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Abstract.  It is highly desirable to explore efficient algorithms for detecting structural damage of large size 
structural systems with limited input and output measurements. In this paper, a new structural damage 
detection algorithm based on substructure approach is proposed for large size structural systems with limited 
input and output measurements. Inter-connection effect between adjacent substructures is treated as 
„additional unknown inputs‟ to substructures. Extended state vector of each substructure and its unknown 
excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. 
It is shown that the „additional unknown inputs‟ can be estimated by the algorithm without the 
measurements on the substructure interface DOFs, which is superior to previous substructural identification 
approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which 
simplifies the identification problem compared with other existing work. Structural damage can be detected 
from the degradation of the identified substructural element stiffness values. The performances of the 
proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement 
noise effect is considered. Both the simulation results and experimental data validate that the proposed 
algorithm is viable for structural damage detection of large size structural systems with limited input and 
output measurements. 
 

Keywords:  structural identification; structural damage detection; substructure approach; extended Kalman 

estimator; least- squares estimation; unknown inputs 

 
 
1. Introduction 
 

Detecting structural damage of large size structural systems is an important but still challenging 

task because damage is an intrinsically local phenomenon. Various structural damage detection 

techniques have been proposed. Among them, approaches based on structural identification (SI) 

have received great attention (Chang 2009, 2011, Meier et al. 2009, Wu et al. 2003, Ghanem and 

Shinozuka 1995). Structural damage can be identified based on tracking the changes of identified 

values of structural parameters, e.g., the degradation of element stiffness parameters. However, as 

an inverse problem, damage detection by the conventional SI approach is challenging for large size 

structural systems with a large number of unknown parameters due to ill-condition and 

computation convergence problems. In addition, as the size of a structural system increases, its 
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computational efforts increase tremendously (Koh et al. 2005). Consequently, substructural 

identification approaches have been proposed, in which a large size structure is decomposed into 

smaller size substructures with fewer DOFs and unknown parameters, e.g., Koh et al. developed 

several traditional and nontraditional substructural identification methods with numerical and 

experimental studies (Koh et al. 2005, Trinh and Koh 2011, Tee 2009). Xu (2005) proposed a 

substructural damage Diagnosis methodology with Neural Networks. Hou et al. (2011) described a 

method for substructure isolation. Huang and Yang (2008) proposed a sequential nonlinear 

least-square method and substructure approach to detect structural damage in the substructure. 

Law and Yong (2011) also proposed a substructure method for structural condition assessment. 

However, most of the previous substructural identification approaches require that measurements 

of all responses at the substructure interface DOFs are available. In practice, it is often impossible 

to measure all responses at the interface DOFs between substructures, e.g., it‟s very difficult to 

measure the rotational DOFs at the substructure interfaces for beam/frame structures. Although 

Koh et al. (2003) investigated substructural Identification method in frequency domain without 

interface measurement, the method is applicable for measured harmonic force of excitation. Some 

other researchers have also tried to overcome this problem (Weng et al. 2011, Law et al. 2011). 

For large size civil structures, it is usually impossible to measure all external excitations to 

structures. Identification of structural parameters without all excitation information has been 

explored by some researchers (Ling and Haldar 2004, Kathuda et al. 2005, Chen and Li 2004, 

Yang et al. 2007, Xu et al. 2012). In these approaches, information about structural displacement 

and velocity response signals are either assumed to be available or they are obtained through 

integration of measured acceleration responses. In practice, dynamic responses are often measured 

by accelerometers. Errors are incurred in obtaining velocity and displacement signals by 

integration (Ling and Haldar 2004, Kathuda et al. 2005, Chen and Li 2004). Hence, direct use of 

acceleration response signals is preferred over velocity and displacement signals. Some other 

iterative or weighted iterative least-squares estimation approaches have been proposed to 

simultaneously identify structural parameters and unknown inputs (Ling and Haldar 2004, Xu et al. 

2012). 

On the other hand, it is often impossible to deploy so many sensors to measure all responses of 

large size structural systems. Thus, it is highly desirable to explore efficient algorithms which can 

detect structural damage utilizing only a limited number of measured responses of structures 

(Glaser et al. 2007). Extended Kalman filter (EKF) approach has been studied and shown to be 

useful too for data fusion and structural identification with limited response outputs (Hoshiya and 

Saito 1984, Lei et al. 2007), but it often leads to the problems of ill-condition and computation 

convergence for the identification of large-size structural systems (Lee and Yun 2008). Moreover, 

the traditional EKF approaches require that all excitation inputs are measured. Recently, Yang et al. 

(Yang et al. 2007) proposed an extended Kalman filter with unknown excitation inputs, referred to 

as EKF-UI, for the identification of structural parameters as well as the unmeasured excitation 

inputs. However, when EKF-UI is used for large-size structural systems, but it still requires the 

deployment of sensors to measure all responses at the substructure interface DOFs for the 

identification of substructures (Huang and Yang 2008). 

In this paper, a time-domain algorithm based on substructure approach is proposed for 

detecting structural damage of large size structural systems with limited excitation input and 

response output measurements. Inter-connection effect between adjacent substructures is treated as 

„additional unknown inputs‟ to substructures. Extended state vector of each substructure and its 

unknown excitations are estimated by sequential extended Kalman estimator and least-squares 
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estimation (Lei et al. 2007). Instead of the application of the extended Kalman filter, the Kalman 

estimator approach, which has been widely used in structural control, is used herein. Due to the 

superiority of proposed algorithm, i.e., recursive solution for the extended state vector of each 

substructure is initially obtained followed by the estimation of its unknown excitation values, the 

„additional unknown inputs‟ to substructure can be estimated without the measurements at the 

substructure interface DOFs. Also, structural parameters and unknown excitation are estimated in a 

sequential manner, which simplifies the identification problem compared with other existing work. 

Structural damage is detected from the changes of substructural parameters at the element level, 

such as the degradation of element stiffness parameters. The effectiveness of the proposed 

algorithm is demonstrated by several numerical examples including the benchmark building 

established by the American Society of Civil Engineers (ASCE) for structural health monitoring 

(Bernal and Beck 2004, Johnson et al. 2004), a plane truss and a continuous beam in finite element 

models and a lab experiment on a multi-story building model. 

 

 

2. The proposed algorithm 

 
Based on the finite-element model, the equation of motion of a linear structural system under 

unknown external excitation can be written as 

)t()t()t()t()t( uu
fBBfKxxCxM                       (1) 

in which x(t) , x(t)  and x(t)  are vectors of displacement, velocity and acceleration response, 

respectively; M, C and K are the mass, damping and stiffness matrices, respectively; f (t)  is a 

measured external excitation vector; f
u(t)  is an unmeasured external excitation vector; and B  

and B
u  are the influence matrices associated with f (t)  and f

u(t) , respectively. Usually, the 

mass of a structural system can be estimated with accuracy based on its geometry and material 

information. 

Identification of a large-size structural system is difficult as it involves a large number of DOFs 

and unknown parameters. Identification by the conventional system identification approaches, 

including the extended Kalman filter approach, often leads to the problems of ill-condition and 

computation convergence. In addition, as the size of a structure increases, its computational efforts 

increase tremendously (Koh et al. 1991, Trinh and Koh 2011). To reduce computational burdens 

and the difficulty in obtaining reasonably accurate results of damage detection, it is reasonable to 

apply substructure approach for large-size structural systems (Koh et al. 1991, Trinh and Koh 

2011, Tee et al. 2009, Xu 2005, Hou et al. 2011, Huang and Yang 2008, Law and Yong 2011, Koh 

and Shankar 2003, Weng et al. 2011, Law et al. 2011).  

 

2.1 Substructure approach 

 
A large-size linear structural system is decomposed into a set of smaller sizes substructures 

based on its finite-element model. As shown in Fig. 1, the equation of motion of the concerned 

substructure-r can be extracted from Eq. (1) to yield as 

u u
r r

(t) (t) (t)r r r
[  ] + [  ] + [  ] = (t)+ (t)rr rs rr rs rr rs r r(t) (t) (t)s s s

x x x
M M C C K K B f B f

x x x

     
     
     

       (2) 
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where subscript ‘r‟ denotes the DOFs of the concerned substructure-r and subscript „s‟ denotes the 

interface DOFs. Then, Eq. (2) can be re-arranged as 

)t()t()t()t()t()t()t()t( srssrssrs
u

r
u
rrrrrrrrrrrr xKxCxMfBfBxKxCxM     (3) 

By treating the interface forces as „additional unknown inputs‟ to the concerned substructure, 

Eq. (3) can be expressed as follows 

)t()t()t()t()t()t( r
*
r

u
r

u
rrrrrrrrrrrr

 fBfBfBxKxCxM            (4) 

where  *
r

tf is the „additional unknown input‟ vector, *
rB  is the influence matrix associated with 

the „additional unknown inputs‟  *
r

tf , and 

     
* *
r r

t (t) (t) (t)rs s rs s rs sB f M x C x K x                      (5) 

Therefore, as shown by Fig. 1(b), unknown excitations to the concerned substructure include 

the unmeasured external excitation u
r (t)f  and the „additional unknown inputs‟ *

r (t)f  due to 

substructure inter-connection effect. Thus, it is required to identify these unknown excitations. 

 

 

 
(a) A Sketch of substructures     (b) Substructure with interface forces and external excitation 

Fig. 1 Substructure approach 

 

 
2.2 Estimation of the extended state vector of substructure by extended Kalman 

estimator 

 
The extended state vector of a concerned substructure is defined as  

 
u
nf  

 
u
rf

  
u
rf  
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 
T TT T T T

r r1 r2 r r1 r r2 r r r1 r2 rn=  , , ;   = ;    = ;  = θ ,θ ,...,θ 
 X X X θ X x X x θ             (6) 

i.e., 
r1X is the displacement vector, 

r2X is the velocity vector, and T

rθ is a vector of the 

m-unknown substructural parameters, such as damping and stiffness parameters. As the structural 

parameters are time invariant, Eq. (4) can be written in the following extended state equation for 

the extended state vector as follows 

  
  

        
   
   

r r

r2r1

-1 u u * *

r2 rr r r r r rr r2 rr r1

r

(t)+ (t) (t)B f

XX

X M B f B f C X K X

0

      (7) 

As observed from Eq. (7), the extended state equation is a nonlinear equation of the extended 

state vector 
rX , so Eq. (7) can be rewritten in the following general nonlinear differential state 

equation as  

                ( , )u *
r r r r r r,X g X f , f f                             (8) 

Usually, only a limited number of accelerometers are deployed on the concerned substructures 

to measure its acceleration responses. Therefore, the discretized observation equation can be 

expressed as 

  -1 u u * *

r rr rr r r r r r r rr r2 rr r1 r[k] = [k] + [k] + [k] [k] [k] + [k]y D M B f B f B f C X K X v        (9) 

in which r [k]y  the is observation vector (measured acceleration responses) at time t = k t  

with t being the sampling time step, 
r [k]f ,

u

r [k]f , 
*

r [k]f ,
r1[k]X  and 

r2 [k]X  are the 

corresponding discretized values at time t = k t , rrD is the matrix associated with the 

locations of accelerometers, and r [k]v  is the measured noise vector assumed to be a Gaussian 

white noise vector with zero mean and a covariance matrix 
T

ri rj rij ijE[ ] δv v = R , where ij  is the 

Kroneker delta. As observed from Eq. (9), the observation vector is also a nonlinear function of 

the extended state vector. Thus, the discretized observation vector can be expressed by the 

following equation as 

]k[]k[])k[],k[],k[(]k[ r
u

r
u
rrrrrr vfGffXhy  

             (10) 

where 
u -1 u
r rr rr rG = D M B ; 

   , * -1 * *
r r r r rr rr r r r r rr r2 rr r1[k] [k], [k] [k] + [k] [k] [k]  h X f f D M B f B f C X K X  

Based on the approach of extended Kalman estimator (Hsieh and Chen 1999), which has been 

widely used in structural control, the extended state vector at time t =(k +1) t  can be 

estimated with the observation of  r r r[1], [2],..., [k]y y y  as follows 

  ˆˆ ˆ , * u u
r r r r r r r[ k +1 k] [ k +1 k] + [k] [k] h [ k k -1] [k], [ k k -1] [ k k]  GX X K y X f f f (11) 

in which 
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dt),,(]kk[ˆ]kk[
~ *

r
u

rr,r

]k[t

]k[t
rrr fffXgXX 




1

11               (12) 

ˆ
r [ k +1 k]X  and ˆ u [ k k]f  are the estimation of [k +1]X  and u [k]f  given 

 r r r[1], [2],..., [k]y y y , respectively and
r [k]K is the Kalman gain matrix given by (Hsieh and 

Chen 1999) as 

               
1

 T T

r r r r r r r r[k] [k] [k] [k] [k] [k] [k] [k]


 K Φ P H H P H R                (13) 

and 

r r r k[k] = + [ ]ΔtΦ I A ;
ˆ ˆˆ

( , )
 

* *
r r r r r r

u *

r r r r r

r u u
r r[ k k-1]; [k]; [ k k]; [ k k-1]

r

,
[k] =

   




X X f f f f f f

g X f , f f
A

X
(14) 

]kk[ˆ];kk[ˆ];k[];kk[ˆ

rrrr
r

rr
u
r

u
rrrrr

X

),,(
]k[

11 








ffffffXX

ffXh
H          (15) 

rI is an identity matrix,  r [k]P is the error covariance matrix of ˆ
r [ k k -1]X , and  r [k +1]P , 

the error covariance matrix of ˆ
r [ k +1 k]X , is recursively given by 

            
T T

r r r r r r r r[k +1] = [k] [k] [k] [k] [k] [k] [k]P  Φ P Φ K H P Φ             (16) 

However, since both the external excitation u
r (t)f  and the „additional unknown inputs‟ *

r (t)f  

are unknown, it is impossible to obtain recursive solution for the extended state vector of the 

concerned substructure based on the classical extended Kalman estimator alone.  

 

2.3 Estimation of substructural interface forces 
 
For the special case that measurements are available at all the DOFs of the substructure 

interface, the matrix *
rG  in Eq. (10) is a non-zero matrix. Given the observation of 

 r r r[1], [2],..., [k +1]y y y , the „additional unknown disturbances‟ f
*
r

 can be estimated directly 

from Eq. (10) based on least square estimation. Therefore, for this special case, identification of 

substructure works independently.   

For the general case that measurements (sensors) are not available at all of the DOFs at the 

substructure interface, the extended state vector of each substructure at time t =(k +1) t  can 

be estimated by the extended Kalman estimator given the observation signal 

 r r r[1], [2],..., [k]y y y  as shown by Eq. (11). After the estimation of the extended vector of each 

substructure, the „additional unknown inputs‟ f
*
r

 at time t =(k +1) t  can be estimated 

subsequently based on their formulations as shown by Eq. (5), i.e. 

ˆ ˆ ˆ ˆ ˆ ˆ* *
r r rs s rs s rs s[ k +1 k] [ k +1 k] [ k +1 k] [ k +1 k] [ k +1 k] [ k +1 k]   B f M x C x K x     (17) 
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where ˆs [ k +1 k]x and ˆ
s [ k +1 k]x are the estimation values of corresponding state vectors at 

the interface DOFs, ˆ
s [ k +1 k]x  can be estimated by the Newmark- method with the 

estimation values of ˆs [ k +1 k]x  and ˆ
s [ k +1 k]x . It has been verified by comparing the 

numerical estimations of accelerations with the real values in the numerical examples in Section 3 

that the numerical errors in the estimations of accelerations are small which have limited influence 

on the estimations of the „additional unknown inputs‟ *
r [ k +1 k]f  to the substructure. 

Therefore, due to the superiority of the extended Kalman estimator in the proposed algorithm, 

the substructural interface forcers which are treated as „additional unknown inputs‟ to substructure 

can be estimated based on the formulation of „additional unknown inputs‟ without all 

measurements on the substructure interface DOFs. However, in many other previous approaches 

including the EKF-UI (Yang et al. 2007), unknown excitations are initially estimated followed by 

the recursive solution for the extended state vector. Thus, it is necessary to measure all response 

signals at the substructure interfaces DOFs in the previous approaches. The benefits of the 

proposed algorithm over previous ones are obvious for the identification of large-size structural 

systems.  

Based on the proposed algorithm, identification of substructures of a large-size structural 

system can be conducted concurrently with parallel computing; however, transmission between 

adjacent substructures about the estimated values of state vector at the interface DOFs is needed 

for the estimation of substructural interface forces.  

 

2.4 Estimation of the unknown excitation inputs 
 
In Eq. (10), the observation vector, such as the acceleration measurement, is a linear function of 

unknown external excitation u
r (t)f . Under the conditions: i) the number of output measurements 

on the concerned substructure is greater than that of the unknown excitations, and ii) 

measurements (sensors) are available at all DOFs where the unknown external excitation u
r (t)f  

acts on the substructure, i.e., matrix u
rG  in Eq. (10) is non-zero; the unknown external excitations 

on the substructure at time t =(k +1) t  can be estimated from Eq. (10) by least -squares 

estimation as  

   ])kk[],kk[],kk[ˆ(]k[)()(]kk[ˆ *
rr

Tu
r

u
r

Tu
r

u
r 1111111

1




ffXhyGGGf  (18) 

in which, ˆ u [ k +1 k +1]f  is the estimation of u [k +1]f given the observation of 

 r r r[1], [2],..., [k +1]y y y . 
In summary, the main procedures of the proposed algorithm are presented as follows: 

(1) Decompose a large-size structure into a set of smaller sizes substructures and extract the 

equations of motion of the substructures as shown by Eq. (2) 

(2) Treat the substructure interface forces on the right side of Eq. (3) as „additional 

unknown inputs‟  *
r

tf  to the substructure. 
(3) Conduct the recursive estimation of the extended state vector of each substructure 

ˆ
r [ k +1 k]X  by the extended Kalman estimator as shown by Eqs. (11)-(16). 

(4) Estimate the recursive solution of each substructural interface forces  *
r

tf  and 

external excitation u
r (t)f  by Eqs. (17) and (18), respectively. 
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(5) Repeat the procedures (3)-(4) for the recursive estimation of the extended state vector of 

each substructure until the converged estimations of the substructure parameters are obtained. 

Then, detect structural damage based on the degradation of element stiffness parameters in 

substructures.  

Therefore, the proposed algorithm is based on sequential application of the extended Kalman 

estimator for recursive solution of extended state vector and least-squares estimation of the 

unknown excitation inputs, recursive solutions for the extended state vector of each substructure is 

initially obtained with the observation signals and unknown excitation values at a former time 

instant, followed by the estimation of unknown excitation values. Such straightforward derivation 

and analytical solutions are not available in the previous literature. Also, structural parameters and 

unknown excitation are estimated in a sequential manner, which simplifies the identification 

problem compared with other existing work. 

 

 

3. Numerical example validations of the proposed algorithms  

 
To demonstrate the effectiveness of the proposed algorithm for detecting structural damage of 

large size structural systems with limited input and output measurement, several numerical 

simulation examples, including the ASCE benchmark building for structural health monitoring 

(Bernal and Beck 2004, Johnson et al. 2004), a large size plane truss and a continuous beam in 

finite element models, are presented in this paper. The influence of measurement noise on the 

results of system identification and damage detection is considered by superimposition of noise 

process with the theoretically computed response quantities, as described in each numerical 

example.  

In practice, damping ratios rather than damping parameters are identified. In this connection, 

the Rayleigh damping assumption is employed in this study and the damping matrix is assumed as 

 C M + K                               (19) 

where  and  are two Rayleigh damping coefficients which depend on structural damping ratios 

and  frequencies.  

 
3.1 The phase I ASCE benchmark structure 
 

A benchmark building of four-story frame was established by the ASCE in order to compare 

the efficiencies of various system identification and damage detection techniques (Bernal and 

Beck 2004, Johnson et al. 2004). In this paper, the complex case of three dimension (3D) building 

+ limited sensors is considered as shown in Fig. 2(a); however, limited accelerometers are 

deployed at the 1st and 4th floors of the benchmark building. The building is a 3D 12-DOFs 

shear-beam model with unknown excitation applied on the diagonal of the top floor. Since there 

are 16 unknown stiffness parameters as shown in Fig. 2 and the size of extend state vector of the 

whole building is quite large, substructural identification approach is adopted for this complex 

case. The benchmark building is divided into two substructures as shown in Fig. 2(b), in which 

substructure 1 contains the 1st and 2nd floors of the building and substructure 2 contains the 3rd 

and 4th floors of the building. The inter-connection effect between the two substructures is treated 

as the „additional unknown inputs‟ to each substructure, e.g., * *
1 2,  (t) (t)f f and *

3  (t)f are the 
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„additional unknown inputs‟ to substructure 1 while * *
4 5,  (t) (t)f f and *

6  (t)f are the „additional 

unknown inputs‟ to substructure 2. As there is no sensor deployed on the 3rd floor, responses at 

the substructure interface DOFs are not measured. The substructural interface forcers which are 

treated as „additional unknown inputs‟ to substructure are estimated based on their formations as 

shown by Eq. (18). 
It should be noted that two adjacent substructures should have a common interface in the 

decomposition of a large-size structure into a set of substructures so that every stiffness parameters 

are included in the estimation of substructures. The interface forces between two adjacent 

substructures are not action-reaction and therefore are not the same. 

The damping matrix is assumed to be in the Rayleigh damping form, as indicated by Eq.(19), 

with corresponding damping ratios equal to 1%. To consider the influence of measurement noise 

on the results of system identification and damage detection, the measured acceleration responses 

are simulated by the theoretically computed responses superimposed with the corresponding white 

noise with 5% noise- to- signal ratio in root mean square (RMS). Based on the proposed algorithm 

for the estimation of the extended state vector of the two substructures, element stiffness, Rayleigh 

damping coefficients, the displacement and velocity responses of the building can be identified. 

Structural damage is detected by tracking the degradation of identified element stiffness 

parameters. 

 

 
 

 

 

 

 

 

(a) The Phase I ASCE benchmark building 

 
(b) The substructure of ASCE benchmark building 

Fig. 2 The ASCE Benchmark building with substructure approach 
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Fig. 3 Convergence of identified k9 for building with DP4 

 

  
(a) Comparison of the 4th floor displacement 

response in X direction (DP4) 

(b) Comparison of the 4th
 
floor velocity response 

in X direction (DP4) 

  
(c) Comparison of the 4th floor displacement 

response in rotational direction (DP4) 

(d) Comparison of the 4th floor velocity response 

in rotational direction (DP4) 

 
(e) Comparison of unknown external excitation for building with DP4 

Fig. 4 Comparison of identified responses and excitation 
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The first four damage patterns in the benchmark problem (Bernal and Beck 2004, Johnson et al. 

2004) are studied herein, i.e., damage patterns include damage pattern 1 (DP1): all braces in the 

first story are removed, damage pattern 2 (DP2): all braces in both the 1st and 3rd floors are 

removed, damage pattern 3 (DP3): one brace is removed in the 1st story, and damage pattern 4 

(DP4): one brace is removed in each of the 1st and 3rd stories. 

Fig. 3 shows the convergence of the identified element stiffness values. It is noted that the 

identified stiffness parameter converges very fast. For clarity of comparisons, some identified 

displacement and velocity responses in the X and rotational directions for a segment from 0.0 to 

3.0 s are presented in Figs. 4(a)-4(d) as dashed curves while the corresponding actual results are 

also shown as solid curves in these figures. The identified unknown excitation on the 4th floor for 

a segment from 0.0 to 2.0 s is also shown in Fig. 4(e) as the dashed curve with comparison to the 

actual white noise excitation presented as the solid curve. In Figs. 5(a)-5(d), estimation results of 

„additional unknown inputs‟ * *
1 2  (t) and (t)f f to substructure one and * *

5 6 and  (t) (t)f f to substructure 

two are shown by dash curves with comparisons to their corresponding real values shown by solid 

curves. From the above comparisons, it is validated that the proposed algorithm can estimate 

structural responses, elements parameters, inter-connection effect between adjacent substructures 

and the unknown external excitation to the structure with very good accuracy. 
Identification results of all story stiffness for the undamaged building and the damage one with 

the aforementioned four damage patterns are shown in Table 1, whereas the exact story stiffness 

values are also shown for comparison. It is observed from the above comparisons that the 

proposed algorithm is capable of detecting structural damage based on the degradation of the 

identified values of element stiffness parameters as shown by the data in bold-face in Table 1. 

 

 

  

(a) Comparison of 
u

1f  for building with DP4 (b) Comparison of 
u

2f  for building with DP4 

  

(c) Comparison of 
u

5f  for building with DP4 (d) Comparison of 
u

6f  for building with DP4 

Fig. 5 Comparison of identification interface forces 
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Table1 Damage detection results of the ASCE benchmark building 

Stiffness 

No. 

Undamaged 

 (Exact)  

[MN/m] 

Undamaged 

 (Identified)  

[MN/m] 

DP1 

(Identified)  

[MN/m] 

DP2  

(Identified) 

[MN/m] 

DP3 

(Identified)  

[MN/m] 

DP4 

(Identified)  

[MN/m] 

1k  53.31 52.33 28.72 29.15 52.96 51.74 

2k  33.96 32.87 9.51 9.97 22.52 22.28 

3k  53.31 52.81 29.37 29.78 53.26 51.74 

4k  33.96 33.23 9.85 9.82 33.75 32.64 

5k  53.31 53.61 54.41 52.35 54.75 55.12 

6k  33.96 34.90 34.30 32.67 35.27 32.16 

7k  53.31 53.57 54.77 52.67 51.67 54.82 

8k  33.96 34.23 33.43 33.43 33.43 33.43 

9k  53.31 52.97 52.86 29.89 54.31 41.58 

10k  33.96 32.96 33.58 9.47 34.79 34.64 

11k  53.31 53.75 55.45 30.34 54.66 51.01 

12k  33.96 34.69 34.59 10.23 35.21 34.08 

13k  53.31 52.93 54.13 52.12 52.04 52.04 

14k  33.96 34.87 33.15 32.75 34.75 34.95 

15k  53.31 53.81 52.24 54.64 52.22 54.82 

16k  33.96 33.63 34.75 34.85 32.35 34.71 

 

 

3.2 A large size plane truss structure 
 

As show in Fig. 6(a), identification of a large-size simply supported plane truss subject to an 

unmeasured external excitation is taken as another numerical example to illustrate the proposed 

algorithm. Assume that the truss consists of 23 bars with the same uniform cross section area A= 

8.947 10
-5 

m
2
, Young‟s modulus E=2 10

7
 pa, and the mass density  = 7850 kg/m

3
. The length 

of each horizontal bar is 2m while the length of each inclined bar is 2 m. Structural global mass 

matrix M and stiffness matrix K can be formulated as the summation of each element mass and 

stiffness matrices, in which the stiffness of i-th truss element is defined as /i ik EA l .  

In the substructure approach for this large-size truss, the truss is divided into three small-size 

trusses as shown in Fig. 6(b). The inter-connection effect between adjacent two substructures is 

treated as the „additional unknown inputs‟ to each substructure, i.e., * * *
1 2 3,(t) (t) and (t)f f f are the 

„additional unknown inputs‟ to substructure 1 from substructure 2, * * *
4 5 6,  ,  (t) (t) (t)f f f and 

* * *
7 8 9,  ,  (t) (t) (t)f f f are the „additional unknown inputs‟ to substructure 2 from substructure 1 and 3, 

respectively, and * * *
10 11 12,(t) (t), (t)f f f are the „additional unknown inputs‟ to substructure 3 from 

substructure 2. In the numerical example, it is assumed that there are no accelerometers deployed 
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on the nodes 4 and 8, so acceleration responses at the substructural interface DOFs are not all 

measured.  
The external excitation is assumed to be a white noise, but it is also not measured. Again, all 

the measured acceleration responses are simulated by the superimposing theoretically computed 

responses with the corresponding stationary white noise with 5% noise-to- signal ratio in RMS. 

Based on the proposed algorithm, structural responses, structural parameters and the unknown 

excitation of each substructure can be identified with parallel computation among the three 

substructures. 

 

 

 

(a) A large size plane truss 

 

(b) Substructures of the large-size plan truss 

Fig. 6 A large size plane truss with substructure approach 

 

 

Estimated results of displacement and velocity responses in the lateral and vertical directions at 

node 1 are presented in Figs. 7(a) and 7(b) as dashed curves, respectively. To verify the 

identification results, the corresponding actual results are also shown as solid curves in these 

figures for comparisons. In Figs. 8(a) and 8(b), estimation results of two „additional unknown 

inputs‟ * *
1 9  (t) and (t)f f are shown by dash curves with comparisons to their corresponding real 

values shown by solid curves. The identified unknown excitation is also shown in Fig. 8(c) as the 

dashed curve with comparison to the actual white noise excitation presented as the solid curve. 

From these comparisons, it is shown that substructural responses and inter-connection effect 

between adjacent substructures can be identified with good accuracies by the proposed algorithm. 

The identified unknown excitation also compares well with the actual one.  

Supposed damage occurs in both the 2nd and 22nd bars which cause both 
2k and 

22k  reduce 

from 894.76N/m to 626.33N/m. Based on the proposed distributed identification algorithm, the 

stiffness parameters of the truss in undamaged pattern and the damage pattern can be identified. 

Identification results of element stiffness converge vey fast, but the convergence processes are not 

shown herein due to space limitation. Element stiffness values of all bars in the undamaged and 

damaged patterns are identified and shown in the 4th and 7th column of Table 2, respectively. 
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From the comparison of the identified results with their analytical values, it is shown that the 

proposed method can identify structural element stiffness parameters with good accuracy and 

structural damage can be detected and located from the degradation of the identified element 

stiffness parameters as shown by the data in bold-face in Table 2. 

 

 

  
(a) Comparison of lateral displacement response of 

node 1 

(b) Comparison of vertical velocity response of 

node 1 

Fig. 7 Comparisons of identified responses 

 

 

 

  
(a) Comparison of „additional unknown input‟

1 ( )f t
 

(b) Comparison of „additional unknown input‟

9 ( )f t
 

 
(c) Comparison of unknown external excitation 

Fig. 8 Comparison of identified interface forces and unknown excitation 
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Table2 Damage detection results of a large-size plan truss 

Sub 

No. 

Bar 

No. 

Bar stiffness 
ik  (N/m) 

Undamaged 

(Exact) 

Undamaged 

(Identified) 
Error (%) 

Damaged 

(Exact) 

Damaged 

(Identified) 
Error (%) 

Sub 

1 

1 1265.4 1251.9 -1.07 1265.4 1262.9 -0.19 

2 894.8 897.5 0.31 626.3 618.8 -1.21 

3 1265.4 1263.9 -0.11 1265.4 1266.2 0.06 

4 894.8 903.8 1.01 894.8 889.3 -0.61 

5 1265.4 1237.6 -2.19 1265.4 1218.3 -3.72 

6 894.8 891.0 -0.42 894.8 899.5 0.53 

7 1265.4 1280.3 1.18 1265.4 1290 1.95 

8 894.8 900.7 0.66 894.8 892.1 -0.30 

9 1265.4 1266.8 0.11 1265.4 1298.8 2.64 

Sub 

2 

9 1265.4 1256.6 -0.69 1265.4 1267.6 0.18 

10 894.8 898.7 0.44 894.8 895.9 0.13 

11 1265.4 1252.8 -0.99 1265.4 1257 -0.67 

12 894.8 852.4 -4.73 894.8 887.7 -0.79 

13 1265.4 1278.2 1.02 1265.4 1270.2 0.38 

14 894.8 878.9 -1.77 894.8 886.9 -0.88 

15 1265.4 1268.6 0.26 1265.4 1278.2 1.01 

Sub 

3 

15 1265.4 1278.1 1.00 1265.4 1270.5 0.41 

16 894.8 884.0 -1.20 894.8 887.1 -0.86 

17 1265.4 1262.5 -0.23 1265.4 1276.9 0.91 

18 894.8 884.9 -1.11 894.8 888 -0.76 

19 1265.4 1275.0 0.76 1265.4 1263 -0.19 

20 894.8 895.1 0.04 894.8 900.9 -0.69 

21 1265.4 1275.8 0.82 1265.4 1256.4 -0.71 

22 894.8 898.0 0.37 626.3 624.3 -0.32 

23 1265.4 1260.8 -0.36 1265.4 1265.1 0.02 
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(a) A three-span continuous beam in FEM model 

 

  
(b) Substructures of the continuous beam 

Fig. 9 A three-span continuous beam with substructure approach 

 
 
3.3 A three-span continuous beam in finite element model 
 

A simply supported three-span continuous beam with uniform cross section, as shown in Fig. 

10(a), is considered as the final numerical example to illustrate the proposed algorithm. A finite 

element model of the beam is also shown in Fig. 9(a), in which the beam is divided into 11 

elements with equal length. Each element has two nodes with two DOFs in the vertical and 

rotational directions, respectively, except nodes 1 and 12 have only rotational DOF due to the 

constraints at the two ends. In this example, the beam is assumed to be in bending deformation 

without axial forces. The beam is subjected to an unknown (unmeasured) external excitation in the 

vertical direction at node 7. 

In the numerical example, it is assumed that cross section area A=0.1m
2, 

and length of the beam 

element l= 1.5 m, mass density  =7850 kg/m
3
, Young‟s modulus E= 82 10 pa. k EI/l , which is 

defined as the equivalent stiffness of the element with I being the moment inertia, is selected as 

222.22×10
3 
kN·m. Global mass matrix of the whole continuous beam is assumed to a contracted 

one while the global stiffness matrix of the whole beam can be obtained based on assembling all 

the element stiffness matrices. Structural damping ratios are assumed as 
1 2 0.03   .  

Since the size of the extended state vector of the whole beam is quite large, substructural 

approach is adopted in which the continuous beam is divided into three small-size substructure as 

shown in Fig. 9(b). The inter-connection effect between adjacent two substructures is treated as the 

„additional unknown inputs‟ to each substructure, i.e., * *
1 2(t) and (t)f f are the „additional unknown 

inputs‟ to substructure 1 from substructure 2, * *
3 4  (t) and (t)f f are the „additional unknown inputs‟ 

to substructure 2 from substructure 1 and 3, respectively, and * *
5 6(t) and (t)f f are the „additional 

unknown inputs‟ to substructure 3 from substructure 2. 
In practice, it‟s still a problem to have appropriate instruments for measuring dynamic 

responses of rotational angles. Therefore, it‟s not reasonable to have the measurements of 
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acceleration responses of the rotational DOFs, acceleration responses in the vertical directions at 

node 2, 3, 5, 6, 7, 8, 10, 11 are measured. Therefore, only limited acceleration responses are 

measured and the responses at the substructural interface DOFs are not all available. Again, all the 

measured acceleration responses are simulated by the superimposing theoretically computed 

responses with the corresponding stationary white noise with 5% noise-to- signal ratio in RMS.  

 
 

  
(a) Comparison of vertical displacement response at 

node 6 

(b) Comparison of vertical velocity response at 

node 6 

  
(c) Comparison of rotational response at node 3 (d) Comparison of velocity of rotational response 

at node 3 

 
(e) Comparison of unknown external excitation 

Fig. 10 Comparisons of identified responses and excitation 

 
 

Based on the proposed algorithm, estimated results of the vertical responses at node 6 are 

presented in Figs. 10(a) and 11(b) as dashed curves, respectively. Also, estimation results for the 

rotational response at node 3 are shown by dashed curves in Figs. 10(c) and 11(d), respectively. To 
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verify the identification results, the corresponding actual results are also shown by solid curves in 

these figures for comparisons. The identified unknown excitation is also compared with the actual 

white noise excitation in Fig. 10(e), in which the identified unknown excitation is shown as the 

dashed curve with comparison to the actual white noise excitation presented as the solid curve. 

Estimation results of „additional unknown inputs‟ compares well with their corresponding real 

values, but these comparisons are not shown herein due to space limitation. From these 

comparisons, it is shown that substructural responses and inter-connection effect between adjacent 

substructures can be identified with good accuracies by the proposed algorithm. The identified 

unknown excitation also compares well with the actual one.  

Identification results of equivalent stiffness of elements converge very fast, but the 

convergence processes are not shown herein due to space limitation. The converged results and the 

results of all equivalent stiffness of elements for undamaged beam are shown in the third column 

in Table 3 with comparisons to the exact values. It is observed from these comparison results that 

the proposed algorithm can accurately estimate structural elements stiffness parameters. 

Supposed structural damage occur in element 1, 6, 10, the proposed algorithm is utilized to 

identify all equivalent element stiffness of the damaged beam. The identification results are shown 

in the 6th column in Table 3. From the comparisons in Table 3, it is demonstrated that the 

proposed algorithm is capable of detecting and localizing structural damage from the degradation 

of the identified equivalent element stiffness parameters as shown by the data in bold-face in Table 

3.  

 

 
Table3 Damage detection results of a three-span continuous beam 

Element 

No. 

Stiffness ik (kN·m) 

Undamaged 

(Exact) 

Undamaged 

(Identified) 
Error (%) 

Damaged 

(Exact) 

Damaged 

(Identified) 
Error (%) 

1 222.22 223.98 0.79 177.78 180.88 1.74 

2 222.22 222.54 0.14 222.22 215.01 -3.25 

3 222.22 227.02 2.16 222.22 224.36 0.96 

4 222.22 212.08 -4.56 222.22 219.92 -1.04 

5 222.22 220.86 -0.61 222.22 222.02 -0.09 

6 222.22 226.98 2.14 177.78 185.53 4.36 

7 222.22 223.91 0.76 222.22 224.52 1.03 

8 222.22 219.51 -1.22 222.22 216.2 -2.71 

9 222.22 215.94 -2.83 222.22 213.92 -3.74 

10 222.22 220.28 -0.87 177.78 185.92 4.58 

11 222.22 225.49 1.47 222.22 217.9 -1.94 

 

 

4. Experimental validation of the proposed algorithms 
  

An eight-story frame in the lab shown in Fig. 11(a) is used for experimental valaidation of the 

proposed algorithm. Since the building floor is much stiffer compared with the slender columns 

made of thin steel sheets, a theroretical lumped mass shear building is modeled for the lab frame. 

Mass of each floor can be estimated, so mass matricx of the building is known. The building is 

excited by a magnetic shake, which induces an unmeasured excitation to the building at the 3rd 
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story level. Six light PCB accelerometers are installed on the 2nd, 3rd, 4th, 6th, 7th and 8th floors 

to measure the one-dimension acceleration responses of at the corresponding floor levels (see Fig. 

11(a)).   

Although the lab building is not large in size, it is used as a prilimary and illustrative example 

for the verfiation of the proposed substructural approach, in which the building is divided into two 

substructures with floors 1-5 being the 1st substructure and floors 5-8 being the second one as 

shown as shown in Fig. 11(b). The inter-connection effect between the two substructures is treated 

as the „additional unknown inputs‟ to each substructure shown in Fig. 11(b), i.e., 
*

1 (t) f is the 

„additional unknown inputs‟ to substructure 1 from substructure 2, *

2 (t)f  is the „additional 

unknown inputs‟ to substructure 2 from substructure 1. Thus, substructure 1 is excited by both the 

unmeasured excitation
u(t)f  and the „additional unknown inputs‟

*

1 (t) f . Since there is no sensor 

on the 5th floor, responses at the substructure interface DOFs are not measured. 
Based on the proposed algorithm for the estimation of the extended state vector, story stiffness, 

Rayleigh damping coefficients, the displacement and velocity responses of each substructure can 

be identified. Identification results of story stiffness ik  (i=1,2,…,8) converge vey fast, but the 

convergence processes are not shown herein due to space limitation. The identification results of 

story element stiffness ik  are shown in the 2nd column of Table 4. 

Structural damage is simulated by replacing the original slender columns by another type of 

thinner steel sheets, which results in the reduction of corresponding story stiffness ki (i=1, 2, ….8). 

In the experiment, structural damage is assumed to occur in the columns of the 5th story which 

leads to the reduction of k5. By comparing the degradation values of the identified story stiffness 

parameters in the 4th column in Table 4, it can be detected that structural damage occurs at the 5th 

columns, which conforms to the actual structural damage. The level of structural damage can also 

be estimated by the degradation values of k5 as shown by the data in bold-face in Table 4.    

 

 

  
(a) An eight-story frame in the lab (b) An eight-story frame in the lab with substructure 

approach 

Fig. 11 An eight-story frame in the lab with substructure approach 
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Table 4 Identification results of story stiffness 

Storey No. 
Stiffness 

ik (kN/m) 

Undamaged Damaged Degradation (%) 

1 129.91 132.26 1.82 

2 128.33 131.47 2.45 

3 124.75 123.02 -1.39 

4 126.87 122.74 -3.26 

5 136.13 107.21 -21.25 

6 132.79 134.33 1.16 

7 140.11 137.65 -1.76 

8 133.34 134.88 1.15 

 

 
5. Conclusions 

 
In this paper, a new structural damage detection algorithm based on substructure approach is 

proposed for large size structural systems with limited input and output measurements. 

Inter-connection effect between adjacent substructures is considered by „additional unknown 

inputs‟ to substructures. By sequential application of the extended Kalman estimator for recursive 

solution of extended state vector of substructure and least-squares estimation of its unknown 

excitation inputs, it is shown that the „additional unknown inputs‟ can be estimated by the 

algorithm without the measurements of the substructure interface DOFs, which is superior to 

previous substructural identification methods. Such straightforward derivation and analytical 

solutions are not available in the previous literature. Also, structural parameters and unknown 

excitation are estimated in a sequential manner, which simplifies the identification problem 

compared with other existing work. Several numerical examples and a lab experiment validate that 

the proposed algorithm can detect structural damage in large size structural systems with limited 

input and output measurements. 

Limitations of the proposed algorithms include: i) the number of output measurements is larger 

than that of the unknown excitations, and ii) measurements (sensors) must be available at the 

DOFs where the unknown external excitations act. Moreover, experimental studies of large size 

structures are necessary to fully assess the performances of the proposed algorithm are needed. 

Relevant work is being undertaken by the authors.   
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