where M is the mass matrix and Φ is the mass-normalized mode vector. Λ and Ω are  

)n,...,i,(diag ni 1KΦΦΩ 2T                        (13) 

)n,...,i,(diag nini 12CΦΦΛ T                      (14) 

where ωni and ξi are the natural frequency and damping ratio of the ith mode, respectively. 

The natural frequencies of the uncontrolled system are 2.48 Hz, 7.00 Hz, and 10.48 Hz, and the 

modal damping ratios are 0.94%, 0.32%, and 0.45%, respectively. By using Eqs. (11)-(14), the 

stiffness and damping matrices of the uncontrolled system are obtained as follows 

  

4381540778-2.357-

40778-68.85633.222-

2.357-33.222- 58.231

















K kN/m,
 

9.81112.6404-1.7258

2.6404-11.84653.0468-

1.72583.0468-9.0227

















C
N·sec/m   (15) 

Since the MR damper renders the higher modes of the structure indistinct and increases the 

structural damping significantly, it is difficult to identify the stiffness and damping matrices of the 

structure with the MR damper using Eqs. (11) and (12). Also, this distributes the effects of the MR 

damper over all elements of the damping matrix. In the experiment of a three story building, the 

MR damper was installed only at the first floor. In order to clarify the physical meaning of the 

damper location, only the element (1,1) of the damping matrix of the uncontrolled system was 

updated because only c1 is directly correlated with the first floor response. In this case, just one 

damping ratio from a specific mode should be used and the first modal damping ratio was chosen 

in this study. Damping matrix C should provide the same first modal damping ratio as the 

experimentally obtained ξn1. 
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in which 1  is the mass-normalized first modal vector and c1 is the (1,1) element of C. The 

variation of c1 satisfying Eq. (16) above is given as follows. 
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Table 2 shows the comparison between ceq from Eq. (8) and ∆c1 from Eq. (17). Eq. (8) is used 

because the MR damper used shows similar behavior to that of the friction damper, which can be 

modeled by the Bingham model. The first modal damping ratios of the structure with a passive-off 

and passive-on MR damper are 2.67% and 5.44%, respectively. The value of x  in Eq. (8) is 

estimated using the measured acceleration response. 

1nxx /                               (18) 

It is observed from Table 2 that the error between the predicted and experimentally obtained 

equivalent damping is less than 5%. This verifies that the equivalent linear damping can evaluate 

the performance of the MR damper and it can also be predicted by the equivalent linearization 

technique. The simple Bingham model provides little error because the magnitude of maximum 

friction force, which is the most important factor in determining the equivalent damping, can be 

accurately expressed by the Bingham model. 

 
Table 2 Equivalent damping of the structure with MR damper 

 
eqc  (N·s/m) 

1c  (N·s/m) 
Error(%) 

)c/c( eq 1100 1    

Passive-off 138.9 132.9 4.6 

Passive-on 333.7 342.2 -2.5 

 

 

5. Conclusions 
 

In this study, the performance of an MR damper having nonlinear characteristics was identified 

as an equivalent linear system. The stiffness and damping matrices of a three story building 

structure were formed using the data from a shaking table test; the damping matrix was then 

updated to adjust the first modal damping ratio increased by the MR damper. Equivalent damping 

of the MR damper described by the Bingham model was obtained by applying an equivalent 

linearization technique. Experimental results indicate that an equivalent linearization technique 

using the Bingham model can be used for predicting the effects of an MR damper as increased 

damping. 
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