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Abstract.  This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler 
beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an 
analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the 
framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several 
piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the 
question how to design the interconnected resistive electric network in order to annihilate lateral vibrations 
of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a 
tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be 
controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite 
in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable 
choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler 
beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a 
certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the 
resistances in the electric network and the excitation frequency, is small, the proposed shape control method 
is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape 
control method with a more refined model, by comparing the results of our one-dimensional calculations 
based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite 
element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the 
three-dimensional finite element results. 
 

Keywords:  piezoelastic modeling of a beam; static shape control; dynamic shape control; patch actuators; 

resistive network; feed-forward control of piezoelastic beam-structures 

 
 
1. Introduction 
 

Piezoelectric transducers are extensively used for active and passive vibration control, for 

structural health monitoring and for energy harvesting. They convert electrical energy into 

mechanical energy, which allows changing their deformation by applying electrical voltage and 

vice versa. This effect is exploited when piezoelectric actuators are integrated into an elastic 
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system. These actuators allow for feed-forward vibration control with shape control as a special 

discipline. The aim of shape control is to achieve a certain displacement field by a proper 

distribution and actuation of the piezoelectric control agency/-ies if the external loads are known.  

The notion shape control has been introduced by Hafka and Adelman (1985). They calculate 

the temperature field of a supporting structure such that the distortions from the original shape are 

minimized. Shape control problems belong to the class of so-called inverse mechanical problems 

where external forces and moment are computed to obtain a desired displacement field, see Irschik 

(2002). Solutions to this class of problems might not be unique, if they exist: Consider a 

clamped-clamped slender beam with a constant distribution of the piezoelectric layer. The beam 

will not vibrate if an electric voltage is applied, see Hubbard and Burke (1992), Irschik, et al. 

(2003) and Irschik, et al. (1998). If a shaped layer is added to the constant layer, the response of 

the beam is solely due to the actuation of the shaped layer. Piezoelectric transducers are often used, 

especially to control dynamic problems. Nader (2007) verified experimentally the theoretical 

results for shape control of beam-type structures: if the smart actuation is the negative quasi-static 

bending moment due to transient imposed forces, the total vertical deflection is zero. In his 

experimental setup base-excited vibrations of a cantilever are annihilated by actuating a discretized 

parabolic distribution of piezoelectric patches. Agrawal and Treanor (1999) minimized the integral 

of the quadratic difference between a desired and an achieved static deflection to obtain the 

optimized piezoceramics actuator locations and voltages. The concept of shape control is not only 

restricted to actuated smart structures, it is also possible for passive smart beams with attached 

electric circuits. The concept of piezoelectric shunt damping can be attributed to Forward (1979), 

who was the first to reduce mechanical vibrations in optical systems by external inductive circuits.  

Hagood and Flotow (1991) used resistive-inductive impedances for attenuating structural 

deformations. This may be interpreted as a very small tuned mass damper, as a system of second 

order, which interacts with the dynamics of a large system. In Schoeftner and Irschik (2009) and 

(2011b) conditions for the piezoelectric transducers and for the electric network are given such that 

the harmonic vibrations of an arbitrary force-excited laminated beam are completely annihilated.  

The aforementioned citations have in common that a one-dimensional mathematical model of 

the piezoelectric beam is used to derive design specifications for shape control. Examples 

concerning the modeling of electromechanically coupled composite beams can be found in Zhou et 

al. (2005), Krommer and Irschik (2002) and Krommer (2001). In the latter contribution, the 

derived theory is compared to two-dimensional finite element plane stress calculations in 

ABAQUS. For passively controlled smart beams, a theory has been developed by Schoeftner and 

Irschik (2011a). Results for Timoshenko and Bernoulli-Euler beams are compared to 

two-dimensional plane-stress results in ANSYS. A discussion of simplified modeling of 

piezoelastic beams, e.g. the thermal analogy and the strain induced potential concepts, for 

free-vibrations can be found in Benjeddou (2009).  

In this contribution we will deal with beams hosting span-wise constant piezoelectric 

transducers, which are also known as piezoelectric patches. An alternative method to reduce 

structural vibrations is the use of an array of electrically interconnected piezoelectric transducers 

on the substrate. Such a configuration when passive electrical impedances are in connection to 

adjacent transducers is treated in Vidoli and dell’Isola (2000), Porfiri and dell’Isola (2004) and 

dell’Isola et al. (2011). Its advantage is that patch actuators can be easily glued onto an elastic 

system and the resistor network can be removed or changed in order to optimize the damping 

performance. Such beam-patch models with interconnected resistive electric circuits may be 

interpreted as the discretization of a piezoelastic beam with so-called resistive electrodes, see 
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Schoeftner and Buchberger (2012) and Buchberger and Schoeftner (2013). In resistive electrodes 

the equipotential area condition over the electrodes is not fulfilled, i.e., the potential is not 

uniformly distributed and a voltage drop exists along the electrodes. It is found that a beam-type 

structure equipped with resistive electrodes of the piezo-transducers is governed by a system of 

two coupled partial differential equations. The first one extends the Bernoulli-Euler beam theory 

for a purely elastic beam by means of a voltage-depended term, and the second one is a diffusion 

equation for the voltage distribution, with the time-derivative of the lateral deflection as the source 

term. The theory is verified by three-dimensional finite element calculations for highly, moderately 

and hardly conductive electrodes. Originally resistive electrodes and their combination with thin 

piezoelectric and pyroelectric films are used for touch- and lightpoint localization, see Buchberger 

et al. (2008a, 2009a, 2012a,b). To the best knowledge of the authors, coupled modeling of 

piezoelectric elements with resistive electrodes and elastic systems has been only performed by 

Rosi et al. (2010), where the sound radiation of a plate is reduced, and Lediaev (2010), where a 

finite element model of a bimorph cantilever based on a three-dimensional electromechanical 

formulation is presented. 

A major drawback of commercial software packages like ANSYS and ABAQUS is that 

numerically efficient beam, plate and shell elements, which include the piezoelectric effect and the 

coupling to electrical impedances for active and passive applications, are currently not available. 

Even very simple mechanical configurations, like e.g., the cantilever beam with several patches 

treated in this contribution, may be set up as a three-dimensional object, thus three-dimensional 

solid elements have to be used, resulting in numerically inefficient simulation models. Thomas et 

al. (2009) present a finite element formulation of a mechanical structure equipped with several 

piezoelectric patches, where the electrical state of the piezoelectric patches is described by the 

voltage drop over the electrodes and the electric charge. Finally a reduced-order model of the 

problem is derived from the system’s normal modes with all patches left short-circuited. A 

fully-coupled FE model for a laminated plate with embedded piezoelectric patches is developed in 

Godoy and Trindade (2011), which is used to optimize the locations of the patches and the design 

of the electric circuit. An extension to a vibroacoustic problem, where a piezoelectric plate with 

electric shunt circuits is coupled to the pressure field of a fluid is shown in Larbi, et al. (2012). 

The paper is structured as follows: In the section 2 the basic equations of a smart slender beam 

are repeated, where we use the formulation of Krommer (2001) and Schoeftner and Irschik 

(2011a). In section 3 this theory is modified to obtain the differential equations for an elastic 

substrate hosting several piezoelectric patch actuators whose external electrodes are connected to 

the adjacent patches via resistors. In section 4 we present our shape control method based on our 

one-dimensional beam formulation. It is sown that a desired static deflection at several locations is 

obtained by the proper design of the resistors and the reference voltage source. The object under 

consideration is a tip-loaded cantilever. The validity of our method is only exact for static loads 

(section 5). As long as a certain non-dimensional parameter is small, which involves the number of 

the piezoelectric patches, the sum of the resistors in the electric network and the excitation 

frequency, the proposed shape control method is approximately fulfilled for dynamic excitations 

and for transient excitations of the force load (section 6 and 7). Furthermore, our one-dimensional 

results are compared to three-dimensional finite element results in ANSYS 12.0., demonstrating 

the validity of our proposed shape control method. 
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2. Lateral equation of motion of slender composite piezoelastic beams 

 

In this section we summarize the governing equations of motion of a slender piezoelectric beam, 

which is composed of an elastic substrate ( sk  ) and a lower and an upper piezoelastic layer (k 

=1, u). The beam is modeled as an equivalent single layer using classical laminate theory (CLT) 

within the framework of Bernoulli-Euler. For a detailed derivation of the governing equations and 

the physical assumptions, the reader is referred to Krommer (2001) and Schoeftner and Irschik 

(2011a). The coupled extensional and bending vibrations in the x-and the z-direction read
*
 

 
0 0, ,

0 0 ,,

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ).

u uw x x x

uw w xx zx

M x u x M x w x N x q x

M x u x M x w x M x q x

  

     
             

(1) 

The axial and lateral displacements of the neutral fiber are denoted by 
0 0( ), ( )u x w x , 

respectively, and the distributed loads along the beam axis and in the transverse direction by 

( ), ( )x zq x q x . The mass per unit length and the coupling inertia are denoted by 

2 2

1 1s,u,l s,u,l

( ) ( ) ( )dz, ( ) ( ) dz,
k k

k k

z z

u w k k uw k k
z z

k k

M x M x b x M x b x z 
 

           
(2) 

where the variable width of each layer is ( )kb x . The thickness coordinates are 
1 2,k kz z , the 

thickness of each layer is 
2 1 k k kh z z  and the mean distance to the x-axis is 

 m 2 1 2 k k kz z z . The vertical and lateral displacements of an arbitrary point of the beam is  

 0 0, 0( , ) ( ) ( ), ( , ) ( ).xu x z u x zw x w x z w x  
                   

(3) 

The normal force and the bending moment can be divided into an elastic and an electrical 

portion  

  

N 0, NM 0, 31

u,l

NM 0, M 0, 31 m

u,l

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

k k

x xx k

k

k k

x xx k k

k

N x K x u K x w e b x V

M x K x u K x w e z b x V





  

  



              
(4) 

The axial stiffness N ( )K x , the coupling stiffness NM ( )K x  and the bending stiffness M ( )K x  

are for a beam, which consists of a substrate and a lower and an upper piezoelectric layer 

 

                                                      
*Although shape control of bending vibrations will be studied in this work, the coupled longitudinal-bending equations 

of a slender laminated beam are given here for the sake of completeness. It is noted that shape control of longitudinal 

vibrations is also possible. Similar equations to that presented in section 4 may be derived in a straightforward manner, 

but this is beyond the scope of this contribution and will be tackled in the future by the authors. 
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 

   

2 2

2 1
N 11 2 1 NM 11

s,u,l s,u,l

2 3
3 3

31 2 12 1
M M,elast M,piezo 11

s,u,l u,l 33

( ) ( ), ( ) ( )
2

( ) ( ) ( ) ( ) ( ).
3 12

k k k k
k k k k

k k

k

k kk k k
k kk

k k

z z
K x C z z b x K x C b x

e z zz z
K x K x K x C b x b x



 

 


  


   

 

 

(5) 

The variables 
11 31 33, ,k k kC e  denote the effective values of the Young’s modulus, the 

piezoelectric transverse coefficient and the strain-free permittivity. The potential distribution inside 

the piezoceramic layer k depends on the external voltage supply V
k
 

  
2

31
1 0, m 1

33

( , , ) ( , , ).
2

k k

k xx k kk

k

V e z
x z t z z w z z x z t

h
 



 
      

 
           

(6) 

The electrical field is given by the relation ,( , ) ( , )k k

z zE x z x z  . The electric displacement in 

the z-direction depends on the deformation and the applied voltage 

   33
31 0, m 0, .

k
k k k

z x k xx

k

D e u z w V
h


  

                      
(7) 

Integration over the electrode area of each layer Ak results into the total charge 
kQ  

 

 

elast
0

33
elast 31 0, m 0,

0 0

( )d

( )d , ( )d .

l
k k k k k

z k

k
l l

k k k

x k xx k k

k

Q D b x x Q C V

Q e u z w b x x C b x x
h



  

  



 
          

(8) 

The total length of the beam is denoted by l . Eq. (8) shows that one part of the total charge, 

namely the elastic part elast

kQ , is generated by the deformation of the structure. The remaining part 
k kC V  depends on the prescribed voltage over the electrodes and the capacitance of the 

piezoelectric layer 
kC . It is noted that throughout this paper we do not account for piezoelectric 

or dielectric losses of the piezoelectric transducers. The components of the piezoelectric modulus 

and the permittivity matrix in Voigt notation (see Appendix B) are assumed to be 

frequency-independent and no static leakage current flow exists inside one piezoelectric element. 

 

 

3. Lateral equations of motion for a beam with resistively interconnected 
piezoelectric patches 
 

For the derivation of the equation of motions of an elastic beam, which is equipped with several 

piezoelectric patches, we can take advantage of Eqs. (1)-(8). These equations hold for a 

multi-layered piezoelectric beam with axially varying width. For reasons of simplification we 

assume a symmetrical setup around the x-axis, see Fig. 1, and that all piezoelectric patches have 

the same geometrical dimensions (length pl , constant width pb with pk  (piezo)). Thus it 
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follows that the coupling stiffness and the coupling mass are zero NM 0 uwK M . Furthermore, 

we only allow external forces perpendicular to the beam axis ( ) 0xq x  , therefore the axial 

deformation 0 ( )u x  vanishes. Eq. (1) is reduced to 

 0 M 0, ( ).w xxxx zM w K w q x 
                        

(9) 

 

 

Fig. 1 Elastic cantilever hosting several piezoelectric patches. The voltage 0( )V t  and the resistors ijR
are the same for upper and lower side and cause a voltage distribution of the piezoelectric patches. 

All inner electrodes and one link of the terminal resistance 45R  are connected to ground 

 

 

The bending stiffness is M M,elast M,piezo K K K  for a a pn nx x x l   , where patch n  is 

located, and M M,elastK K  otherwise. At anx  and a a pn nx x l  , the continuity relations for the 

deflection, the rotation, the bending moment and the shear force read
†
 

 
 

 

0 a 0 a

0, a 0, a

M,elast 0, a M,elast M,piezo 0, a 31 mp p

M,elast 0, a M,elast M,piezo 0, a

( ) ( )

( ) ( )

( ) ( ) 2

( ) ( )

n n

x n x n

xx n xx n n

xxx n xxx n

w x w x

w x w x

K w x K K w x e z b V

K w x K K w x

 

 

 

 





    

   

       
(10) 

and 

 
 

 

0 a 0 a

0, a 0, a

M,elast M,piezo 0, a 31 mp p M,elast 0, a

M,elast M,piezo 0, a M,elast 0, a

( ) ( )

( ) ( )

( ) 2 ( )

( ) ( ).

n n

x n x n

xx n n xx n

xxx n xxx n

w x w x

w x w x

K K w x e z b V K w x

K K w x K w x

 

 

 

 





    

   

        
(11) 

                                                      
† The limits from below (left) and from above (right) at 

anx  are distinguished by 
anx

 and 
anx

, respectively.  

x

prescribed voltage

5 t( ) ( ) 0V t V t 

0 ( )V t

patch #2  ( =p)k

patch #1 patch #3 patch #4

substrate ( =s)k

y

z

a2x

12R 23R 34R 45R
01R 12i

01i
23i 34i 45i

12V 23V 34V 45V

a2x

0 ( )V t

pls1x

piezoelectric

1V 2V
3V 4V
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Eqs. (10) and (11) take into account that the voltage drops across the upper and lower patches 

are reversed in sign 
l u  n n nV V V , therefore the factor 2 occurs in the voltage-dependent term 

in the third equations. Fig. 1 shows that the external electrodes of the piezoelectric patch n  and 

1n   are connected by the resistance 1n nR  . The current 1n ni  , which defines the current flow 

from patch n  to patch 1n  , causes a voltage drop between the patch electrodes 

1 1n n n nV V V   . From Kirchhoff’s voltage rule follows 

  1 1 1 0,1, , 1,n n n n n nV R i V n N N     
                

(12) 

where N  is the total number of patches. The currents from patch n  to the adjacent patches 

1n  and 1n , denoted as 1n ni   and 1n ni  , have to be equal to the time derivative of the total 

charge generated by the piezoelectric patch n , see Eq. (8) 

n,nnnnnn VCQQii    elast t   11        N,...,,n 21  

 )x(w)x~(wbze~Q anx,anx,pmp,n 0031elast                       (13) 

For the numerical example, we will use a beam with eight piezoelectric patch actuators 8N  . 

Combining Eqs. (12) and (13), we find nine algebraic equations and eight differential equations in 

order to determine the eight unknown voltage drops 1 2 8, , ,V V V  and nine unknowns for the 

current flow 01 12 78 89, , , ,i i i i .  
 

 

4. Shape control of bending vibrations of a tip-loaded cantilever 
 

In this section we give a criterion of how to choose the reference voltage 0( )V t  and the 

resistors ijR  of the electric circuit, if a certain trajectory for the lateral displacement 0 s( )jw x  is 

required at location sjx . The structure under investigation is a cantilever which is loaded by the 

tip-force 0F . We show that it is possible to calculate the necessary actuator voltages ( )nV t in the 

static case, in order to achieve a desired deformation at some selected locations. From a practical 

point of view, it is preferable to prescribe the voltage only at one piezoelectric patch, the voltage at 

the remaining patch actuators is achieved by the design of a proper electrical network to tune the 

voltage at each patch. For harmonic excitations or external loads with arbitrary time-dependence, 

we will show that the design rules computed for static shape control approximately hold in the 

dynamic regime, as long as a certain non-dimensional parameter is small. This parameter involves 

the resistors, the number of piezoelectric patches, their electric capacitances and the excitation 

frequency.  

In the static case the governing equation in (9) can be integrated twice. The deformation due to 

the tip load and the voltage-induced deformation caused by the piezoelectric patches can be 

written as 

 0 0

1

( ) ( ) ( ) ,
N

F Vn n

n

w x G x F G x V


                        
(14) 
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where ( )FG x  and ( )VnG x  are the solutions caused by the tip load acting at x l  and by the 

patch actuator n  when the prescribed voltage is 1VnV   over the electrodes. The patch n  is 

located between the interval a a pn nx x x l   . In order to simplify matters for a better 

understanding, we neglect the bending stiffness of the patch compared to those of the substrate 

M,elastpiezo M,  KK  .
‡
 So the solutions ( )FG x  and ( )VnG x  for a cantilever read 
















62

1
)(

32

M,elast

xlx

K
xGF                           (15) 

and 

 
 

 

a

2

a31 mp p

a a p

M,elast

2

31 mp p p

a p p a p

M,elast

: ( ) 0

2
: ( )

2

2
: ( ) .

2

n Vn

n

n n Vn

n Vn n

x x G x

x xe z b
x x x l G x

K

e z b l
x x l G x l x x l

K

 


   

 
      

  

        
(16) 

Since eight piezoelectric patches are used, the deformations at eight locations
six can be 

prescribed.  

These locations are situated between two adjacent patches and at the free end of the beam. 

Taking advantage of (15) and (16) one obtains the following linear equations 

0

0 s1 s1 1 s1 2 s1 8 s1

1

0 s2 s2 1 s2 2 s2 8 s2

2

0 s8 s8 1 s8 2 s8 8 s8

8

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( ) ( )

F V V V

F V V V

F V V V

F
w x G x G x G x G x

V
w x G x G x G x G x

V

w x G x G x G x G x
V

 
    
    
    
    
       
    

 

       
(17) 

In matrix notation this reads 

 00
.F VW G F G V 
                           

(18) 

One special goal of shape control is to completely annihilate the vibrations at certain locations, 

i.e., 
0

0W .  In this case the voltage vector is 

                                                      
‡ It is noted that the patch stiffness is not neglected in the numerical example (sections 5, 6 and 7), although the 

thickness of the layers is only 5% of the substrate thickness, see Table 2. Eqs. (15) and (16) are only approximate 

solutions for the displacement under a unit force and under a unit voltage and have to be modified by accounting for the 

section-wise constant bending stiffness of the beam. 
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1

0 0
0.V FV G G F W   

                     
(19) 

Substituting Eq. (16) into VG  results into a lower triangular matrix with nonzero diagonal 

elements for the cantilever, so the inverse matrix exists and a unique distribution for the voltage 

actuation of the piezoelectric patches is obtained. For static investigations the current through each 

electrical branch is equal, see Eqs. (12) and (13) 

 01 12 78 89,i i i i i    
                      

 (20) 

since the piezoelectric capacitance C  blocks the direct-current. In order to obtain the necessary 

patch voltage (19) one has to determine the resistance 01 12 78 89, , , ,R R R R  such that 

  11

1 1

1,2, ,7,8
n nn n

n n n n

RV V
n

V V R



 


 

                  
(21) 

holds. This means that in the static case the desired voltage is determined by the ratios of the 

resistors 11  n n n n R/R . Since the left-hand side of Eq. (21) is known from Eq. (19), one has to fix 

the value of one arbitrary resistor in order to calculate the remaining ones. 

 

 

5. Numerical results - static shape control of a tip-loaded cantilever 
 

As a structural example, we simulate a cantilever beam subjected to the tip-force 
0F in order 

to verify the above derived theoretical results. Table 2 in Appendix A lists the material parameters 

and the geometry of the beam configuration, see Fig. 2. The cantilever hosts eight actuator patches 

with length pl , the width of the substrate and of the patches are equal bs = bp = 0.05 m. The 

one-dimensional calculation is based on Eqs. (9), (12) and (13). We discretize the beam equation 

(9) by using 

 

 

Fig. 2 Three-dimensional finite element model of a cantilever with distributed patch actuators (ANSYS). 

The voltage at each patch depends on the nominal voltage V0 (t), on the terminal voltage V9 (t) = 0  

and on the resistors Rij  

clamped

0 ( )V t

free

elastic substrate

upper patch actuators

resistance

lower patch actuators

ijR

89R
9 ( ) 0VV t 

12R

23R

34R

45R

56R

67R

78R
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Bernoulli-Euler beam elements and by accounting for the kinematic and dynamic boundary 

conditions of each finite element given in Eqs. (10) and (11).  

The beam is divided into 34 finite elements. The self-written one-dimensional code for the 

beam elements is written in MATLAB, which takes into account the coupling of the discretized 

model of the piezoelastic beam and the electrical Eqs. (12) and (13), in order to obtain a 

state-space representation. For the transient simulation results, which are shown in section 7, the 

system matrices are imported into the Simulink environment. The three-dimensional finite element 

simulation is performed in ANSYS 12.0. The substrate is divided into 96 elements in the axial 

direction, 6 elements in the thickness direction and 8 elements in the lateral direction. The patches 

consist of 16, 4 and 8 elements in the axial, thickness and lateral direction. The coupled-field solid 

element SOLID5 is used which provides three structural degrees of freedom for the deformation 

and optionally one electrical degree of freedom (electric potential) for modeling the piezoelectric 

patches.  

The electrical resistances 12 23 78 89, ,..., , ,R R R R  are modeled by CIRCU94 elements. They 

connect the voltage degrees of freedom at the external electrodes at 44.z  mm. The inner 

electrodes of the patches at 44.z  mm and the terminal load 9V are grounded. The material 

parameters for the piezoelectric transducers (PZT-5A) and the substrate (Aluminum) are given in 

Appendix A. The equivalent one-dimensional material constants for the one-dimensional beam 

model are obtained by applying the transformation rules presented in Schoeftner and Irschik 

(2011a). Furthermore, the modal damping coefficient d = 0.02 is assumed in both the ANSYS and 

the Bernoulli-Euler model. 

Our first aim is to completely suppress the static deflection at the positions six (Table 2), which 

are situated between two adjoining patches and at the free end. In a first step, Eq. (19) is solved to 

calculate the required patch voltages. The maximum voltage is used as the reference voltage signal, 

thus V0 = V1 = 250.3 V holds. Using Eq. (21) and fixing the total resistance of all resistors 

Ω 1000   totalR , one finds the values of the resistors, see Table 1. The static deflection and the 

voltage distributions are shown in Fig. 3 for the one-dimensional (Bernoulli-Euler) and in Fig. 4 

for the three-dimensional model (ANSYS). The deflection as a function of the beam length is 

plotted in Figs. 3(a) and 3(b). The tip deflection of the beam subjected to the tip-load (light gray- 

F0 =1N, V0 = 0V: w0(l) = 0.2415 mm) is the same, but with opposite sign as the deflection of the 

beam under the optimal electrical load (black- F0 = 0N, V0=250.3V: w0(l) = -0.2415 mm). If the 

external and the electrical load act simultaneously, the deflection is completely annihilated at the 8 

desired sensor locations six . 

For the ANSYS model the same values in the electrical network and the same reference voltage 

are used. It is clear that the design Eqs. (19) and (21) for shape control will only be approximately 

fulfilled in the three-dimensional case. The outcome of our calculations in ANSYS is plotted in Fig. 

4. The shear stress  0 s sxz F b h   acts as the external load at the free end, which is equivalent 

to the tip-force 0F in the one-dimensional model. The deflections deviate slightly from the 

Bernoulli-Euler results: w0(l) = 0.2386 mm
 

 (light gray) and w0(l) = -0.2329 mm
 

(black). 

Superposing mechanical and electrical loads, one finds that the tip-deflection is strongly attenuated 

w0(l) = 0.0057 mm. The remaining residual displacement with our shape-control method is rather 

small compared to the tip-force deflection (approximately 2%).  
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Table 1 Values for the resistors (total resistance Ω1000 ijtot RR ) 

resistor (unit) value 
 

resistor (unit) value 
 

resistor (unit) value 

 01 R  0   12 R  177.57   23 R  83.70
 

 34 R
 176.81 

  45 R  82.72   56 R
 177.36 

 67 R
 

82.99   78 R
 

177.36 
  89R   41.49

 

 

 

 
Fig. 3 (a), (b) Results of the static deflection with Bernoulli-Euler finite elements when the beam is 

subjected to the tip-force F0 only (light gray), to the optimal voltage distribution only (black) or to 

the tip-force and the optimal voltage distribution for shape control and (c) Voltage distribution 

V1,…,V8 
across the electrodes of each patch generated by V0 and the electric circuit resistors Rij 

 

 

Next we show a robustness and sensitivity analysis, which is important from an engineering 

point of view to find sensitive variables that may affect the performance of the system. Especially 

the influence of the resistors is important because of the finite precision of the ohmmeter to tune 

the potentiometer. Fig. 5 shows the shape control results, if either the resistors values are rounded 

to the nearest integer (  Ω41 ,177,...,177 ,84 ,178 ,0ijR , light gray), if either the reference voltage 

is raised by 1% (V0 = 252.8V, gray dashdot), or if the patch positions are shifted to the left (1 mm, 
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black). The deviation from the optimal curve (gray) is rather small for all three cases. Even if the 

voltage is overestimated by 1%, the tip-deflection is approximately 1/100 compared to the 

non-controlled beam deflection: w0(l) = -0.0024 mm. 

 

 

 
Fig. 4 (a), (b) Results of the static deflection with the ANSYS model when the beam is subjected to the 

tip-force F0 only (light gray), to the optimal voltage distribution only (black) or to the tip-force and 

the optimal voltage distribution for shape control and (c) Voltage distribution V1,…,Vs 
across the 

electrodes of each patch generated by V0 and the electric circuit resistors Rij 

 

 
6. Numerical results - dynamic shape control of a tip-loaded cantilever 

 

The deflection of a beam will be also approximately annihilated at the sensor positions, if the 

beam is loaded by the harmonic force tFtxF sin),( 0 . Again, the one- and three-dimensional 

models are used and the frequency response 0
ˆ ( , )w x  is calculated for a beam subjected to the 

tip-force only, to the electrical voltage only and to both of them, the superposition of mechanical 

and electrical loads. The same electrical circuit is used as in the static case (see Table 1 for the 

resistors Rij). Since only the ratios of the resistors, but not total resistance Rtot, are important in the 

static case, see Eq. (21), the influence of the absolute values of the resistors for transient 

excitations is discussed in section 7. Results are shown in Fig. 6 (Bernoulli-Euler FE) and in Fig. 7 

(ANSYS). The tip-deflection and the displacement at x = 0.125 m as a function of the excitation 

frequency are depicted in Figs. 6(a) and 6(b). If the shape control technique is applied (gray curve), 
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the deflection at the free end approaches zero 0)0,(ˆ
0 lw m for excitations of 

low-frequency. For higher frequencies the deflection is reduced by two orders of magnitude for 

frequencies below f < 50 Hz. The tip-deflection at the first natural frequency f1 = 26.5 Hz
 
are 

3
10 109.5),(ˆ lw m (tip-force) and 5

10 101.3),(ˆ lw m
 
(shape control), respectively. The 

system responses of the force- and voltage-loaded beams are not exactly equal in the dynamic case 

due to the leakage current across the piezoelectric (see the discussion in section 7, in Figs. 7 and 

8).  

Nevertheless, close to the second eigenfrequency at f2 =166.5 Hz  the deflection is reduced 

approximately to 22% of the force-loaded beam: 5
20 108.15),(ˆ lw m (tip-loaded) and 

5
20 105.3),(ˆ lw m (shape control). In the range of the first and the second eigenfrequency, the 

deformation is calculated as a function of the axial coordinate, see Figs. 6(c) and 6(d). As already 

mentioned before, the peaks are attenuated well for the first mode, but also the second mode is 

well damped. 

 

 

 

Fig. 5 (a), (b) Sensitivity analysis of the static shape control results with Bernoulli-Euler finite elements: 

rounding of the resistor values Rij to next integer (light gray), increasing the reference voltage by 

1% to V0 = 252.8V (black)  and  changing the position of the piezoelectric patches 

(gray-dashdot) 

 

 

The ANSYS results in the dynamic frequency range, see Fig. 7, are qualitatively similar to the 

Bernoulli-Euler FE beam results. Close to the first eigenfrequency at Hz7.261 f the 

tip-deflection response of the controlled beam is 1.9% of the mechanically loaded beam: 

m 108.5),(ˆ 3
10

lw  (tip-loaded) and m 101.1),(ˆ 4
10

lw (shape control). At higher 

frequencies, the technique for shape control is less efficient. The peak at the second 

eigenfrequency is m 107.3),(ˆ 5
20

lw , which is a reduction of two-thirds of the tip-loaded 
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deflection of m 1011),(ˆ 5
20

lw . The attenuation is still in the range which has been obtained 

with the simpler one-dimensional theory.  

 

 

 

Fig. 6 (a), (b) Frequency response )(ˆ
0 lw  and )25.0(ˆ

0 lw with Bernoulli-Euler finite elements due to the 

tip-force excitation (light gray), due to voltage actuation (black) and under shape control (gray), 

(c) Deflection of the beam close to the first resonance at Hz 5.261 f  and (d) Deflection of the 

beam close to the second resonance at Hz 5.1661 f  

 

 

7. Limitations of dynamic shape control with resistive circuits and discussion of the 
energy consumption 

 

Fig. 6 (Bernoulli-Euler FE) shows that for low-frequency excitations, the displacement is not 

totally annihilated by our proposed shape control method. Especially for higher excitation 

frequencies, the damping performance is less than for low-frequency excitations. The physical 

explanation for this dis- repancy is the leakage current through the piezoelectric patches that is 

modeled as a capacitance, which has to be kept as small as possible. This is achieved by either 

using piezoelectric transducers with low permittivity 
p

33 , and thus a low piezoelectric 
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capacitance pC , or by choosing low-resistances for the network. The first possibility is preferred 

since the consumed electrical energy is inversely proportional to the resistance. In the static case, 

the electrical power needed to compensate a tip-force of 1N is  W7622
0 .R/VP totelec  , with V0 

=250.3V and kΩ1totR , see Eq. (19). So for practical reasons, one has to keep in mind that the 

reference voltage and the current through the electrical loads Rij must not fall below a critical value, 

otherwise the electrical components may be destroyed. In general, the maximal current of the 

voltage amplifier for the piezoelectric patches is limited to some 100 mA, meaning that the total 

resistance of network is limited downwards. In the following we derive a criterion for the validity 

of our shape control method for higher frequencies. 

 

 

 

Fig. 7 (a), (b) Frequency response )l(ŵ0  and )l.(ŵ 2500  with the ANSYS model due to the tip-force 

excitation (light gray), due to the voltage actuation (black) and under shape control (gray), (c) 

Deflection of beam close to the first resonance at Hz 7261 .f   and (d) Deflection of beam 

close to the second resonance at Hz 51672 .f   
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Fig. 8 (a), (b) Frequency response )l(ŵ0  and )l.(ŵ 2500  with Bernoulli-Euler finite elements due to 

the tip-force excitation (light gray), due to voltage actuation (black) and under shape control, but with a 

higher non-dimensional parameter 072.11   for  Hz 526.f   (gray), (c) Deflection of the beam 

close to the first resonance Hz 5.26f  and (d) Deflection of beam close to the second resonance at 

Hz 166f  

 

 

If we demand low lateral deformations 0 ( )w x , the order of the slope is also low 

 0, ( ) 0xO w x , and therefore the elastic current ,elastnQ  is negligible in (13). Combining (12) 

and (13), one obtains 

  0 1 4 t
tot 1 8

01 4t

... .
V V V V

CR V V
 

 
   

                
(22) 

In (22) 01  and 4t  are defined as the ratios 01 01 totR R   and 4t 4t totR R  , where 

the denominator is the sum of all resistors. The right-hand side is the leakage current through all 

piezoelectric capacitances. 
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Fig. 9 (a), (b) Transient frequency response with and without control due to the tip-force 

)25.26sin()(0 ttF  for the highly resistive circuit 1070or  Ω 1000 1 .R( tot  , 

gray-high attenuation) and for the low-ohmic circuit ( 0720or   kΩ 10 1 .Rtot  , light 

gray-lower attenuation), (c) and (d) Real and imaginary parts of the voltage distribution  Vi  of 

each patch 

 

 

If Eq. (22) is divided by the reference voltage V0 
, we find that the non-dimensional number 

1  should be smaller than one. For our numerical example this reads 

18  : 
0

1
total1 












 
 tot

s CR
V

V...V
CRO


                  (23) 

If this criterion is fulfilled, i.e., the time constant   of the electric system is small, our shape 

control technique is successful for a certain excitation frequency . Eq. (23) depends on the 

piezoelectric capacitance, on the sum of the resistances, on the number of patch actuators and on 

the excitation frequency. This means that for high excitation frequencies, the resistor values of the 

electric circuit should be small. 

Results for the total resistance of kΩ 10totR  (i.e., 072.11   at Hz 5.26f ), which is 

ten times higher than in the previous case, are drawn in Figs. 8 and 9. If the excitation frequency 

exceeds Hz 75f , hardly any attenuation of the deflection takes place, see Figs. 8(a) and 8(b).  
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At the first eigenfrequency, the tip deflection is reduced m 10298.0),(ˆ 3
10

lw , whereas 

the deflection is even amplified at the second eigenfrequency. This is a very important outcome of 

our study: in the dynamic case, especially for high-frequency excitations, one has to take care that, 

beside the validity of Eq. (21) for the resistor ratios, the absolute values of the resistors are not too 

high. So the non-dimensional relation 1 1   can be considered as an upper limit for the design of 

the resistive network. For 5 1   the proposed shape control method simply fails and the results 

may be even worse than without applying this method.  

For the transient simulation, the tip-load )25.26sin(),( ttxF  acts on the beam (Figs. 9(a) 

and 9(b)). We compare the results with Ω  1000totR  (low resistances- 107.01  ) and 

kΩ  10totR (high resistances- 072.11  ). After two seconds, the control is switched on, see Fig. 

9. In the steady-state the maximum remaining deformation are m 10031.0 3  and 

m, 10298.0 3 respectively. Comparing the real and the imaginary parts of the voltage at this 

frequency (Figs. 9(c) and (d)), one sees that the imaginary part is higher for the highly resistive 

circuit. The maximum value at the fourth patch of 16.6V is significantly higher than for the low 

resistive circuit 1.7 V.  

 

 

8. Conclusions 
 

In this paper we present a theory for an elastic slender beam hosting several piezoelectric 

transducers which are connected by resistors. To this end we extend the Bernoulli-Euler beam 

theory, which leads to a partial differential equation coupled to a set of ordinary differential 

equations for the electrical part. Based on the derived equations, we find that the lateral 

deformation of a tip-loaded cantilever at specified locations along the beam axis can be prescribed, 

if the resistors are properly tuned and if a certain reference voltage signal is applied across the 

electrodes of one piezoelectric patch. The derived shape control method is validated by a 

clamped-free beam with eight piezoelectric patches, which is subjected to a tip-load. Two 

simulation models are set up: First the derived beam equations are discretized with Bernoulli-Euler 

elements in order to obtain a one-dimensional model. The second model is a three-dimensional 

finite element model in ANSYS 12.0. It is shown that in the static case, the deflections of the 

model based on the Bernoulli-Euler theory are exactly annihilated at the desired locations, whereas 

in the ANSYS model the lateral deflections are approximately nullified under our shape control 

conditions. A frequency response analysis and a transient simulation show that our control method 

is suitable for the high frequency range, as long as a certain non-dimensional parameter, involving 

the capacitance and the number of the piezoelectric patches, the total resistance and the excitation 

frequency of the external load, is small. A major challenge in the future will be to generalize the 

presented theory of shape control to take into account arbitrary boundary and external loading 

conditions, transient force loads, force couples and distributed loads and non-zero values of the 

displacement for trajectory control, in order to develop algorithms and design criteria for 

impedances of the network.  
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Appendix A 
 

For the numerical case study the material parameters and the geometrical dimensions 

(Aluminum for the substrate with index s, PZT-5A for the piezoelectric patch with index p) are 

listed in Table 2. The effective piezomodulus, the modulus of elasticity and the strain-free 

permittivity are obtained from the values given in Appendix B by taking advantage of the 

transformation rules, see Schoeftner and Irschik (2011a). 

 

 

Appendix B 
 

Material properties of PZT-5A: 

 Density: -3
p kgm 7750  

 Elasticity components in Voigt notation -29
2211 Nm 10123CC , -2

12 Nm 107.76 C , 

-29
2313 Nm 103.70 CC , 

-29
33 Nm 101.97 C , 

-29
5544 Nm 103.22 CC , 

  -29
121166 Nm 1015.235.0  CCC , else -2Nm 0ijC  

 Components of piezoelectric modulus in Voigt notation: 
-2

3231 Asm 15.7 ee , 

-2
33 Asm 7.13e , -2

1524 Asm 9.11 ee , else -2Asm 0ije  

 Components of permittivity in Voigt notation: 02211 1649   , 033 1750   with 

-1-112
0 mAsV 10854.8  , else -1-1mAsV 0ij  

 

 
Table 2 Parameters used in the numerical example 

variable (unit) value variable (unit) value 

 -3

p kgm  7750   -3

s kgm  2700  

 1p mz  
34.00 10   2p mz

 

34.40 10
 

 1s mz  
34.00 10    2s mz

 

34.00 10
 

 ml
 

0.5   p ml
 

0.03
 

 p -1 -1

33 AsV m  
82.15 10   p -2

31 Asme
 

10.94
 

 p -2

11 NmC  
106.29 10   s -2

11 NmC
 

107.22 10
 

 a mix   0.01625 1 8l i     s mix
 

8l i
 

 s mb
 

0.05   p mb
 

0.05
 

 -1AsVC
 

88.05 10   0 NF
 

1
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