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Abstract.    Due to its easy operation and wide applicability, the ambient vibration method is commonly 
adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. 
With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these 
cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required 
parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a 
new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for 
developing an accurate method merely based on ambient vibration measurements. A simply supported beam 
model with an axial tension is adopted and the effective vibration length of cable is then independently 
determined based on the mode shape ratios identified from the synchronized measurements. With the 
effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity 
can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed 
method is extensively verified with demonstrative numerical examples and actual applications to different 
cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of 
sensors and selection of modes are also thoroughly investigated. 
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1. Introduction 
 

Cables are the most critical force-transmitting members of cable-supported bridges. The tension 
of cable directly reflects the bridge health condition because it strongly influences the internal 
force distribution in the deck and towers. An accurate determination of cable forces accordingly 
plays an important role in the structural health monitoring of suspension or cable-stayed bridges. 

Several approaches have been adopted in engineering practice to evaluate the cable forces 
either in the construction or service stage of bridge. Lift-off tests by hydraulic jacks were primarily 
used during the stressing stage of cables. But the high cost, damage potential, and questionable 
accuracy of this method hinder its popular applications. Other permanent devices such as load cells 
or strain gauges have also been utilized in civil engineering. Load cells need to be installed at the 
anchorage end during construction and are usually accurate but expensive. On the other hand, 
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strain gauges attached either at the anchor point or on the cable strand are much cheaper but with 
lower accuracy. Both devices generally suffer the deterioration in accuracy with the increase of 
time. Lately, fiber Bragg grating (FBG) sensors were embedded inside the cable cross-section to 
measure the corresponding strain and then detect the variation of cable tension (Ko and Ni, 2005 
Li et al. 2009, Li et al. 2011, Liu et al. 2011). It is apparent that FBG sensors have to be assembled 
with the cables when they are fabricated. Moreover, elasto-magnetic (EM) sensors have also been 
recently developed to conduct the tension measurement of stay cables in a number of cases (Fabo 
et al. 2002, Wang and Wang 2004, Wang et al. 2005, Zhao and Wang 2008, Duan et al. 2011, Duan 
et al. 2012) exploiting the fact that the subjected stress of steel material is the crucial parameter to 
affect its magnetic permeability. This EM technology, however, requires delicate calibration tests 
in the laboratory beforehand.  

The geometry of cable enables its modeling as a one-dimensional (1D) structure, which 
considerably simplifies the corresponding analysis and response measurement. The ambient 
vibration method taking advantage of this feature has been more commonly employed for 
determining the cable force than the static approaches mentioned above due to its easy operation 
and wide applicability in either the construction (Fang et al. 2004, Wu et al. 2008, Rebelo et al. 
2010) or service stage (Russell and Lardner 1998, Cunha et al. 2001, Ni et al. 2002, Ren et al. 
2008). This method is typically applied by first identifying the cable frequencies from the ambient 
vibration measurements. A pre-determined formula or numerical simulation can then be used with 
these identified frequencies to estimate the cable force. The ambient vibration method was 
originally implemented and is still regularly carried out using the string theory where the stay 
cable is simply modeled as a transversely vibrating string with hinged boundary conditions to 
obtain an analytical formula merely requiring given vibration length and mass per unit length. 
Nevertheless, later studies (Zui et al. 1996, Yen et al. 1997, Mehrabi and Tabatabai 1998, Russell 
and Lardner 1998, Zheng et al. 2001) indicated that the flexural rigidity for short cables, the 
sag-extensibility for long cables, and the complicated boundary conditions associated with 
numerous commercial anchorage systems may all lead to unsatisfactory results based on the string 
theory. 

Consideration of flexural rigidity in the ambient vibration method can be easily attained by 
modeling the stay cable as a simply supported beam with an axial tension to result in a more 
generalized but involved analytical formula (Clough and Penzien 1993, Geradin and Rixen 1997). 
Another useful expression was also proposed to effectively approximate this analysis (Morse and 
Ingard 1987). Zui et al. (1996) developed a set of empirical formulas for simultaneously including 
the effects of flexural rigidity and sag-extensibility in two sequential steps. In more recent works, 
the effect of various boundary conditions was further incorporated in addition to those of flexural 
rigidity and sag-extensibility such that the cable force in practical applications can be more 
accurately determined with either a simple relationship among non-dimensional cable parameters 
(Mehrabi and Tabatabai 1998) or a set of empirical formulas and approximate curves (Gautier et al. 
2005).  The alternative numerical approach has also been attempted with finite element (FE) 
analysis to search for the optimal values of cable force, flexural rigidity, and other parameters by 
trial and error such that all the identified modal frequencies can be best fitted (Ni et al. 2002, Lee 
et al. 2006). Geier et al. (2006) made a special effort to combine the approximate formula (Morse 
and Ingard 1987) with systematic fitting procedures to deal with this complicated problem. 

Other than comprehensively including the above modeling issues, the careful selection of 
appropriate parameter values to truthfully reflect the actual vibration behavior is probably at least 
equally important for improving the accuracy of the ambient vibration method. In practical cases, 
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rubber constraints and special anchorage designs are usually installed near both ends of stay cables. 
These devices, however, significantly increase the uncertainty of boundary conditions and 
complicate the choice of effective vibration length, which is generally the most sensitive parameter 
to determine the cable force. Furthermore, each stay cable made by separately arranged steel 
strands is normally encased in an HDPE tube filled with flexible grouting material to resist 
corrosion. This situation also induces great difficulties in correctly obtaining the cross-sectional 
area moment of inertia and the subsequent flexural rigidity of cable. Therefore, it is usually not an 
easy job to accurately decide the effective vibration length and flexural rigidity required to 
determine the cable force with a given formula. Even for the numerical approach where the cable 
length and anchorage system can be directly modeled in the corresponding FE analysis, it is still 
necessary to simulate the rubber constraints with effective elastic parameters which can noticeably 
alter the numerical results. But unfortunately, these rubber parameters cannot be conveniently 
assessed in practice. Lee et al. (2005) tried to fit the identified mode shape ratios as well as the 
modal frequencies with the finite element approach such that an accurate cable force can be 
determined under optimal elastic coefficients of rubber. A recent study (Chen et al. 2009) further 
revealed that the constraining effect of the rubber surrounding a cable is not constant, but depends 
on the vibration amplitude, cable force, and possible deterioration of rubber material.  

Aimed to more effectively tackle the modeling and parameter issues encountered in better 
estimating the stay cable force, the idea of combining the modal frequencies and mode shape ratios 
is fully explored in this study for developing an accurate method merely based on ambient 
vibration measurements. Multiple synchronized vibration signals of a stay cable are first processed 
to obtain the mode shape ratios at various sensor locations for each observable mode. These mode 
shape ratios can then be utilized to independently decide the effective vibration length from 
optimization procedures, followed by solving the cable force and flexural rigidity with linear 
regression techniques according to the identified modal frequencies and analytical formula for a 
simply supported beam model with an axial tension. In  addition to evaluate the feasibility and 
accuracy of the proposed method, several vital factors in engineering practice such as the number 
of sensors and selection of modes are also investigated with demonstrative numerical examples in 
the current paper. Finally, this new method is further examined by practical applications in 
estimating the cable forces of different cable-stayed bridges. 

 
 

2. Stay cable system and its analysis with a simplified model 
 

As illustrated in Fig. 1, a stay cable system can be typically divided into three parts: (1) a free 
length section in the middle; (2) two anchorage zones at both end; and (3) two transition zones 
between the previous two parts. The combination of the anchorage zone and the transition zone is 
usually called the cable anchorage device, whose detailed design varies with the suppliers. But in 
general, flexible rubber constraints are installed at the front end of anchorage device to reduce the 
bending stress at anchorage ends induced by lateral cable vibrations, centralize the cable, alleviate 
the fatigue problem, and additionally provide certain amount of damping. Fig. 2 shows an example 
of rubber constraint made by VSL.  

Because of the complicated anchorage device as stated above, it is difficult to accurately define 
the boundary conditions and effectively model the sections close to both ends in performing the 
cable analysis. Nonetheless, it is noteworthy that the effect of anchorage device on the cable 
vibration should be limited in a finite range near the anchorage ends. Consequently, the primary 
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free length section in the middle of cable ought to be eligibly modeled by a simply supported beam 
with an axial tension. The only key problem is how to select an effective vibration length for this 
model. Similar to the conventional approach using an analytical formula, the cable force analysis 
proposed in this study is also based on the simplified beam model with an axial tension. But 
instead of blindly taking it as the length between two anchorage ends, the effective vibration 
length in the current work would be determined from the ambient vibration measurements of cable, 
which will be elaborated in the next section. 

 
 

 
Fig. 1 Detailed illustration of a stay cable system 

 
 

Fig. 2 Rubber constraint made by VSL 
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Considering a simply supported beam subjected to an axial tension T, its transverse 
displacement y(x, t) is a function of axial coordinate x and time t. Under free vibration, the 
equation of motion for this system can be expressed as 

 
2 2 4

2 2 4

( , ) ( , ) ( , ) 0y x t y x t y x tm T EI
t x x

  
  

  
(1)

 
where m  is the mass per unit length, E denotes the Young’s modulus, and I represents the 
cross-sectional area moment of inertia. It should be noted that a uniform cross section, i.e., a 
constant value for EI, is assumed to obtain Eq. (1). With the given boundary conditions, an 
analytical formula for the modal frequencies of this model can be solved from Eq. (1) as 
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where L is the beam length and kf  signifies the natural frequency of the k-th mode in Hz. In 
addition, the mode shape corresponding to each modal frequency kf  is found to be in the form of 
sinusoidal functions 

 

sin k x
L


,   1,  2, 3, k    
(3)

 
 
3. Methodology and algorithm 
 

Other than indicating that the wavelength of each mode shape function decreases with the 
increasing mode order, it is especially noteworthy in Eq. (3) that this set of modal shapes sorely 
depends on the vibration length L. This provides a significant contrast to Eq. (2) where several 
parameters are involved. Even if m can be considered a known value because of its reliable 
estimation in practical applications, it is obvious from Eq. (2) that each modal frequency is still a 
function of the axial tension T, the vibration length L, and the flexural rigidity EI. In other words, 
all the above three unknown parameters are coupled and the corresponding objective function 
based on Eq. (2) is nonlinear if only the modal frequencies are available. A nonlinear optimization 
process seems to be adequate for solving this problem. Closer examination of Eq. (2), however, 
further indicates that only the two independent quantities 2LT  and 4LEI  can be effectively 
determined from this optimization problem. Accordingly, it is not feasible to estimate the cable 
force directly from Eq. (2) if the vibration length L can not be accurately decided beforehand. An 
enlightening clue disclosed from Eq. (3) is that the effective vibration length of cable can be 
independently determined as long as the information of modal shape functions is accessible. With 
this obtained effective vibration length, each modal frequency turns out to be simply a linear 
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function of the cable force and the flexural rigidity. Therefore, the optimal values for the two 
remaining unknown quantities can then be readily solved from the identified modal frequencies 
utilizing the least squares method. This new concept is fully developed in this study to estimate the 
cable force with two sequential steps and will be elaborately described in the current section. 

 
3.1  Estimation of mode shape ratios 
 
For any displacement measurement at a particular coordinate ix  on a 1D continuous system, it 

is contributed by all the different modes and can be expressed as 
 







1

)()() ,(
k

ikki xtztxy  (4)

 
where )(tzk  and )( ik x  denote the modal displacement time history and the corresponding 

mode shape value of the k-th mode at ix , respectively. An equivalent expression in the frequency 
domain is writes as 
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where ) ,( ixY  and )(kZ  symbolize the Fourier transforms of ) ,( txy i  and )(tzk , 
respectively. Since )(kZ  is essentially the frequency response of a single degree-of-freedom 
system with the k-th modal frequency k , its amplitude spectrum would always displays a sharp 
peak value in the neighborhood of k   and leads to 
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for a stay cable system whose modes are all well separated and lightly damped. 

It is unavoidable to conduct multiple synchronized measurements for estimating the mode 
shape ratios. Assume that ),( ..., ),,( ),,( 21 txytxytxy n  are n measurements simultaneously taken 
from n different locations of the same cable and only the m most significant modes with major 
contribution are considered. With these measurements, the mode shape vector at the n measured 
points for the k-th mode can be estimated from the Fourier transforms 
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where  , , 21 kk , and mk  stand for the mode orders of the m major modes, respectively. Since the 
mode shape ratios are theoretically real, the real parts of the estimated values from Eq. (7) are 
taken as the mode shape ratios and their trivial imaginary parts can be used to indicate the 
effectiveness of these measurements. It should be also noted that any one of 

),(, ... ),,( ),,( 21 knkk xYxYxY   can be taken as the common denumerator ),( kixY   in Eq. (7). 
If ),( kixY  is chosen as the one with the largest amplitude value, for example, the corresponding 
mode shape vector would be normalized such that the largest component is unity. 

 
3.2  Determination of effective vibration length 
 
The sinusoidal shape functions in Eq. (3) are obtained by setting the origin point at one end of 

the beam model to create a range of Lx 0 for the independent variable. In this research, 
however, the vibration length of model and consequently the corresponding boundary points are 
left open to be determined. For overcoming such a difficulty in describing the measured locations, 
this study proposes an origin shift to the middle point between the front edges of rubber constraints 
at both ends, which can be decided without knowing the vibration length in advance. With  this 
coordinate transformation coming from the assumption of symmetric anchorages at both ends, the 
even mode shapes remain as sine functions, but the odd mode shapes turn into cosine functions, 
both falling in the range of 2/2/ LxL  . In other words, the theoretical mode shape vector 

k  can be expressed in the interval 2/2/ LxL   as 
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where ka  denotes the amplitude coefficient of the k-th mode and the function )(cosin   is 
defined by 
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An appropriate error function has to be defined as the objective function before the 

optimization procedures can be performed. In this study, the optimization problem for determining 
the effective vibration length of cable is to search for the optimal value of L such that the error by 
comparing the estimated mode shape ratios of Eq. (7) in all the m major modes with their 
corresponding values from theoretical mode shape functions can be minimized. Therefore, it is 
natural to define the objective error function for optimization as: 
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It should be noticed that there are m+1 unknown coefficients in Eq. (10) including m different 
amplitude coefficients ka and L. Furthermore, this is a nonlinear optimization problem because L 
appears in the denumerator of cosin function. Even so, this is a relatively simple and easily 
convergent case. The Optimization Toolbox of MATLAB adopted in this study or any other 
commercial optimization solver can be used to conveniently obtain the optimal values starting 
from any reasonable initial guesses. 

 
3.3  Optimal cable force and flexural rigidity 
 
With the optimal vibration length obtained and the identified modal frequencies already known, 

Eq. (2) becomes a linear function of the cable force T and the flexural rigidity EI 
 

2
2

2

22

4 
















k
fLmEI

L
kT k

(11)

 
To decide these two remaining unknown quantities, consistent optimization procedures by 
considering the same m modes used in determining the vibration length are suggested in this study. 
More specifically, Eq. (2) is rearranged into the form of a classical linear regression problem such 
that T and EI can be conveniently solved either from an analytical expression or a simple 
command of MATLAB. 

 
 
4. Verification and parametric study by numerical examples 
 

In this research, the developed methodology is first applied to analyze the stay cables of Chi-Lu 
Bridge, as will be described in the next section. This bridge is a two-span (120 m+120 m) 
cable-stayed bridge connecting the two towns Chi-Chi and Lu-Ku located in central Taiwan. It was 
seriously damaged by the 1999 Chi-Chi earthquake right before its construction was completed 
and was then repaired to full function in 2004. As shown in Fig. 3, there are totally 34 pairs of stay 
cables installed on Chi-Lu Bridge. Before the actual application of the proposed method, SAP2000 
software is adopted to construct the finite element models for the longest cable R33 and shortest 
cable R01 with the input parameters listed in Table 1 to numerically verify its feasibility and 
accuracy. It should be noted that the input cable force and flexural rigidity are taken as the values 
identified from the actual measurements to be presented in the next section. The FE model is 
composed of 500 and 2,500 equally-spaced frame elements for Cables R01 and R33, respectively, 
such that the length of each element is approximately 5 cm. In addition, a pair of linear springs is 
installed at the two adjacent nodes close to each of the two rubber locations to simulate the elastic 
constraints from rubber in both the transverse and rotational directions. The stiffness coefficient 

sK of the spring element in these numerical examples are differently taken as 0, 104, 105, 106, 107, 
108, and 109 N/m to comprehensively represent various extents of rubber constraint. To assess the 
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modeling error, another case with the optimal spring coefficient ( N/m 100.5 6  for Cable R01 and 
N/m 105.1 6  for Cable R33) best fitting the identified cable frequencies is further added. Using 

this FE model with fixed conditions assigned at both ends, the refinement analysis is also 
conducted to confirm that the convergence errors for the first 30 modal frequencies are all less 
than 0.01%. 

 
 

Table 1 Input parameters for FE models of Cables R01 and R33 

Cable 

No. 

Total 

Length (m) 

Length between 

Rubbers (m) 

Mass per Unit Length 

m  (kg/m) 

Flexural Rigidity 

EI ( 25 mN10  ) 

Cable Force 

T ( N106 ) 

R01 29.30 23.06 61.30 7.31 2.56 

R33 126.42 118.26 48.00 5.77 2.05 

 

 

Fig. 3 Stay cable arrangement of Chi-Lu Bridge 
 
 
With the FE models prescribed above, the corresponding modal frequencies and mode shape 

vectors can be obtained by running the modal analysis in SAP2000 and are then regarded as the 
identified modal parameters in practical applications. To simulate the practical situations where 
only a few measurements close to the deck end can be conveniently taken, the mode shape ratios at 
5 nodes corresponding to the actual measurement locations illustrated in the next section are 
chosen for determining the effective vibration length. Also for imitating the real scenarios as 
shown in the next section, it is assumed that the 1st, 2nd, and 3rd modes are the major contribution 
modes for Cable R01 and those for Cable R33 are the 4th, 5th, and 8th modes. In other words, n = 
5 and m = 3 ( 11 k , 22 k , 33 k  for Cable R01 and 41 k , 52 k , 83 k  for Cable R33) 
in Eq. (10) are adopted for optimization in the numerical examples. To examine the consistency in 
selecting different modes for optimization, the cases with m = 1 are also investigated. For 
demonstration, the results for the case of Cable R01 with N/m 106sK  are plotted in Fig. 4 
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where the dotted curve represents the simulated FE mode shape vector, the solid curve stands for 
the theoretical sinusoidal shape function with the parameters determined from optimization, and 
the dark circles show the mode shape ratios at the 5 selected nodes. Besides, the vertical dashed 
lines indicate the locations of linear springs. From Fig. 4, it is clearly observed that the mode shape 
of a cable model with linear springs can be excellently fitted in the middle free length zone simply 
with 5 available mode shape ratios concentrated at the deck end. This phenomenon validates the 
qualification of the axially tensioned beam model and verifies that the effect of rubber constrains is 
actually limited to a small range adjacent to their installation locations. 
 

 
(a) 1st mode 

 
(b) 2nd mode 

 
(c) 3rd mode 

Fig. 4 FE mode shape vectors and optimally fitted sinusoidal functions of Cable R01 
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Table 2 Effective vibration lengths of Cable R01 determined by 5 simulated mode shape ratios 

Spring 
Coefficient 

sK  (N/m) 

Effective Length from  
Different Modes (m) 

Mode 1 Mode 2 Mode 3 3 Modes 

0 28.24 28.25 28.27 28.26 

104 28.15 28.17 28.20 28.18 

105 
27.46 27.53 27.64 27.57 

106 
24.80 24.87 24.99 24.90 

5.0 106 23.32 23.33 23.35 23.33 

107 
23.04 23.05 23.06 23.05 

108 
22.75 22.75 22.76 22.76 

109 
22.61 22.62 22.63 22.62 

 
Table 3 Effective vibration lengths of Cable R33 determined by 5 simulated mode shape ratios 

Spring 
Coefficient 

sK  (N/m) 

Effective Length from  
Different Modes (m) 

Mode 4 Mode 5 Mode 8 3 Modes 

0 126.42 126.42 126.42 126.42 

104 126.13 126.14 126.18 126.16 

105 
124.17 124.22 124.40 124.31 

106 
119.65 119.66 119.71 119.68 

1.5 106 119.12 119.12 119.15 119.13 

107 
118.01 118.01 118.01 118.01 

108 
117.78 117.78 117.79 117.78 

109 
117.63 117.63 117.63 117.63 

 
 

All the results of effective vibration lengths determined in different cases are arranged in Tables 
2 and 3 for the two cable models considered to compare the effect of various spring coefficients. 
Several important trends can be evidently extracted from these two tables. First of all, the elastic 
constraint has very little effect on the effective vibration length of cable when N/m 104sK  or 

N/m 107sK . More specifically, the effective vibration length approaches an upper bound a little 

smaller than the total length of cable if N/m 104sK , while it moves toward a lower bound 
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slightly smaller than the length between rubbers if N/m 107sK . For the cases where 

N/m 10N/m 10 74  sK , the effective vibration length is particularly sensitive to the elastic 
constraint and decreases with the increasing value of sK . Furthermore, the effective vibration 
lengths determined from different modes are basically consistent, especially for the long cable R33. 
For the cases of the short cable R01 with an elastic constraint in the sensitive range of 

N/m 10N/m 10 74  sK , however, the effective vibration length would slightly increase with the 
mode order adopted. It should be reminded that the constraining effect of the rubber depends on 
several factors such as the cable stiffness and the applied cable force. Consequently, the sensitive 
range given above is only valid for the considered cases in this study. 

With the obtained effective vibration length, the given modal frequencies for the 3 chosen 
modes can be substituted into Eq. (11) to construct a linear regression equation for solving the 
cable force and flexural rigidity. The results for the two cable models investigated are listed in 
Tables 4 and 5, from which a few enlightening conclusions can be made. It is first noted that the 
accuracy of the proposed method in estimating the cable force is superb with errors far less than 
0.5% for all the cases of the long cable R33. Even for the deteriorating cases of the short cable R01, 
the worst error is still under an acceptable level of 2.6%. On the other hand, the error for the 
estimation of flexural rigidity can reach as high as 47% for Cable R01 and 45% for Cable R33. 
Therefore, it is clear that the developed method can accurately decide the cable force as targeted, 
but its performance in estimating the flexural rigidity as a byproduct is relatively not as well. Even 
so, the obtained values of flexural rigidity still provide a good reference in practice where the 
possible upper bound for the flexural rigidity of cable can go as high as several times of its lower 
bound. The reason for this variation in accuracy comes from the fact that the modal frequencies of 
cable as shown in Eq. (2) are controlled by the axial force much more than the flexural rigidity due 
to its extremely large slender ratio. Accordingly, the minimization of Eq. (11) to obtain the optimal 
values of both quantities is naturally dominated by the cable force and insensitive to the flexural 
rigidity such that different levels of accuracy are resulted. 
 
 
Table 4 Tension and flexural rigidity of Cable R01 determined by 5 simulated shape ratios 

Spring 
Coefficient 

sK  (N/m) 

Cable Force T ( 610 N) Flexural Rigidity EI ( 510 N-m2) 
Given 
Value 

Estimated 
Value 

Error 
(%) 

Given 
Value 

Estimated 
Value 

Error 
(%) 

0 

2.56 

2.56 0.14 

7.31 

6.85 6.29 

104 2.57 0.31 6.44 11.90 

105 
2.60 1.41 3.91 46.59 

106 
2.63 2.57 3.90 46.65 

5.0 106 2.61 1.83 6.65 9.00 

107 
2.60 1.74 6.86 6.16 

108 
2.60 1.75 6.91 5.56 

109 
2.61 2.07 6.96 4.83 
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Table 5 Tension and flexural rigidity of Cable R33 determined by 5 simulated shape ratios 

Spring 

Coefficient 

sK  (N/m) 

Cable Force T ( 610 N) Flexural Rigidity EI ( 510 N-m2) 

Given 

Value 

Estimated 

Value 

Error 

(%) 

Given 

Value 

Estimated 

Value 

Error 

(%) 

0 

2.05 

2.05 0.00 

5.77 

5.77 0.07 

104 2.06 0.08 5.25 9.07 

105 
2.06 0.41 3.19 44.75 

106 
2.06 0.20 5.08 11.95 

1.5 106 2.06 0.16 5.39 6.70 

107 
2.06 0.12 5.68 1.61 

108 
2.06 0.13 5.67 1.75 

109 
2.06 0.15 5.69 1.52 

 
 
The second crucial deduction from comparing Tables 4 and 5 is that the accuracy in either the 

estimation of cable force or flexural rigidity for the applications in the long cable R33 is obviously 
superior to that for the applications in the short cable R01. This trend follows from the fact that the 
relatively smaller influenced range by rubber constraints for the cases of the long cable would 
make it more closely resemble the assumed beam model with an axial tension to attain better 
accuracy. Moreover, it is apparent that the estimated cable force is larger than the input value in all 
the cases, while all the values of flexural rigidity are underestimated. This tendency can be 
explained by contrasting the difference between the mode shape vector of cable and the sinusoidal 
shape function of the simplified model as shown in Fig. 4. The greater curvature for the sinusoidal 
shape function in the vicinity of boundary at both ends can be regarded as a result of stronger 
boundary constraints compared to the original mode shape of cable. Consequently, it naturally 
needs a slightly larger axial tension to keep the same modal frequencies. And according to Eq. (11), 
the overestimation of cable force certainly leads to the underestimation of flexural rigidity. Since 
this biased error is induced by the difference between the actual mode shape of cable and 
sinusoidal shape function of the beam model, it is difficult to be removed as long as the simplified 
model is adopted. 

For concerns on the modeling error of the above numerical examples compared to the real 
situations, the cases with best fitting spring coefficients demonstrate that the estimation error in the 
cable force is 0.16% for Cable R33 and 1.83% for Cable R01, respectively. Therefore, this verifies 
that the problem of modeling error is not an issue in the cases considered. In addition, the effect of 
measurement noise usually encountered in actual applications is also investigated with the 
numerical cases. Even if a white noise up to a level of 15% is added to contaminate the numerical 
results, the induced errors in identifying the modal frequencies and shape ratios are still negligible 
(less than 0.3%). This phenomenon is primarily due to the extremely light damping for cables 
(typically as low as 0.1%). Practical results using different measurements as shown in Table 14 of 
the next section will further confirm this point. Another important issue for further practical 
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applications of the proposed method is the minimum requirement of sensors to faithfully 
reproduce the sinusoidal shape function and effectively determine the vibration length. This 
subject is firstly investigated here with the numerical examples. Instead of using the mode shape 
ratios at 5 locations as above, the cases with only 3 available mode shape ratios at the top, middle, 
and bottom locations (i.e., n = 3) are considered and the corresponding results are listed in Tables 6 
and 7 for the obtained cable force and flexural rigidity. Comparing these two tables with Tables 4 
and 5 obviously reveals that all the values are almost identical and the deployment of 3 sensors 
should be adequate. 

 
Table 6 Tension and flexural rigidity of Cable R01 determined by 3 simulated shape ratios 

Spring 

Coefficient 

sK  (N/m) 

Cable Force T ( 610 N) Flexural Rigidity EI ( 510 N-m2) 

Given 

Value 

Estimated 

Value 

Error 

(%) 

Given 

Value 

Estimated 

Value 

Error 

(%) 

0 

2.56 

2.56 0.14 

7.31 

6.85 6.29 
410  2.57 0.31 6.44 11.90 

105 
2.60 1.43 3.91 46.57 

106 
2.63 2.65 3.91 46.57 

6100.5   2.61 1.93 6.67 8.83 

107 
2.61 1.84 6.88 5.97 

108 
2.61 1.86 6.92 5.36 

109 
2.62 2.20 6.98 4.58 

 
Table 7 Tension and flexural rigidity of Cable R33 determined by 3 simulated shape ratios 

Spring 

Coefficient 

sK  (N/m) 

Cable Force T ( 610 N) Flexural Rigidity EI ( 510 N-m2) 

Given 

Value 

Estimated 

Value 

Error 

(%) 

Given 

Value 

Estimated 

Value 

Error 

(%) 

0 

2.05 

2.05 0.00 

5.77 

5.77 0.07 

104 2.06 0.08 5.25 9.07 

105 
2.06 0.41 3.19 44.74 

106 
2.06 0.22 5.09 11.91 

1.5 106 2.06 0.18 5.39 6.65 

107 
2.06 0.15 5.68 1.56 

108 
2.06 0.15 5.68 1.70 

109 
2.06 0.19 5.69 1.45 
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5. Applications to Chi-Lu Bridge 

 
With the satisfactory numerical verification in the previous section, the developed method is 

then applied to actually assess the stay cables of Chi-Lu Bridge. The ambient vibration 
measurements were taken on Cables R01 to R33, all the 17 cables on one side of pylon, as shown 
in Fig. 3. The in-plane vertical component of cable vibration was recorded by high resolution 
velocimeters VSE-15D made by Tokyo Sokushin. The duration was set at 300 sec with a sampling 
rate of 200 Hz for all the measurements in this study. To estimate the mode shape ratios of cable, 5 
velocimeters were installed at different positions on each cable to record the synchronized 
vibration signals, as shown in Fig. 5. Considering the convenience in practical applications, all 
these 5 sensor locations were selected to be close to the bridge deck and their distances to the front 
end of the bottom rubber constraint are listed in Table 8 for Cables R01 and R33, whose detailed 
results will be taken for demonstration in the following. 

Discrete Fourier transform (DFT) is first performed on the synchronized measurements to 
identify the modal frequencies and estimate the mode shape ratios corresponding to each mode. 
Unlike the cases with measurements on buildings or bridge decks, it is usually not difficult to 
identify the natural frequencies and mode shape ratios from the measurements on a stay cable 
because of its extremely light damping. The Fourier amplitude spectra (FAS) for the case of Cable 
R01 are shown in Fig. 6 to demonstrate how its modal frequencies can be conveniently identified. 
Three major modes for each cable are then chosen to define the objective error function of Eq. (10). 
From the results arranged in Tables 9 and 10 for Cables R01 and R33, it is found that all the 
imaginary parts of the estimated ratios are trivial compared to their corresponding real parts, which 
validates the effectiveness of those obtained mode shape ratios. For illustration, the results for the 
case of Cable R33 are plotted in Fig. 7 where the solid curve is the theoretical sinusoidal shape 
function with the parameters determined from optimization, the dark circles indicate the estimated 
mode shape ratios at the 5 measurement locations, and the vertical dashed lines designate the front 
end locations of rubber constraints. Similar to Fig. 4, it is shown in Fig. 7 that the identified mode 
shape ratios of an actual stay cable can be almost perfectly fitted with a sinusoidal function.  

Moreover, the effective vibration length for Cables R01 and R33 are listed in Table 11 where 
the estimated values considering only a single mode are also included to reflect the robustness of 
this method. Further examination of the results in Table 11 clearly discloses that all the effective 
vibration lengths are much smaller than the total lengths, but slightly larger than the lengths 
between rubber constraints. This trend implies that the rubber constraints can be roughly regarded 
as rigid supports under ambient vibrations of cable in this case. To comprehensively verify this 
argument, the values of effective vibration length and length between rubbers for all the 17 
measured cables of Chi-Lu Bridge are compared in Table 12. It is obvious that the effective 
vibration length is generally larger than the length between rubber constraints for all the 
investigated cables with a maximum difference lower than 5%. For longer cables (R17 to R33), 
this difference is uniformly smaller than 1%. 
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(a) illustration 

(b) photograph 

Fig. 5 Experimental setup for vibration measurement on a stay cable 
 
Table 8 Distances between sensors and the front end of bottom rubber constraint 

Cable 
Number 

Distance from Rubber Constraint (cm) 

Sensor a Sensor b Sensor c Sensor d Sensor e 

R01 70 105 140 175 210 

R33 100 200 300 400 500 

 

 

b 
Sensor

Cable

Tube 

d
e

a

c
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(a) Sensor a (b) Sensor c 

(c) Sensor e

Fig. 6 Fourier amplitude spectra of various measurements taken from Cable R01 
 

 
Table 9 Identified frequencies and shape ratios of 3 most significant modes for Cable R01 

Mode and 

Frequency (Hz) 

Sensor 

a b c d e 

1st 

 

4.41 

DFT 
–17.01 

–29.22i 

–21.54 

–38.95i 

–29.53 

–52.92i 

–35.98 

–66.22i 

–47.38 

–87.05i 

Ratio 
0.341 

–0.010i 

0.449 

–0.003i 

0.611 

–0.006i 

0.760 

+0.001i 
1 

2nd 

 

8.93 

DFT 
–0.72 

–8.12i 

–0.57 

–10.44i 

–1.08 

–14.12i 

–0.97 

–17.44i 

–1.40 

–22.30i 

Ratio 
0.365 

–0.009i 

0.468 

+0.004i 

0.634 

–0.009i 

0.782 

+0.006i 
1 

3rd 

 

13.52 

DFT 
–0.23 

+1.69i 

–0.42 

+2.33i 

–0.41 

+3.12i 

–0.59 

+3.62i 

–0.69 

+4.82i 

Ratio 
0.351 

–0.003i 

0.487 

+0.018i 

0.647 

–0.006i 

0.754 

+0.014i 
1 
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Table 10 Identified frequencies and shape ratios of 3 most significant modes for Cable R33 

Mode and 

Frequency (Hz) 

Sensor 

a b c d e 

4th 

 

3.48 

FT 
21.39 

–30.45i 

37.60 

–51.42i 

52.23 

–74.13i 

63.81 

–90.08i 

80.08 

–111.81i 

Ratio 
0.271 

–0.002i 

0.463 

+0.005i 

0.659 

–0.005i 

0.803 

–0.004i 
1 

5th 

 

4.35 

FT 
28.70 

+7.27i 

49.63 

+12.63i 

69.93 

+19.06i 

83.58 

+27.14i 

102.88 

+34.83i 

Ratio 
0.272 

–0.021i 

0.470 

–0.036i 

0.666 

–0.040i 

0.809 

–0.010i 
1 

8th 

 

7.00 

FT 
25.88 

+187.72i 

35.35 

+314.00i 

53.45 

+438.76i 

46.14 

+519.65i 

49.99 

+611.37i 

Ratio 
0.308 

–0.017i 

0.515 

–0.016i 

0.720 

–0.029i 

0.850 

–0.006i 
1 

 
 

Furthermore, the determined results of cable force and flexural rigidity for Cables R01 and R33 
are listed in Table 13. Again, both the cases with all the 5 sensors and with only 3 sensors at the 
top, middle, and bottom locations are considered to investigate the minimum requirement of 
sensors. The corresponding design cable forces are also included in this table for reference. The 
essentially identical values based on either 5 or 3 sensors confirm the sufficiency of adopting 3 
sensors for applying the proposed method in practical situations. It should be also noted that 
Chi-Lu Bridge was repaired after the 1999 Chi-Chi earthquake and the design values of cable force 
may not truthfully reflect the current real status. However, the small difference between the design 
and estimated values of cable force still provide a good confidence for this new method. 
Finally, the results obtained from the other three measurements (two for Cable R01 and one for 
Cable R33) taken on the same day are summarized in Table 14 in addition to those determined 
from the previously discussed measurements. It is evident that the estimated values in cable force 
are almost identical from different measurements for Cable R33 and those for Cable R01 are with 
a largest difference of 2.3%. Even though the actual cable forces are not available in this 
experimental case study, the consistency in the estimated cable forces from different measurements 
can verify the robustness of the proposed method and at least partially provide the indirect 
evidence of its accuracy. This comparison also confirms that the measurement noise should not be 
a problem for the actual application of the proposed method. 
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(a) 4th mode 

(b) 5th mode 

(c) 8th mode 

Fig. 7 Identified mode shape ratios and optimally fitted sinusoidal functions of Cable R33 
 

 
Table 11 Effective vibration lengths of Cables R01 and R33 determined by 5 measurements 

Cable Number Effective Length from Different Modes (m) 

R01 
Mode 1 Mode 2 Mode 3 3 Modes 

23.19 23.23 23.10 23.17 

R33 
Mode 4 Mode 5 Mode 8 3 Modes 

119.09 119.00 118.93 119.00 
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Table 12 Effective vibration length and length between rubbers for Chi-Lu Bridge 

Cable 

Number 

Effective Vibration 

Length L1 (m) 

Length between Rubber Constraints 

L2 (m) 

(L1 –L2)/ L2 

(%) 

R01 23.17 23.06 0.48 

R03 29.75 28.37 4.86 

R05 35.30 33.96 3.95 

R07 40.33 39.68 1.64 

R09 46.04 45.58 1.01 

R11 52.32 51.55 1.49 

R13 58.03 57.58 0.78 

R15 64.80 63.67 1.77 

R17 70.25 69.73 0.75 

R19 76.56 75.84 0.95 

R21 82.79 82.10 0.84 

R23 88.56 88.30 0.29 

R25 94.77 94.36 0.43 

R27 101.0 100.5 0.48 

R29 107.2 106.6 0.61 

R31 112.9 112.5 0.36 

R33 119.0 118.3 0.59 
 
 
 

Table 13 Tension and flexural rigidity of Cables R01 and R33 with various numbers of sensors 

Cable 

Number 

Cable Force T 

( 610 N) 

Flexural Rigidity EI 

( 510 N-m2) 

5 sensors 3 sensors Design Value 5 sensors 3 sensors 

R01 2.56 2.57 2.88 7.31 7.39 

R33 2.05 2.05 2.30 5.77 5.77 
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Table 14 Effective vibration length, tension and flexural rigidity of Cables R01 and R33 from different 
measurements 

Cable 

Number 
Measurement 

Effective Length 

L (m) 

Cable Force 

T ( 610 N) 

Flexural Rigidity EI 

( 510 N-m2) 

R01 

1 23.17 2.56 7.31 

2 23.20 2.62 5.37 

3 23.25 2.62 6.66 

R33 
1 119.00 2.05 5.77 

2 118.78 2.05 6.08 
 
 

6. Conclusions 
 

Based on multiple ambient vibration measurements of a stay cable, this research develops a 
convenient methodology to exclude the effects of uncertain boundary constraints and flexural 
rigidity in the estimation of cable force. A simply supported beam model with an axial tension is 
adopted and the effective vibration length of cable is then independently determined based on the 
mode shape ratios identified from the synchronized measurements. With the effective vibration 
length obtained and the identified modal frequencies, the cable force and flexural rigidity can then 
be solved using simple linear regression techniques. The feasibility and accuracy of the proposed 
method is extensively verified with demonstrative numerical examples and actual applications to 
Chi-Lu Bridge. Furthermore, several important issues in engineering practice are also thoroughly 
investigated to conclude the following tips: 

(1) The most dominant modes in measurements can be chosen to alleviate possible noise 
interferences and 3 modes are generally adequate for a stable optimization; 

(2) Even though the employment of more sensors would theoretically improve the 
estimation accuracy, it is found that 3 synchronized measurements for each cable are usually 
sufficient to attain good accuracy in practice; 

(3) The sensor locations should avoid the vicinity of zeros for each mode shape to reduce 
the errors in identifying the mode shape ratios and the equally-spaced arrangement in the 
convenient working range close to the deck end is recommended; 

(4) The accuracy of sensor locations can crucially influence the determination of effective 
vibration length and should be carefully measured; 

(5) Since the rubber-to-rubber length of cable is also required to describe the sensor 
locations with respect to its middle point, special attention should be paid for using a reliable 
value; 

(6) The rubber-to-rubber length would be a good approximation of effective vibration 
length if it is not possible to conduct multiple measurements. 

As for the applicability of this developed method, it should be noticed that the symmetry of 
mode shape functions with respect to the middle point between the front edges of rubber 
constraints at both ends is assumed. In other words, a crucial restriction of practically symmetric 
boundary constraints is imposed with this mathematical formulation. Even though the cable 
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anchorage systems in most practical designs may not be far away from this simplification, there 
certainly exist a few cases with apparently unsymmetrical boundary constraints, especially when 
supplementary dampers are installed on stay cables. Besides, it should also be reminded that this 
method tends to overestimate the cable force and underestimate the flexural rigidity. To deal with 
such difficulties and biased errors, this method needs to be further generalized by introducing 
additional origin shifting parameters in the sinusoidal shape functions and other modifications, 
which will be explored in future studies. 
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