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Abstract.    This paper investigates application of a control algorithm called model predictive sliding mode 
control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively 
new control algorithm where model predictive control is employed to enhance sliding mode control by 
enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that 
MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement 
tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected 
as an experimental test bed in order to verify the robustness of MPSMC in active vibration control 
applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered 
beam at least by 29% regardless of modified mass distribution. 
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1. Introduction 
 

Over the last few decades, a significant amount of research has been devoted to active vibration 
control of flexible structures. Several smart material based actuators have been utilized as active 
elements including piezoelectric patches (Yoon and Washington 2008), magnetorheological fluid 
(Rajamohan et al. 2011, Lara-Prieto et al. 2010), shape memory alloy (Suzuki and Kagawa 2010), 
electromagnetic actuator (Cheng and Oh 2009) and piezoelectric composite actuator (Suhariyono 
et al. 2008). Among these, piezoelectric patches (PZT, lead zirconate titanate) are commonly used 
for thin flexible structures since they are lightweight, compact, relatively inexpensive, having wide 
bandwidth and generating very high forces. There are a variety of practical applications employing 
PZT patches for active vibration and noise control. First, some automobile parts are thin-walled 
and they can be great transmitters of unexpected noise and vibration from many sources. Thus, 
there have been many efforts to apply PZT patches on automotive parts such as body panels 
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(Bianchini 2008), powertrain oil pan (Wolff et al. 2007) and muffler system (Raju et al. 2005). 
Second, mechanical and aerodynamic vibration and noise from rotorcraft blade (Shevtsov et al. 
2009), aircraft fin-tip (Rao et al. 2008) and aeroelastic flutter (Song and Li 2011) were treated by 
active control with PZT patches. Third, vibrations from actuator arms of hard disk drives were 
controlled by piezoelectric shunt circuits (Sun et al. 2009) and they could be utilized for detecting 
or fixing cracked beams (Lim and Soh 2011, Wu and Wang 2010). Also, Flexible structures could 
be utilized as energy harvesting devices and Makihara (2012) investigated a hybrid-type switching 
control method in order to mitigate the vibration as well as to improve the energy efficiency of the 
device. Li et al. (2012) developed a visualization technique to identify and attenuate vibration al 
energy of a 2D plate using constrained damping layer. 

In order to make the active control system work as expected, proper control scheme should be 
applied or designed for each specific system. Piezoelectric shunt circuits have been utilized widely 
for passive control of vibrating systems. A single piezoelectric shunt circuit can manage only one 
vibration mode at a time (Kashani et al. 2001). Many efforts have been devoted to deal with more 
than one mode such as multiple piezoelectric shunt circuits (Trindade and Maio 2008), periodic 
piezoelectric shunt (Beck et al. 2011) and synchronized switch damping on voltage (Ji et al. 2009). 
However, these are still passive techniques that pre-tuning is required. Various basic and advanced 
active control algorithms also have been investigated such as dynamic hysteresis compensator 
(Nguyen and Choi 2010), positive position feedback (Mahmoodi et al. 2010, Fanson and Caughey 
1990), acceleration feedback control (Mahmoodi and Ahmadian 2010, Preumont et al. 1993), full 
state feedback control (Yoon and Washington 2008), pole placement control (Sethi and Song 2008) 
and a hybrid control methodology including a variable structure control and a Lyapunov based 
controller  (Mirzaee et al. 2011). Based on these studies, a general consensus has been reached 
that if an accurate structural model is available, flexible structures can be effectively controlled to 
attenuate the structural vibration in an active manner. However, many of the control algorithms 
exhibit performance degradation when the structure model does not reflect the structural dynamics 
accurately enough. For example, if dynamics of a structure changes over time due to structural 
modification or change, the control algorithm that was designed for the original structure may not 
perform as it used to be. To address this issue, robust control algorithms have been developed. For 
example, H-infinity control has been applied to suppress low-frequency modal vibrations of a thin 
plate without spillovers of the truncated modes (Xie et al. 2004). 

In this paper, we propose to apply a recently developed robust control algorithm named Model 
Predictive Sliding Mode Control (MPSMC) to active vibration suppression of a cantilevered beam 
(Neelakantan 2005). This new control algorithm combines the optimal control characteristics of 
model predictive control with the robustness of sliding mode control. It has been shown that 
MPSMC can be successfully used in displacement control of piezoelectric actuators. However, no 
study has been conducted yet to apply MPSMC to active vibration control of flexible structures. In 
this study, a cantilevered aluminum beam is used as a target structure. The aluminum beam has 
two PZT actuators attached to both sides of the beam, a PZT sensor attached to one side of the 
beam, and an accelerometer attached at the free end of the beam. For the controller design, the 
beam was modeled in the state space using experimental data from an impact test. Then, a 
designed MPSMC controller is applied to the structure to attenuate vibration amplitude of the 
beam using the PZT sensor and actuators. In order to study the robustness of MPSMC in active 
vibration control, the same controller is applied to modified structures with added masses. The 
results show that the MPSMC can effectively suppress the structural vibration even if the structure 
parameters are changed from their original values. 
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2. Model predictive sliding mode control 
 
Sliding mode control (SMC) is one of the most popular nonlinear control methods. SMC alters 

the dynamics of a nonlinear system by applying a high-frequency switching control so that the 
state trajectory follows a pre-defined discontinuity surface called the sliding surface in the state 
space (Young et al. 1999, Utkin et al. 1999). In this way, the motion of the system does not rely on 
its original dynamics but rather follows the dynamics of the desired sliding surface. The main 
advantage of SMC lies in its robustness and insensitivity to noise. Once the system reaches the 
sliding surface, it will have prescribed dynamics associated with desirable performance 
characteristics and the system response will be insensitive to disturbances or uncertainties in the 
system parameters. In Discrete-time Sliding Mode Control (DSMC) that is widely used in modern 
digital control, the control law is usually designed to enforce the system to reach the sliding 
surface at the very next sampling instant. However, this often results in saturation of the controller 
or overcompensation of the system. Therefore, it is desirable to develop an algorithm to relax the 
engagement of sliding mode at the very next time instance. 

Model Predictive Control (MPC) is a robust discrete-time control methodology that explicitly 
uses the system model (Rossiter 2003). Its ability to produce optimal control action at each step to 
enhance tracking performance has been one of the main attractions of this methodology. By 
combining the model predictive control and the sliding mode control, a new control scheme called 
model predictive sliding mode control (MPSMC) was formulated (Neelakantan 2005). The idea is 
to enforce the system to reach the sliding surface in an optimal manner using the MPC strategy. 

Consider the following discrete-time state space equation with a disturbance vector hk 
 

kkkk hBuAxx ++=+1                            (1a) 
 

 kk Cxy =                               (1b) 
 

where A, B and C represent the system, input, and output matrices, and xk and uk are the system 
and control vectors, respectively. A new state error vector ek is introduced by subtracting a desired 
reference vector rk from the state vector xk as in Eq. (2) for reference tracking problems. The 
system equations can then be rewritten with respect to ek as Eq. (3(a)). 

 
 kkk rxe −=                             (2) 

 

 kkkk dBuAee ++=+1                        (3a) 
 

 1+−+= kkkk rhArd                          (3b) 
 
Note that the additional term dk encompasses disturbance, nonlinearity, hysteresis, model 

uncertainties, and effects of the reference input. In the following derivation, it is more convenient 
to augment the system state by adding the control input uk-1 at the precedent instant to the state 
vector. Thus, the augmented state vector zk becomes 
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or simply 
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signal Δuk defined as 1−−=Δ kkk uuu , is used as the control input. With the new state vector, the 
desired sliding surface sk can be defined as 

 

 ksk zGs =                             (7) 
 

where Gs determines the dynamic characteristics of the sliding mode. By substituting Eq. (6) into 
Eq. (7), the sliding mode equation can be obtained. Then, by combining the sliding mode 
equations at the k+1-th through the k+N-th sampling instants, a prediction equation for the sliding 
mode can be derived as follows 
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and the matrices Γ̂ , Φ̂ , and Θ̂  are defined as follows. 
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Note that ):1( Nkks ++ , )1:( −+Δ Nkku , and )1:( −+ Nkkd are arrays of the sliding mode, control input 
difference, and disturbance vectors up to N future time instants, respectively. In order to obtain an 
optimal vector for the control input difference, a cost function J is defined as 

 

 
2

):(
2

):( usJ Δ+= λ
                         (10) 

 
where λ is a weighting factor. Minimization of the cost function leads to the optimal solution for 
the array of the control difference vectors as follows. 

 

 ]ˆˆ[ˆ)ˆˆ( ):(
1

):( dzIu k
TT Θ+ΓΦ+ΦΦ−=Δ −λ              (11) 

 
Finally, the first vector at the k-th time instant is extracted from the array of the control 

difference vectors in Eq. (11) by multiplying it by a row vector as follows. 
 

 ):(]00[ uIuk Δ=Δ L
                     (12) 

 
Note that in Eq. (11), ):(d  represents the future prediction of the disturbance that is generally 

unknown. A simple way of overcoming this difficulty is to obtain the previous value of the 
disturbance and assume that the disturbance remains the same for the next N time instants, which 
is basically an extended zero-order estimate. In this case, ):(d  can be replaced by its estimate such 
that 

 

 
[ ]Tkkk

est dddd 111):( −−−= L                (13) 
 

where 111 −−− −−= kkkk BuAeed . A block diagram for model predictive sliding mode control system 
is shown in Fig. 1 

 
 

 
 

Fig. 1 General structure of model predictive sliding mode control system 
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This control methodology has been verified with the force phase of a two-stage actuation 
system (Neelakantan and Washington 2008). In the study, MPSMC exhibited superior 
performances in making a piezoceramic actuator follow step inputs. However, its performance in 
dynamic vibration suppression applications has not been studied until now. 

 
 

3. Experimental setup 
 
A schematic of the experimental setup used in this study is shown in Fig. 2(a). An aluminum 

beam, whose dimension is 40 cm × 3.8 cm × 0.33 cm, was clamped with a steel vise to form a 
cantilevered beam. On both sides of the aluminum beam, two 6.4 cm × 2.5 cm PZT 
(PSI-5A-S4-ENH) actuators were bonded at the same location so that they work as a bending 
actuator. Additionally, one 3.6 cm × 2.5 cm PZT sensor was attached to measure the beam strain 
for the input to the control system. Also, an accelerometer was attached at the free end of the 
cantilevered beam as a truth sensor. Finally, permanent magnets were prepared and attached to the 
beam to simulate the cases where the beam dynamics are modified. 

For real-time control, a data acquisition device, dSPACE, was used to receive voltage signal 
from the PZT sensor and generate control signal calculated by the proposed MPSMC algorithm. 
The control signal is then amplified to a higher voltage signal and sent to the two PZT actuators. In 
order to obtain the system model, a system identification technique based on impulse response was 
utilized. An actual picture of the experimental setup is shown Fig. 2(b).  

 
 

(a) (b) 

Fig. 2 Active beam experiment, (a) Schematic and (b) picture 
 
 

4. System modeling 
 

Although an accurate system model is desirable in the design of a model-based controller, it is 
not a stringent requirement for MPSMC. Due to robustness of the employed MPSMC, a basic 
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model of the structure will suffice for the controller design purpose. Then, MPSMC can overcome 
moderate model inaccuracy or uncertainty and impose desirable dynamics to the controlled 
system. 

For the system modeling, a system identification technique based on the frequency response 
was used (Kollar 1993). This technique utilizes an estimator called maximum likelihood estimator 
(MLE) to minimize a weighted cost function with the frequency response data of the system 
(Marquardt 1963, Björck 1996). Fig. 3 shows the impulse response of the beam in both time 
domain and frequency domain. In our implementation of the system identification, after an 
estimated system transfer function was obtained, coefficients of the transfer function were fine 
tuned so that it matches better with the measured frequency response. The results of the system 
identification are shown in Fig. 4 where frequency responses of transfer functions with three 
different approximations are compared with the experimental data. Among the three presented 
transfer functions, the fifth-order model was chosen to design the controller in this study. This was 
the result of a compromise between the simplicity of the controller design and accuracy of the 
transfer function to capture at least two lowest natural frequencies of the structure. The resulting 
fifth-order transfer function of the aluminum cantilevered beam is as follows. 
 

3 7 2 10 9

5 4 5 3 7 2 9 11

100000 2.092 10 2.265 10 2.265 10( )
71.22 3.437 10 2.102 10 3.425 10 2.039 10beam

s s sG s
s s s s s

+ × + × + ×
=

+ + × + × + × + ×  (14) 
 
 

(a) (b) 

Fig. 3 Measured voltage of the PZT sensor (impulse response) in (a) Time domain and (b) frequency 
domain 

 
 
5. Experimental results 
 

With the system model, several experiments were conducted on two different beam 
configurations: the baseline beam structure and modified beams with added masses. First, using 
the fifth-order system model in Eq. (14), a controller was designed based on MPSMC and control 
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parameters were tuned to obtain the best result. Selected parameters such as the weighting factor in 
the cost function λ, the receding horizon or the number of future time instants N, and the sliding 
surface Gs are as follow. 

 
8λ =                               (15) 

 
  5N =                                (16) 

 

 [ ]1 1 0sG =                            (17) 
 
 

(a) (b) 

(c) 

Fig. 4 Comparison of three different beam models in frequency domain. (a) Second order, (b) Fifth order 
and (c) Seventh order. Key: , measured frequency spectra ; , predicted frequency spectra 

 
 
 

630



 
 
 
 
 
 

Active vibration suppression of a 1D piezoelectric bimorph structure using model… 

Fig. 5 shows the experimental results for the original baseline structure. Fig. 5(a) shows the 
PZT sensor output signals in time domain. In the open-loop case, it was seen that vibration exists 
until 6.3 seconds. However, when MPSMC control was applied, it was observed that the vibration 
stops at around 1.1 seconds. Fig. 5(b) compares the frequency responses of the open-loop and 
closed-loop cases. Peak reduction at dominant resonance frequencies can be observed in the plot. 
 
 

(a) (b) 

Fig. 5 Impulse response of the baseline structure in (a) Time domain and (b) frequency domain. Key: 
, uncontrolled; , controlled with MPSMC

 
 

Next, in order to test robustness of the controller to plant variation, additional masses (about 25% 
of the beam mass) were attached to the baseline structure at two different locations as shown in Fig. 
6. In either case, the same controller developed for the baseline structure was applied to the 
modified structure without any change in the control parameters. One can test robustness of such a 
controller in this manner. Experimental results for the beam with an added mass at location 1 are 
shown in Fig. 7 and results for added mass at location 2 are presented in Fig. 8. 
 
 

 

Fig. 6 Location of attached masses 
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As expected, when masses are attached to the baseline structure, the frequency responses show 
decrease in resonance frequencies. This effect is observed in both cases. When the MPSMC is 
applied, the time domain response of the modified structures for an impulse input shows 
significant reduction in the vibration settling time. Also, amplitudes of the resonance peaks were 
reduced by the application of the MPSMC controller when compared to the open-loop case 
regardless of the variation in the plant dynamics. With these results, it is verified that the MPSMC 
can effectively reduce vibration of the cantilevered beam even if there exist variations in the plant 
model. Performance of the MPSMC controller compared to the open-loop case is summarized in 
Table 1 for the three different structural configurations. 
 

(a) (b) 

Fig. 7 Impulse response of the modified structure (mass at location 1) in (a) Time domain and (b) 
Frequency domain. Key: , uncontrolled; , controlled with MPSMC 

 
 

(a) (b) 

Fig. 8 Impulse response of the modified structure (mass at location 2) in (a) Time domain and (b) 
Frequency domain. Key: , uncontrolled; , controlled with MPSMC 
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In Table 1, the benefit of applying MPSMC to the beam structure is clearly identified in time 
domain. For the baseline structure, the 2% settling time has been reduced from 6.3 seconds to 1.1 
seconds with the application of the controller. The same controller could reduce the settling time of 
the modified structures similarly to the baseline structure with slightly less reduction. Since the 
controller was designed for the baseline structure, performance deterioration for the modified 
structures was expected and it was experimentally verified. Nonetheless, reduction of the settling 
time in all three cases was still significant, which implies robustness of the MPSMC to system 
parameter variations. In frequency domain, average amplitudes of first six dominant peaks were 
compared before and after the application of the controller. For the baseline structure, it was 
observed that the controller could reduce the average peak amplitude by 49% compared to the 
uncontrolled system. However, when the same controller was applied to the first modified system, 
the percent reduction of the average peak amplitude was 55%, which was greater than the baseline 
case. This rather unusual result can be explained by the high initial peak amplitudes of the 
modified system. Because the peak amplitudes of the uncontrolled modified systems were high, 
relatively small reduction in the absolute peak amplitudes shows up high when the percent 
reduction is compared. Reduction in the average peak amplitude for the second modified system 
was calculated to be 29%, which is the lowest in all three cases. 

 
 

Table 1 Performance improvements with MPSMC in time domain and frequency domain responses 

Structure type Control type 2% settling time (sec) Average peak amplitude (dB) 

Baseline Uncontrolled 6.3 25.37 
Controlled 1.1 (83% reduction) 12.94 (49% reduction) 

    

Mass at location 1 Uncontrolled 8.4 16.77 
Controlled 1.9 (78% reduction) 7.63 (55% reduction) 

    

Mass at location 2 Uncontrolled 9.7 13.62 
Controlled 2.3 (76% reduction) 9.73 (29% reduction) 

 
 

6. Conclusions 
 

In this paper, active vibration control of an aluminum cantilevered beam using a new control 
algorithm was presented. First, an aluminum beam with two PZT actuators and a sensor was 
prepared and the system model was obtained with frequency response. For the derived structural 
model, a controller was developed based on model predictive sliding mode control (MPSMC). 
When the developed controller was applied to the original baseline structure, it exhibited 83% 
reduction in settling time as well as 49% reduction of the peak amplitude in the frequency domain. 
The same controller was also applied to two different structure configurations modified with added 
masses at different locations. The results showed similar reductions in both settling time and peak 
amplitude in the frequency response, thus verifying robustness of the MPSMC based controller. 

Although this study was focused on the application of MPSMC to a cantilevered beam, it is 
deemed that MPSMC can be applied equally well to any flexible structures. To investigate this, our 
future efforts will be devoted to application of MPSMC to 2D plate structures. It is expected that 
once the structure is modeled in discrete state space, the same design procedure outlined in this 
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study can be applied. In addition, automation of control parameter tuning will also be investigated.  
This will expedite application of MPSMC to a wide range of structural control problems with 

reduced tuning efforts. 
 
 

Acknowledgements 
 
The authors would like to acknowledge and thank the National Science Foundation for support 

of this research. 
 
 

References 
 

Beck, B.S., Cunefare, K.A., Ruzzene, M. and Collet, M. (2011), “Experimental analysis of a cantilever beam 
with a shunted piezoelectric periodic array”, J. Intell. Mater. Syst. Struct., 22(11), 1177-1187. 

Bianchini, E. (2008), “Active vibration control of automotive like panels”, Proceedings of the 2008 SAE 
BRASIL Noise and Vibration Conference, SAE 2008-36-0576, Florianopolis, March. 

Björck, A. (1996), Numerical methods for least squares problems, SIAM, Philadelphia, PA. 
Cheng, T.H. and Oh, I.K. (2009), “Coil-based electromagnetic damper and actuator for vibration suppression 

of cantilever beams”, J. Intell. Mater. Syst. Struct., 20(18), 2237-2247. 
Fanson, J.L. and Caughey, T.K. (1990), “Positive position feedback control for large space structures”, AIAA 

J., 28, 717-724. 
Ji, H., Qiu, J., Badel, A. and Zhu, K. (2009), “Semi-active vibration control of a composite beam using an 

adaptive SSDV approach”, J. Intell. Mater. Syst. Struct., 20(4), 401-412. 
Kashani, R., Mazdeh, A. and Orzechowski, J. (2001), “Shunt piezo damping of a radiating panel”, 

Proceedings of the 2001 Noise and Vibration Conference, SAE 2001-01-1576, Traverse City, May. 
Kollar, I. (1993), “On frequency-domain identification of linear systems”, IEEE T. Instrum. Meas., 42, 2-6. 
Lara-Prieto, V., Parkin, R., Jackson, M., Silberschmidt, V. and Kesy, Z. (2010), “Vibration characteristics of 

MR cantilever sandwich beams: experimental study”, Smart Mater. Struct., 19(1), 015005. 
Li, K., Li, S. and Zhao, D. (2012), “Identification and suppression of vibrational energy in stiffened plates 

with cutouts based on visualization techniques", Struct.Eng. Mech., 43(3). 
Lim, Y.Y. and Soh, C.K. (2011), “Fatigue life estimation of a 1D aluminum beam under mode-I loading 

using the electromechanical impedance technique”, Smart Mater. Struct., 20(12), 125001. 
Mahmoodi, S.N. and Ahmadian, M. (2010), “Modified acceleration feedback for active vibration control of 

aerospace structures”, Smart Mater. Struct., 19(6), 065015. 
Mahmoodi, S.N., Ahmadian, M. and Inman, D.J. (2010), “Adaptive modified positive position feedback for 

active vibration control of structures”, J. Intell. Mater. Syst. Struct., 21(6), 571-580. 
Makihara, K. (2012), “Energy-efficiency enhancement and displacement-offset elimination for hybrid 

vibration control”, Smart Struct. Syst., 10(3), 193-207. 
Marquardt, D. (1963), “An algorithm for least-squares estimation of nonlinear parameters”, SIAM J. Appl. 

Math., 11, 431-441. 
Mirzaee, E., Eghtesad, M. and Fazelzadeh, S.A. (2011), “Trajectory tracking and active vibration 

suppression of a smart Single-Link flexible arm using a composite control design”, Smart Struct. Syst., 
7(2), 103-116. 

Neelakantan, V.A. (2005), Modeling, design, testing and control of a two-stage actuation mechanism using 
piezoelectric actuators for automotive applications, PhD Dissertation, Mechanical Engineering 
Department, The Ohio State University, Columbus, Ohio 

Neelakantan, V. and Washington, G.N. (2008), “Model predictive control of a two stage actuation system 
using piezoelectric actuators for controllable industrial and automotive brakes and clutches”, J. Intell. 

634



 
 
 
 
 
 

Active vibration suppression of a 1D piezoelectric bimorph structure using model… 

Mater. Syst. Struct., 19, 845-857. 
Nguyen, P.B. and Choi, S.B. (2010), “Open-loop position tracking control of a piezoceramic flexible beam 

using a dynamic hysteresis compensator”, Smart Mater. Struct., 19(12), 125008. 
Preumont, A., Loix, N., Malaise, D. and Lecrenier, O. (1993), “Active damping of optical test benches with 

acceleration feedback”, Machine Vib., 2, 119-124. 
Rajamohan, V., Sedaghati, R. and Rakheja, S. (2011), “Optimal vibration control of beams with total and 

partial MR-fluid treatments”, Smart Mater. Struct., 20(11), 115016. 
Raju, B.B., Bianchini, E., Arata, J. and Roylance, M. (2005), “Improved performance of a baffle-less 

automotive muffler using piezoelectric materials”, Proceedings of the SAE 2005 Noise and Vibration 
Conference and Exhibition, SAE 2005-01-2353, Traverse City, May. 

Rao, A.K., Natesan, K., Bhat, S.M. and Ganguli, R. (2008), “Experimental demonstration of H-inf control 
based active vibration suppression in composite fin-tip of aircraft using optimally placed piezoelectric 
patch actuators”, J. Intell.Mater. Syst. Struct.,19(6), 651-669. 

Rossiter, J.A. (2003), Model-Based Predictive Control: A Practical Approach, CRC Press, London, UK. 
Sethi, V. and Song, G. (2008), “Multimodal vibration control of a flexible structure using piezoceramic 

sensor and actuator”, J. Intell. Mater. Syst. Struct., 19(5), 573-582. 
Shevtsov, S., Soloviev, A., Acopyan, V. and Samochenko, I. (2009), “Helicopter rotor blade vibration control 

on the basis of active/passive piezoelectric damping approach”, Proceedings of the PHYSCON 2009, 
Catania, September. 

Song, Z.G. and Li, F.M. (2011), “Active aeroelastic flutter analysis and vibration control of supersonic 
beams using the piezoelectric actuator/sensor pairs”, Smart Mater. Struct., 20(5), 055013. 

Suhariyono, A., Goo, N.S. and Park, H.C. (2008), “Use of lightweight piezo-composite actuators to suppress 
the free vibration of an aluminum beam”, J. Intell. Mater. Syst. Struct., 19(1), 101-112. 

Sun, H., Yang, Z., Li, K., Li, B., Xie, J., Wu, D. and Zhang, L. (2009), “Vibration suppression of a hard disk 
driver actuator arm using piezoelectric shunt damping with a topology-optimized PZT transducer”, Smart 
Mater. Struct., 18(6), 065010. 

Suzuki, Y. and Kagawa, Y. (2010), “Active vibration control of a flexible cantilever beam using shape 
memory alloy actuators", Smart Mater. Struct., 19(8), 085014. 

Trindade, M.A. and Maio, C.E.B. (2008), “Multimodal passive vibration control of sandwich beams with 
shunted shear piezoelectric materials”, Smart Mater. Struct., 17(5), 055015. 

Utkin, V., Guldner, J. and Shi, J. (1999), Sliding Mode Control in Electromechanical Systems, Taylor & 
Francis, Philadelphia, PA. 

Wolff, K., Lahey, H.P., Nussmann, C., Nehl, J., Wimmel, R., Siebald, H., Fehren, H., Redaelli, M. and Naake, 
A. (2007), “Active noise cancellation at powertrain oil pan”, Proceedings of the SAE 2007 Noise and 
Vibration Conference and Exhibition, SAE 2007-01-2422, St. Charles, May. 

Wu, N. and Wang, Q. (2010), “Repair of vibrating delaminated beam structures using piezoelectric patches”, 
Smart Mater. Struct., 19(3), 035027. 

Xie, S.L., Zhang, X.N., Zhang, J.H. and Yu, L. (2004), “H-inf robust vibration control of a thin plate covered 
with a controllable constrained damping layer”, J. Vib. Control, 10, 115-134. 

Yoon, H.S. and Washington, G. (2008), “Active vibration confinement of flexible structures using 
piezoceramic patch actuators”, J. Intell. Mater. Syst. Struct., 19(2), 145-155. 

Young, K.D., Utkin, V.I. and Ozguner, U. (1999), “A control engineer’s guide to sliding mode control”, 
IEEE T. Contr. Syst. T., 7, 328-342. 

  
 
CC 

635


