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Abstract.    This paper presents a nonlinear time series analysis technique for evaluating machine defect 
severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability 
distribution of the diagonal line length in the recurrence plot, which graphically depicts a system’s dynamics 
and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of 
experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working 
condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the 
frequency information contained in the vibration signal becomes increasingly complex, leading to the 
increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity 
assessment of rolling bearings. 
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1. Introduction 
 

The continued demand for high-quality, low-cost products and safe production has changed the 
strategy for machine maintenance from corrective over preventive to condition-based maintenance, 
for which real-time fault detection, diagnosis and remaining service life prognosis are needed. The 
past decades have seen a worldwide increase in the installation of wind turbines and related 
machine systems for renewable energy extraction from natural resources. Accordingly, condition 
monitoring and health diagnosis of rotating machines have taken on new significance (Jardine et al. 
2006). Such efforts have promoted the continued advancement of sensing as well as 
signal-processing technologies. In addition to commonly used time (statistical) and frequency 
(spectral) domain techniques, advanced signal processing methods such as bi-spectrum (Sinha 
2006), wavelet transforms (Wang et al. 2011)and time-frequency analysis (Shi et al. 2004), have 
been investigated for defect diagnosis in rotating machines. Due to instantaneous variations in 
friction, damping, or loading conditions, machine systems are often characterized by non-linear 
dynamic behaviors (Wang et al. 2006, Inoue et al. 2011). Therefore, techniques for non-linear time 
series analysis provide a good approach to extracting defect-related features hidden in the 
measured signals for rotating machine defect severity evaluation. Various nonlinear time-series 
analysis techniques, such as correlation dimension (Yan et al. 2010), partial correlation integral 
(Janjarasjitt et al. 2008), Lyaponov exponent (Tao et al. 2007), and complexity measure (Yan and 
                                                       
∗Corresponding author, Professor, E-mail: ruqiang@seu.edu.cn 

DOI: http://dx.doi.org/10.12989/sss.2013.11.3.299



 
 
 
 
 
 

Ruqiang Yan, Yuning Qian, Zhoudi Huang and Robert X. Gao 

Gao 2004), have been investigated previously to characterize nonlinear dynamic behavior of 
rotating machines during their service life. The recently developed recurrence plot (Eckmann et al. 
1987) and related recurrence quantification analysis(Webber and Zbilut 1994) have become a new 
research focus in nonlinear time series analysis due to its short data length requirement and good 
anti-noise ability (Marwan and Meinke 2004). Their applications have been seen in bifurcation 
tracking (Gao 1999), pre-epileptic seizure characterization in rats (Li et al. 2004), determinism 
detection in noisy signals (Zbilut 1998), and performance evaluation of production and logistics 
networks (Donner et al. 2008). Furthermore, it has been shown that the quantitative measures 
extracted from the recurrence plots is more sensitive to identify changing dynamics than those 
obtained using linear approaches, such as frequencies (Webber and Zbilut 1994). In manufacturing, 
recurrence quantification analysis has been reported for determining transient and steady-state 
cutting in face milling operations (Mhalsekar et al. 2009), characterization of cycle-to-cycle 
pressure oscillations, heat release in engines (Grzegorz et al. 2007, Asok et al. 2008), and 
detection of damage-induced changes of a rectangular steel plate (Nichols et al. 2006). Motivated 
by the prior studies, this paper focuses on the utility of recurrence plot entropy, which is one of the 
measures derived from the recurrence quantification analysis, for rolling bearing defect severity 
evaluation. After introducing the analytical background of phase space reconstruction for nonlinear 
time series analysis in Section 2, a surrogate data testing approach is introduced to identify a 
signal’s nonlinearity, often seen in vibration signals measured on rotating machine elements, such 
as rolling bearings. Section 3 describes the recurrence plot and recurrence quantification analysis, 
where the RP entropy is discussed in detail. In Section 4, vibration signals from rolling bearings 
with pre-seeded structural damage under different working conditions are analyzed using the RP 
entropy, and the degree of severity of the structural damage is quantified. Finally, conclusions are 
drawn in Section 5. 

 
 

2. Phase space reconstruction and nonlinearity testing 
 

Most of the non-linear time series analysis techniques, including the recurrence plot, have been 
developed from the concept of phase space (Takens 1981), which does not require a priori 
information on the underlying dynamics of the system being investigated for its implementation. 
In practice, the actual phase space of a physical system is difficult to obtain, and only time series 
are available (through measurement from the physical system) (Kantz and Schreiber 1997). To 
solve this problem, a time-delayed coordinate approach based on the Takens embedding theorem 
(Kantz and Schreiber 1997) has been developed to reconstruct the phase space from a measured 
time series. The main idea of the Takens embedding theorem (Kantz and Schreiber 1997) is that 
the phase space can be directly reconstructed from the lagged time series measured from the 
system. Specifically, from a measured time series { (1), (2),..., ( )x x x N }, a reconstructed phase 
space can be generated as 

(1) { (1), (1 ),..., (1 ( 1) )}
...

( ) { ( ), ( ),..., ( ( 1) }
...

( ( 1) ) { ( ( 1) ), ( ( 2) ),..., ( )}

X x x x m

X i x i x i x i m

X N m x N m x N m x N

τ τ

τ τ

τ τ τ

= + + −⎧
⎪
⎪⎪ = + + −⎨
⎪
⎪

− − = − − − −⎪⎩            (1) 
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where i=1,2,…, τ)1( −− mN  and τ)1( −−= mNNm  is the total number of points in the 
reconstructed phase space. The parameters τ and m are the time delay and the embedding 
dimension of the reconstructed phase space, which are determined by using mutual information 
(Fraser and Swinney 1986) and False Nearest Neighbors (FNN) (Kennel et al. 1992) approaches in 
this study, respectively. 

The mutual information in a reconstructed phase space is defined as 
  

2
( ( ), ( ))( ) ( ( ), ( )) log [ ]

( ( )) ( ( ))
P X i X iMI P X i X i

P X i P X i
ττ τ
τ

+
= +

+∑
    (2) 

 
 

where P(X(i))and ))(( τ+iXP are the probabilities of X(i) and )( τ+iX in the reconstructed 
phase space, respectively, and P(X(i), )( τ+iX ) is the joint probability of X(i) and  )( τ+iX . The 
optimal value of the time delay τ  is selected when the mutual information MI )(τ  reaches its 
first minimum. The embedding dimension can be determined using the FNN approach, where for 
each point X(i) in the m dimensional phase space, its nearest neighbor X(j) is identified and their 
Euclidean distance is calculated as 

m
jXiX )()( − . Subsequently, the ratio ri(m) of the 

Euclidean distance between these two points in the m and m+1 dimensional phase spaces is 
obtained as 

1
)()(

+
−

m
jXiX /

m
jXiX )()( − . If the ratio ri(m) is greater than a pre-defined 

threshold rthr, the identified neighbor is called a false neighbor. The embedding dimension m can 
then be determined as the one whose summation of all indentified false neighbors approaches zero.   

Before any nonlinear time series analysis technique is applied to processing the measured data, 
it is important to recognize the existence of nonlinearity in the data series. Surrogate data testing is 
one of the widely used techniques for nonlinearity identification (Theiler et al. 1992). In essence, it 
is a statistical hypothesis testing technique, and the main idea is based on the assumption that the 
data measured came from a linear Gaussian random process. The surrogate data, which have the 
same mean value, standard deviation, and/or power spectrum as the measured data, can be 
computationally generated from the measured data. Some discriminant statistic indicators, such as 
correlation dimension and Lyapunov exponent, are then calculated from both the measured and the 
surrogate data. The existence of nonlinearity can subsequently be studied by formulating a 
hypothesis testing problem, in which the null hypothesis is that the measured data and surrogate 
data are from the same linear Gaussian random process and their statistical indicators are within 
the same distribution. If such a null hypothesis is rejected with a desired level of significance 
(normally 95%), it indicates that the measured data are not generated from the linear Gaussian 
random process. This, in return, implies some (assumed large) degree of confidence that the 
measured data are produced by a nonlinear dynamic system (e.g., a bearing test system as 
exemplified in this study), and nonlinearity could exist in the data series. 

Fig. 1 illustrates how the surrogate data technique is applied to identifying the existence of 
nonlinearity in a measured data through a null hypothesis test. The phase randomized Fourier 
transform is first applied to generating a series of surrogate data from the measured data (Schreiber 
and Schmitz 2000). Mathematically, for a given time series 
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0 1 1{ ( )}, , ,... 0, ,...( 1)Nx t t t t t t N t−= = Δ − Δ  
, applying Discrete Fourier Transform leads to 

1
2 ( )

0
( ) { ( )} ( ) ( )

N
i f t i f

n
n

X f F x t x t e A f eπ φ
−

Δ

=

= = =∑
   (3) 

 
where A( f ) and )( fφ  represent amplitude and phase of the transformation results, 

respectively. Performing phase randomization of Eq. (3) results in 
 

[ ( ) ( )]( ) ( ) i f fX f A f e ϕ φ+=%
       (4) 

 
where [ )πϕ 2,0)( ∈f , and the condition )()( ff −−= ϕϕ  is required to ensure that the results 

of performing the Inverse Fourier Transform on )(~ fX will be real values, as given by 
 

1 ( )( ) { ( ) }i fx t F X f e ϕ−= %%       (5) 
 
 

 

Fig. 1 Illustration on surrogate data testing 
 

 
In Eq. (5), )(~ tx  are the generated surrogate data, which have the same power spectrum as the 

original time series. 
With the surrogate data generated, the next step is to calculate the discriminant statistic Q0 and 

Ql (l=1,2,…M) from the measured data and the surrogate data, respectively. Subsequently, 
hypothesis testing is performed by evaluating if Q0 is within the distribution of Ql. This can be 
realized using a one-side rank-order test approach (Theiler et al. 1992, Schreiber and Schmitz 

1{ ( )}N
nx n =

( )
1{ ( ) } , 1,2,...l N

nx n l M= =
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2000), in which a probability α of a false rejection is selected, which corresponds to 
%100)1( ×−α  level of significance. For the one-side rank-order test investigated in this study, it 

is required that 1/ −= αkM  (with k being a positive integer) surrogate data series need to be 
generated. Normally, a large k value provides more robust test result than when k=1, as more 
surrogate data series are involved in the test. However, K =1 has been considered as a sufficient 
value for conducting rank-order test (Schreiber and Schmitz 2000). Furthermore, it minimizes the 
computational cost on surrogate data generation. Thus, to achieve 95% level of significance in 
one-side rank-order test, a total of 19 (=1/0.05-1) surrogate data series are required. If the 
discriminant statistic Q0 calculated from the measured data is less than all Ql (l=1,2,…M), obtained 
from M surrogate data , and it is outside of the distribution of Ql, then the null hypothesis will be 
rejected. This suggests a different explanation for the measured data. We assume (as do many 
others) that Q0 outside the distribution of Ql implies some (assumed large) degree of confidence 
that the measured data were produced by a nonlinear system. 

 
 

 
(a) Measured data (vibration from a bearing test system) 

 
(b) Surrogate data  

 
Fig. 2 Measured data and examplary surrogate data used in non-linearity test 

 
 
As an example, Fig. 2 shows vibration signals of a damage bearing measured from a motor 

bearing test system, together with one of its corresponding 19 surrogate data. Fig. 3 illustrates the 
scaling behavior of measured data and one of 19 surrogate data for correlation dimension 
estimation, where the embedding dimension m=2-20 and time delay τ=2 are used. It can be seen 
that as embedding dimension increases, the estimated correlation dimension approaches a stable 
value. Furthermore, the correlation dimension values and their distribution of both the measured 
data and all 19 surrogate data are illustrated in Fig. 4. It can be seen that the correlation dimension 
of the measured data is smaller than those of the surrogate data, and is also outside of their 
distribution. This indicates the existence of non-linearity in the measured bearing vibration signal. 
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     (a) Measured data                       (b) Surrogate data 

Fig. 3 Scaling behavior of measured data and surrogate data (m=2-20 and τ=2) 
 

 

 

Fig. 4 Null hypothesis test result indicating a system being inherently nonlinear 
 

 
3. Recurrence plots and recurrence plot entropy 

 
3.1 Recurrence Plot 
  
The recurrence plot has been introduced to graphically describe the dynamical properties of a 

time series in a qualitative manner, by revealing time-correlated information existing in a physical 
system (Marwan et al. 2003). Given a time series { }Nxxx (),...,2(),1(  measured from the physical 
system, the phase space can be reconstructed using Eq. (1), where each vector X(i) is a point in the 
m-dimensional reconstructed space and represents the state of system in time i. Next, the 
recurrence matrix can be formed as 

 

                　 ( || ( ) ( ) ||)ijR X i X jε= Θ − −
　                      　(6) 
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Where )(•Θ represents a Heaviside function (Marwan 2003), and ε denotes a threshold value. 
Depending on the value of the element Rij being zero or one, a blank space is left or a dot (i, j) is 
drawn in a two dimensional space (Marwan et al. 2003). The result is called recurrence plot, and 
the dynamical properties of a physical system can then be characterized by the line structure and 
point density in such a plot.  

It should be noted that the selection of threshold value ε is critical to characterizing the 
dynamical structure of the system. A value that is too small will not enable successful 
identification of the dynamical changes experienced by the system (Nichols et al. 2006). Several 
methods for the choice of the threshold ε have been investigated in the literature, such as a certain 
percentage of the maximum phase space diameter (Koebbe and Mayer-Kress 1992, Zbilut and 
Webber 1992), the recurrence point density (Zbilut et al. 2002), or composition of the real signal 
and some observational noise with standard deviation (Thiel et al. 2002). In the current study, 10% 
of the maximum phase space diameter, computed from the time series with the embedding 
parameters dimension and time delay, has been used to find an appropriate threshold value, 
(Norbert et al. 2007). 

 
3.2 Recurrence plot entropy 
 
A recurrence plot provides a qualitative description of the dynamics embedded within a time 

series. As a means of quantifying various features of a recurrence plot, Zbilut and Webber 
formulated a procedure called recurrence quantification analysis (RQA), by introducing several 
parameters based on the line structure and point density in the recurrence plot. The RQA method 
was further extended by Marwan (Marwan 2003) with the introduction of additional parameters, 
such as recurrence rate (RR), determinism (DET), laminarity (LAM), trapping time (TT), and 
entropy (ENTR). In the present study, a parameter describing the entropy, termed RP entropy, is 
investigated for defect severity evaluation in rolling bearings.  

Suppose p(l) stands for the frequency distribution of the lengths of the diagonal lines in a  
recurrence plot, which is expressed as  

 

min

( ) /
N

l
l

p l N Nα
α

α
=

= ∑
                              (7) 

 
where lmin is the minimum length of the diagonal line, which is different for different systems. In 

this study, lmin = 2 . Nl denotes number of lines with length l. 
The RP entropy is then defined as 

 min

( ) ln ( )
N

l l

ENTR p l p l
=

= −∑
                               (8) 

 
It can be seen in Eq. (8) that entropy is defined as the Shannon entropy based on the frequency 

distribution of the diagonal line length. Furthermore, it is a measure for the complexity of a 
deterministic structure in a dynamical system. For example, if all diagonal lines are of the same 
length l=4, then only p(l=4)=1, others are equal to zero (i.e, p(α)=0, α=lmin,…,N and α≠4). As a 
result, the RP entropy is zero, which means the system dynamics are not complex. In contrast, if 
the diagonal lines are spread with a broad range of lengths, the calculated RP entropy will be high, 
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which implies an increased complexity of the system dynamics. Therefore, the RP entropy can be 
used for identifying the changing dynamics of the system, i.e., characterizing the degradation of a 
dynamic signal measured from that system, which can be represented by the deterioration of a 
bearing’s working condition. A flow chart for RP entropy calculation is shown in Fig. 5, where the 
average mutual information, false nearest neighbor techniques and the maximum phase space 
diameter have being applied to determing the time delay, embedding dimension and threshold 
value, respectively. Using this procedure, the RP entropy value is obtained from the recurrence 
plot for bearing defect severity evaluation. 
 
 

Fig. 5 Flow chart of recurrence plot entropy calculation 
 
 
4. Experimental study 

 
To verify the feasibility and practicality of the recurrence plot entropy in defect severity 

evaluation for rolling bearings, two case studies are conducted and the results are discussed below. 
 
4.1 A. Case Study I: motor bearing seeded defect test 
 
In this case study, vibration signals measured on a motor bearing test system are analyzed 

(Loparo 2011). Single point faults are introduced to the inner raceway of the test bearing (model 
6205-2RS JEM SKF) using electro-discharge machining with fault diameters of 0.18 mm, 0.36 
mm and 0.53 mm, respectively. Figure 6 illustrates vibration signals and their Fourier spectrum 
results of four bearings (including a healthy bearing) with different severities of damage under the 
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running condition of 1,772 RPM and 1 HP motor load. From the waveforms in time domain and 
amplitude spectra in frequency domain, it is difficult to distinguish the level of bearing damage 
severity. 
 
 

 
(a) Healthy (b) Light defect (0.18mm hole) 

 (c) Medium defect (0.36mm hole) (d) Severe defect (0.53mm hole) 

Fig. 6 Vibration signals of bearings under different levels of damage 
(Speed: 1,772 rpm, Load: 1 hp)

 
 

Following the flow chart in Fig. 5, the time delay τ=2 and embedding dimension m=6 are first 
determined.  Next, the phase space is reconstructed from the four vibration signals. With the 
threshold value ε chosen as 0.36 through the maximum phase space diameter approach, the 
recurrence plots of the four vibration signals are drawn in Fig. 7. The vertical and horizontal lines 
in the plot indicate the presence of laminarity and intermittency in the vibration signals, whereas 
the diagonal line and board structure signify the existence of regular oscillation. Generally, the 
structures of recurrence plot can be classified into different patterns (Gao and Cai 2000, Marwan et 
al. 2007). A homogeneous type feature, corresponding to the healthy bearing, can be seen in Fig. 
7(a), while blocks type features are shown in defective bearings. The blocks reflect abrupt changes 
in the dynamics of the bearing system.
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(a) Healthy 

 
(b) Light defect (0.18 mm hole) 

 
(c) Medium defect (0.36 mm hole) 

 
(d) Severe defect (0.53 mm hole) 

Fig. 7 Recurrence plots of vibration signlas from four test bearings 
(Speed: 1,772 rpm, Load: 1 HP)

 
 
The RP entropy is subsequently calculated and shown in Fig. 8. It is seen that the RP entropy 

value of the defective bearings are larger than that of the healthy bearing. The more severe the 
damage is, the larger the RP entropy has shown to be. This can be explained that vibration signals 
of defective bearings contain more frequency components than that of the healthy bearing. 
Accordingly, the complexity of the signals increases, leading to a higher value of the PR entropy 
(Yan and Gao 2007). As an example, structural damage within a bearing would cause the contact 
pressure of the bearing components to change, leading to a modulation of the vibration amplitude 
or frequency such that more harmonics emerge. The result is an increased complexity of the 
vibration signal and the system’s entropy. 

In order to verify the advantage of RP entropy for defect severity assessment, a comparison 
study has been investigated, and two other statistical parameters (Kurtosis and Fano factor) , are 
calculated from the same data. These two parameters are defined as 
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4

1
4

( ( ) )x

x

N

i
x i

Kurtosis
μ

σ
=

−
= ∑                            (9)               

2
x

x

Fano σ
μ

=                               (10) 

 
where x(i), i=1,2,3,…N, represents the vibration data, and XX σμ , , are the mean value and 

standard deviation of the vibration data, respectively. As can be seen from the results listed in 
Table 1, except for RP entropy, kurtosis and Fano factor are not effective indicators for 
characterizing the defect severity of bearings 

 
 

Fig. 8 RP entropy of vibration signals from four test bearings (Speed: 1,772 rpm, Load: 1 HP) 
 
 
 

Table 1. Comparison  between RP entropy and some commonly used methods 
(Speed: 1,772 rpm, Load: 1 HP) 

Damage level 
Kurtosis Fano factor RP entropy 

Value Change Value Change Value Change 

A: Healthy bearings 2.931  0.338  0.192  

B: 0.18 mm hole 5.542 ↑ 14.782 ↑ 1.256 ↑ 

C: 0.36 mm hole 22.084 ↑ 7.611 ↓ 1.458 ↑ 

D: 0.53 mm hole 7.667 ↓ 64.167 ↑ 1.866 ↑ 
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To confirm the analysis results, another set of vibration signals under different operation 
conditions (speed：1,750 rpm; load: 2HP) are analyzed. As Fig. 9 and Table 2 indicate, similar 
trend can be identified to that in Figure 8 and Table 1. This verifies the effectiveness of RP entropy, 
compared with some other commonly used statistical parameters, for damage severity assessment 
in motor bearings. 

 
 

Fig. 9 RP entropy of vibration signlas from four test bearings (Speed: 1,750 rmp; Load: 2HP) 
 
 
 
Table 2. Comparison  between RP entropy and some commonly used methods 
(Speed: 1,750 rpm, Load: 2 HP) 

Damage level 
Kurtosis Fano factor RP entropy 

Value Change Value Change Value Change

A: Healthy bearings 2.925  0.325  0.134  

B: 0.18 mm hole 5.564 ↑ 19.703 ↑ 1.183 ↑ 

C: 0.36 mm hole 21.686 ↑ 7.222 ↓ 1.367 ↑ 

D: 0.53 mm hole 8.058 ↓ 69.704 ↑ 1.776 ↑ 
 
 
4.2 B. Case study II: spindle bearing run-to-failure test 
 
For the second case study, run-to-failure testing was conducted on an 1100KR ball bearing 

under a radial load of 5,498 N and a rotational speed of 2,000 rpm. An initial 0.27 mm-wide 
groove was introduced across the outer raceway to accelerate the defect propagation process. After 
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approximately 2.7 million revolutions, the bearing came to a seizure, with spalling across the 
entire raceway. Vibration signals were collected during the run-to-failure test at an interval of 
every 7 minutes. Fig. 10 illustrates the trend of the vibration amplitude (measured by 
accelerometer that output a voltage signal) along the process of defect propagation. Three sample 
waveforms are displayed, which were measured during the interval when the bearing was 
physically examined. 

 
 

Fig. 10 Amplitude as a function of bearing revolution 
 
 

Fig. 11 RP entropy of vibration signals at different run-to-failure test stages 
 
 
For each vibration signal obtained from the run-to-failure test, 40 non-stationary data segments 

of 1000 data points are chosen to calculate the RP entropy values. Applying the same procedure 
illustrated in Fig. 5, phase spaces corresponding to the different test stages are reconstructed from 
each data segment, and RP entropy values are calculated from the recurrence plot formulated in the 
reconstructed phase spaces. As the results in Fig. 11 demonstrate, an increasing trend of the RP 
entropy values is seen, as the defect severity increases (i.e., increasing defect size). This verifies 
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again the effectiveness of RP entropy for bearing defect severity assessment. 
 
 

5. Conclusions 
 
One of the quantitative measures derived from the recurrence quantification analysis, termed 

RP entropy, has been investigated for its effectiveness in serving as an indicator for defect severity 
assessment in mechanical systems. The process starts with first performing a surrogate data testing 
to sensor signals in the time domain to identify the existence of non-linearity in the signal. Case 
study using vibration signals measured on healthy and defective rolling bearings has been 
performed, and the results demonstrate that the severity of structural defect can be effectively 
diagnosed, based on the increase of the RP entropy values (e.g., 330% increase when 0.18 mm 
hole was introduced into the inner raceway of a healthy bearing under the running condition at 
1,772 RPM and 1 HP load). From the run-to-failure test, the RP entropy has shown to be an 
effective measure for characterizing degradation of the spindle bearing system. However, the 
limitation of this technique is that the reason which causes the damage can not be identified from 
the RP entropy, and this needs further research. Furthermore, the trial-and-error approach for 
threshold parameter determination should be replaced by a more general and quantitative approach 
in order to extend the usage of the recurrence quantitative analysis in other applications. It is 
envisioned that besides rolling bearings, the developed technique is applicable to a wide range of 
machine systems (such as motors and gearbox in wind turbines) where timely assessment of the 
degree of structural damage in rotating machines is critical to enabling condition based, 
intelligence maintenance strategy for more reliable and economical operations.  
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