
 
 
 
 
 
 
 
 
 
Smart Structures and Systems, Vol. 11, No. 3 (2013) 241-259                                   241 

 
 
 
 

Numerical characterizations of a piezoelectric micromotor using 
topology optimization design 

 
M. Sadeghbeigi Olyaie∗ and M.R. Razfar 

 
Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran 

 
(Received March 6, 2012, Revised May 28, 2012, Accepted August 17, 2012) 

 
Abstract.    This paper presents the optimum load-speed diagram evaluation for a linear micromotor, 
including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be 
actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear 
conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is 
introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through 
a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the 
optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In 
this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based 
smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The 
topology optimization procedure to find the optimal design is implemented using a solid isotropic material 
with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because 
of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor 
characteristics of our final DTO design using a softer CS-FEM are substantially improved. 
 

Keywords:    topology optimization; cell based smoothed finite element method; piezoelectric micromotor 
 
 
1. Introduction 
 

Because of various advanced applications of actuators in industry, especially piezoelectric 
actuators, the dimensions of linear actuators are gradually being reduced to even beyond the range 
of microelectromechanical systems (MEMS) devices (Ueha and Tomikawa 1993).  

Currently, the most common and efficient strategy for design of these structures is the 
deterministic optimization or DTO model (Arora 2004, Bendsoe and Sigmund 2003, Bendsoe and 
Kikuchi 1988). Topology optimization using a solid isotropic material with a penalization (SIMP) 
approximation is the simplest and most popular technique (Rozvany et a.l 1992). Design variables 
in the optimization process can also be updated through some numerical algorithms such as a 
powerful optimizer tool known as the method of moving asymptotes (MMA) proposed by 
Svanberg (1987).  

A simple numerical optimization procedure is shown in Fig. 1. For this problem, after initial 
data setting up and finding optimum piezoelectric volume fraction, design variable updating is 
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started. Based on this figure, the major task under the updating loop for the optimization (or 
topology optimization) procedure needs to be handled by a stable and efficient numerical method 
such as the finite element method (FEM). For piezoelectric analyses, to increase stress accuracy of 
the computations and to decrease element distortions sensitivity due to the overly stiff behavior of 
the standard FEMs models, approaches such as the piezoelectric finite element with drilling 
degrees of freedom (Long et al 2006), hybrid formulations (Sze et al. 2004), and meshless 
methods such as the meshless point collocation method (PCM) and radial point interpolation 
method (RPIM) have been developed (Ohs and Aluru 2001, Liu et al. 2003). Recently, the 
smoothed finite element method (S-FEM) has been proposed by Nguyen et al. (2009) to overcome 
these numerical drawbacks.  

 

Fig. 1 Typical flowchart for a numerical optimization 
 
 

This method combines parts of the standard FEM and meshless techniques (Chen et al. 2001), 
was developed by Liu et al. (2007). This method states that numerical analyses of static and 
dynamic problems through S-FEMs are always more stable than standard FEMs, due to softening 
effects provided by smoothing operations in the S-FEM (Bordas et al. 2010). As such, the S-FEM 
numerical results are often found to be even more accurate than those of standard FEMs with the 
same degrees of freedom, (Liu et al. 2009, Liu and Nguyen 2010, Liu et al. 2007, Nguyen et al. 
2009, Liu et al. 2010). Based on Fig. 1, after converging of the optimization loop, the final 
optimum design will be achieved.  

To date, most investigations on piezoelectric topology optimizations, such as that by Silva and 
Kikuchi (1999), Silva (2003), Begg and Liu (2000), Carbonari et al. (2006), Carbonari et al. 
(2005), Kogl and Silva (2005), Kang and Wang (2010), Donoso and Sigmund (2009), and Kim  et 
al. (2010) have focused on optimizations through standard FEM algorithms. Because of the 
important role of finite element models on final optimization results, the topology optimization of 
the prescribed piezoelectric micromotor, proposed by Friend et al. (2004) using the softer CS-FEM 
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has been evaluated by Sadeghbeigi Olyaie et al. (2011) with just considering a constant volume 
fraction for piezoelectric materials (equal to 50%). However for more efficiency, before applying 
topology optimization algorithm, it is really necessary to compute the piezoelectric optimum 
volume fraction (weight) as an input data for optimization process. Then, the most critical 
specifications of the optimized mechanism, including load-speed diagram, weight and dimensions, 
are characterized. Therefore, these necessary optimum data for the mentioned piezoelectric 
micromotor will be further discussed in this paper.  

The remainder of this paper is organized as follows. The design concept of an actuator will be 
discussed in section 2. The S-FEM and cell-based smoothed finite element method are then 
introduced in section 3. Next, the framework of topology optimization will be explained in section 
4, and in section 5 the problem algorithm will be explained. In section 6, an optimum piezoelectric 
volume fraction using Q4-FEM for this micromotor will be evaluated, and the DTO numerical 
results of this actuator analysis based on Q4-FEM, T3-FEM, and CS-FEM besides numerical 
characterizations of the optimal micromotor will be compared, examined, and discussed in detail. 
Finally, conclusions of this research will be briefly explained. 

 
 
2. Concept design of the used piezoelectric micromotor 

 
The operating concept of the linear micromotor used in this study is based on the axial and 

transverse motions of bimorph piezoelectric cantilevers as shown schematically in Fig. 2 (Friend et 
al. 2004). Detailed information about each bimorph can be seen in Fig. 3; in the figure, each beam 
includes an elastic material interface with low magnetic permeability (such as phosphor bronze), 
two piezoelectric layers with the same polarization direction, and finally some relevant electrodes 
for applying electric fields. By applying an electric field simultaneously on all four electrodes 
according to Fig. 3(a), an elliptical motion will be generated. By creating a suitable phase shifting 
on the piezoelectric sequentially bimorphs, and then by generating a preload force on the system, a 
linear motion will be produced (Fig. 2 (Sadeghbeigi Olyaie et al. 2011)). Recently, a Swedish 
company (PiezoMotor AB) has been commercially manufacturing this type of linear motor.  

 
 

3. Cell-based smoothed finite element method formulations for piezoelectric 
problems 
 

For linear conditions, the matrix form of the constitutive equation for a piezoelectric structure 
can be written as 

                                                             

T
E

s

c e
e ε

⎡ ⎤⎧ ⎫ ⎧ ⎫−
= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

T S
D E

.                                                 (1) 

 
In this equation,  T and S denote the stress and strain vectors, D and E are the electric 

displacement and electric field vectors,  Ec , e , and sε  are the elastic material property matrix at a 
constant electric field, and piezoelectric and dielectric matrices at a constant mechanical strain, 
respectively.  
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Fig. 2 Operational mechanism of the considered piezoelectric linear micromotor (Friend et al. 2004) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Bimorph beam used to construct the linear micromotor: (a) assembled and (b) its components (Friend 
et al 2004) 

 

For a standard FEM analysis of piezoelectric materials, the compatibility relations between the 
strain-displacement, electric field-potential, displacement and electric potential can be written as 
(Nguyen et al. 2009) 

                                                      

0
  ;   

0
S u
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∂ ∂⎡ ⎤
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                                                                    E φgrad ( )= −                                                          (3) 
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where u  is the mechanical displacement, φ  relates to the electric potential vector, n , dI  ,
 Iφ  , 

and ( )N xI  are the total number of nodes in the design domain, nodal displacement vector, nodal 
electric potential vector, and (linear) shape function, respectively.  

When the S-FEM is used, especially for this study, because of the multi-material and multi-
layer conditions cell-based S-FEM (CS-FEM) is preferred (Liu and Nguyen 2010, Liu et al. 2010). 

For a quadratic CS-FEM, Fig. 4 schematically presents the smoothing domains associated with 
the different number of cells ( nSC ) (Liu et al. 2010). For this type of analysis, the smoothed 
strains ( S% ) and smoothed electric fields ( E% ) for a piezoelectric structure can be written as (Liu et 
al. 2010) 

                                               ( )
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( )
1 ( )d ( )S n u x B x d

c n
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u uI c Ic

I NA ∈Γ

= Γ = ∑∫% %                                    (5) 
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where ( )cΓ is the boundary of the smoothing domain ( ( )cΩ ) associated with a cell ( c ), nN is the 

number of element nodes , ( )B xuI c
% and ( )B xI cφ

%  are the smoothed strain and smoothed electric 

field matricses on the domain ( ( )cΩ ), respectively,  and ( )n c
u and ( )n c

φ are the normal outward 

vectors on the boundary ( ( )cΓ ), such that 
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Note that the values of ( )B xuI c

% and 
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Similar to the standard FEM by applying Hamilton's principle (Benjeddou 2000, Allik and 

Hughes 1970) the general S-FEM discretized matrix form in a smoothing space for a time-
harmonic excitation problem will be changed to (Jensen 2009) 

 
iwtefdKdCdM )()(~)(~ˆ)(~ ρρρρ =++ &&&                                      (10) 

 

In this equation, d̂  , ( )f ρ , w , and ( i ) are the transformed shapes of instantaneous 
displacement, the magnitude of the applied load vector, the rotational frequency of the applied 
load, and the imaginary number in complex variables, respectively. With a proportional damping 
assumption, the smoothing stiffness martix ( K% ) smoothing mass matrix ( M% ) and smoothing 
damping matrix ( C% ) will then become 

 

uu u

u

φ

φ φφ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

k k
K

k k

% %
%

% %
;

0
0 0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

m
M% ; α ϑ= +C M K% % %                               (11) 

 
where α and ϑ are the constant prescribed damping coefficients. The components of the smoothed 
stiffness matrix for each element domain and the mass matrix can be calculated as follows (Dai et 
al. 2007) 
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T
I Idm N Nρ

Ω

= Ω∫ .                                                      (15) 

 
For topology optimization applications, all the design parameters in Eq. (10) are functions of 

density of each element ( ρ ) as the design variable.  
Note that the steady sate solution of Eq. (10) is 
 

                                                                     
iˆ ˆ( ) ( )ed u wtt ρ=                                                        (16) 

246



 
 
 
 
 
 

Numerical characterizations of a piezoelectric micromotor using topology 

 
where ˆ( )u ρ is the magnitude of the displacement vector in complex form. By this assumption, 

Eq. (10) yields 

                                                                    ˆ( , ) ( )G u fwρ ρ=%                                                       (17) 
 

where ( ( , )G wρ% ) is a dynamic stiffness matrix equal to 
 

                                               
2( , ) ( ) i ( ) ( )G M C Kw w wρ ρ ρ ρ= − + +% %% % .                                    (18) 

 
As can be seen in the above equations, only the calculation of the stiffness matrix in the CS-

FEM method is different from the standard FEM computations.  
The solution of the CS-FEM with 1nSC = is equal to the standard FEM solution using reduced 

integration points (upper bound solution with flexible stiffness). If the number of smoothed 
domains for each element approaches infinity, the solution will approach the full integration 
standard FEM solution with ( 2 2× ) Gauss integration (lower bound solution with stiff stiffness). 
Finally, if 1 nSC< <∞  the CS-FEM model is always softer than the FEM using the same set of 
elements, and the CS-FEM solution (in strain energy) falls between the upper-bound and lower-
bound FEM solutions of the force driving problems (Liu et al. 2007). Since the displacement 
conformity in this method is only valid along the edges of each cell, the computed stiffness 
matrices and displacements obtained through this method will be more flexible and more accurate 
than the standard FEM values, respectively (Chen et al. 2001, Liu et al. 2007, Liu et al. 2007).  
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 4 Smoothing domain (SD) concepts for the CS-FEM: (a) 1 SD, (b) 2 SDs, (c) 4 SDs and (d) 8 SDs (Liu 
et al. 2010) 
 
 
4. Topology optimization  

 
This technique determines the optimum material distribution required for a system to optimize 

an objective function, such as velocity, with respect to some defined constraints.  

(d) (c) 

(b) (a) 

   : Field Nodes           : Virtual Nodes 
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The general form of a DTO problem is 

                               

:

:
:

Optimize  an objective function

DTO Equilibrium equations
Constraints

Volume, cost or certainty constraints

⎧
⎪⎪

⎧⎨ ⎪
⎨⎪
⎪⎪ ⎩⎩

 .                  (19) 

 
Numerical approaches such as homogenization (Bendsoe and Kikuchi 1988) and SIMP 

techniques (Rozvany et al. 1992, Bendsoe 1989) are commonly used to determine topology 
optimization designs. The homogenization model uses microscopic material distribution to find the 
optimum solution, whereas the SIMP method employs the pseudo density of each element as a 
design variable. Since the SIMP method implementation is relatively simpler and is more efficient 
than the homogenization model, this algorithm is usually preferred.  

The SIMP technique can be successfully applied for multi-constraints, multi-materials, and 
multi- physics conditions. Through this method, the intermediate densities of each element 
(pseudo density ( eρ )) are penalized to distinctive values near 0 (void) or 1 (solid) (Bendsoe and 
Sigmund 2003).  

Through the extended SIMP technique for piezoelectric structures called piezoelectric material 
with penalization and polarization (PEMAP-P) model, mechanical ( Ec ), electromechanical ( e ), 
and dielectric ( sε ) properties of these materials are interpolated (Kim et al. 2010) as 

 

                                                       
0 ;  0 1nc

E e E min ec cρ ρ ρ= < ≤ ≤                                           (20) 
 

                                                        
0 ;  0 1ne

e min ee eρ ρ ρ= < ≤ ≤                                             (21) 
 

                                                      
0 ;  0 1n

s e s min e
εε ρ ε ρ ρ= < ≤ ≤                                            (22) 

 
where the exponents nc , ne ,and nε are the material density penalization factors, and 0

Ec , 
0e ,and 0

sε represent the nominal material matrices for the solid material case( 1eρ = ).The 
minimum density value ( 0.01minρ = ) is mentioned here in order to avoid singularity of the 
stiffness matrix during the FEM solution. 

Finding appropriate penalization powers is usually based on a numerical trial and error process 
(Bendsoe and Sigmund 1999).  

 
4.1 Sensitivity analysis 
 
During the design variable updating process (such as the MMA optimizer), calculation of the 

objective function ( Object Fun ) and related constraints differentiations with respect to design 
variables ( eρ ) is necessary. Here, this sensitivity analysis is conducted via an efficient method 
called the adjoint sensitivity analysis (Choi and Kim 2005).  

For a dynamic system, an objective function can be defined using a real function ( 0Object Fun ) 
as (Jensen 2009) 
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                                   Object Fun = Object Fun0     )ˆ,ˆ,( ir uuρ                                           (23) 
 
where ûr and ûi are the real part and imaginary parts of the displacement vector, respectively. 

By introducing the Lagrangian multiplier ( λ ), the adjoint form of this function becomes 
 

Object Fun = Object Fun0 
)ˆ~()ˆ~()ˆ,ˆ,( fuGfuGuu TT

ir −+−+ λλρ
                            

(24) 
 

                     
where the over bar items in Eq. (24) denote the complex conjugates. 
Based on Jensen’s note (2009), the final sensitivity expression then is 
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d e e e e
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⎡ ⎤∂ ∂ ∂
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G fλ u
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                     (25) 

 
where ( λ ) is the solution to (Sadeghbeigi Olyaie et al. 2011) 
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2
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4.1.1 Mesh independent filtering 
To overcome some numerical problems such as checkerboard regions, mesh dependency and 

local minima results during optimization process, sensitivity analysis filtering scheme proposed by 
Sigmund (1994, 1997) has been used in this work. Based on this approach, instead of using real 
sensitivities (e.g., Eq. (25)), the filtered objective function sensitivity is used for topology 
optimization computation as 

 

                                     1

1

d( ) 1 ( )
d

Ne

i iNe
ie i

e i
i

Object Fun Object FunH
H

ρ
ρ ρ

ρ

∧

=

=

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

∑
∑  

                            (27) 

where eN  is number of elements in design domain and iH is the convolution operator which 
can be defined as 

 

                               
{ }( , )  ,  /  ( , )    1 ,...,  i e eH r dist e i i N dist e i r e N= − ∈ ≤ =

                       
(28) 

 
In this equation operator ( , )dist e i is defined as the distance between the center of considered 

element ( e ) and the center of element i .  By choosing an appropriate filter size ( r ), many of the 
mentioned numerical problems can be removed. 
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5. Problem algorithm 
 

The applied topology optimization algorithm for this study can be summarized in Fig. 5. 
 

6. Numerical results and discussions 
 

Numerical topology optimization results (for various numerical methods) with some of the final 
optimized characterizations for the prescribed mechanism (according to Figs. 2 and 3) will be 
examined, compared and discussed here. All computations were conducted on a PC using an 
Intel® Core(TM) 2 Quad, Q9550@2.83 GHZ CPU, and 4GB RAM. 

 
6.1 Numerical results 
 
6.1.1 Problem definition 
The final goal of this study is to find some optimal specifications such as load-speed curve 

required for a linear micromotor (shown in Fig. 2) to reach the maximum linear velocity. To that 
end, a set of proper objective function and constraints need to be defined. 

The final objective function (the end point velocity of each beam) for a constant excitation 
frequency can be defined to maximize the resultant end-point displacement of each microbeam 
(point (A) in Fig. 6 (b)). The matrix form of the objective function can thus be written as 

 

                                                          Object Fun0  =  uLuT ˆˆ                                                    (29) 
 

where L is a diagonal matrix independent from the design variable whose non-zero diagonal 
entries are proportional to the position of point (A) in Fig. 6(b).  

The configuration (including materials and polarization direction), design domain, and 
dimension of each beam are shown in Figs. 6(a), 6(b), and 7. The thickness of each beam is 1 
(mm), applied voltage is 100 (volts) ( 100( )v=0V ), and the excitation frequency w  is 1 Hz. 

The setting of this optimization problem can be summarized as follows 
 

⎩
⎨
⎧
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∑
               (30) 

 
where 0Vol  , eVol , num  and volfrac are the volume of the design domain corresponding to 

1eρ =  , volume of each element, number of elements in the design domain, and the volume 
fraction ratio, respectively. 
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Based on the mentioned algorithm, first an optimum piezoelectric volume fraction ( volfrac ) by 
a standard FEM is computed, then the DTO analysis will be conducted by comparing various 
numerical methods. 

This problem is analyzed using the following assumptions and parameters: 
a. The problem condition is linear and quasi-static. 
b. The thickness of each electrode is very small in comparison to dimensions of the other parts. 
c. A mesh of 10100× elements is used. 
d. The radius of filter used in sensitivity filtering operation is 1 7.r mm= . 
e. Material properties of the PZT are obtained from reference (Nguyen et al. 2009). 

 

Fig. 5 General applied DTO flow chart 
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6.1.2 Optimum piezoelectric volume fraction 
The first step in topology optimization design for this study is finding an optimum piezoelectric 

volume fraction in design domain. For this purpose, the maximum velocities of the prescribed 
mechanism for 50%, 65%, 70%, 75%, 80% and 100% of piezoelectric volume fractions are 
compared and evaluated. 
Topology optimization results of the proposed micromotor for various piezoelectric volume 
fractions (50%, 65%, 70%, 75%, 80% and 100%) using a standard FEM (Q4-FEM) will be 
calculated here. 

 
 

 
 

 

 

 

 

Fig. 6 Definition of the problem: (a) general configuration and (b) design domain 

 

Fig. 7 Dimension of the optimization problem (based on mm) 

 

The sensitivity analysis of the required objective function (Eq. (29)) is calculated via the 
adjoint variable method using Eqs.(25) and (26) as 

 

)u
ρ
GReal(λ

dρ
)uLud(

e
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∂
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and 

                                                                         ˆGλ L uT=%     .                                                       (32) 
End point velocity of each beam variation respect to various piezoelectric volume fractions is 

graphically shown in Fig. 8. By comparing these results, it can be concluded that 70% of the 
piezoelectric material in design domain (Fig. 7) is the optimum volume fraction amount ( volfrac ) 
for Eq. (30). 

 
6.1.3 Topology optimization designs with 70% volume fraction 
The topology optimization results obtained with 70% volume fraction are summarized in table 

1.These topology optimization configurations are found using different approaches, as shown in 
Figs. 9(a) to (e).  

 
6.1.4 Reanalysis 
Since topology optimization designs even after applying sensitivity analysis filtering procedure 

(according to Eq.(27)) usually include gray zones (as can be observed in Fig. 9), these structures 
are not generally suitable for manufacturing. To improve this defect, a reanalysis process is 
executed at the end of the optimization procedure (Bendsoe and Sigmund 2003). By applying this 
technique, the design variables (e.g., the pseudo density of each element) that are less than a 
threshold factor will be removed and the larger values will be approximated as the solid state 
condition ( 1eρ = ). 

Based on this procedure, our final topology optimization results in comparison with initial 
optimization data are listed in Table 2, where the threshold factor is 0.6.  

 

 
Fig. 8 Changes of piezoelectric micromotor velocity respect to design domain piezoelectric volume fraction 
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6.2 Discussions 
 

It has been shown that the optimum piezoelectric volume fraction is not exactly zero or one 
hundred percent (70% for this problem). This result arises from the interaction between 
mechanical and electrical properties of piezoelectric materials. This important property is 
expressed as a parameter called electromechanical coupling coefficient (Chang et al. 1995).  This 
factor reflects the ratio of mechanical deformation energy to applied electric potential energy. So, 
for this study, 70% piezoelectric volume fraction can produce maximum linear velocity. 

This was also observed in the final results: when the number of smoothing domains was 
increased (from 2 to 8), the optimized velocity approached the Q4-FEM results. This observation 
provides, in a way, a validation of the CS-FEM for determining topology optimization designs 
when many smoothing domains are used (Liu et al. 2007, Liu and Nguyen 2010, Liu et al. 2007).  

Because a smoothed strain is used inside each smoothing domain in the CS-FEM, by increasing 
the number of smoothing domains the final topology optimized results will have fewer 
checkerboard or gray regions than even the designs obtained by standard FEMs (Huang and Xie 
2010). Indeed, as can be observed from the obtained results (Table 2), after the reanalysis process 
the optimized velocity for CS-FEM (nSD=2) is less than the velocity from CS-FEM (nSD=4). 

In our study, because the final reanalysis optimal objective function (linear velocity) obtained 
through CS-FEM (nSD=4) has a higher value than the other designs (e.g., more than about 18% 
with respect to the Q4-FEM result), we suggest that CS-FEM (nSD=4) with 70% of piezoelectric 
material leads to the optimal design.  

 
 

Table 1 Comparison of our topology optimization designs with 70% volume fraction 

FEM Analysis 

Initial 
Instantaneous 

Velocity 
(mms-1) 

Optimized 
Instantaneous Velocity 

(mms-1) 

Number of 
Iterations 

Total CPU 
Time 
(min) 

Q4-FEM 0.149 1.464 293 88.8 

T3-FEM 0. 128 0.908 455 110.0 

CS-FEM 
(nSD=2) 0.166 1.971 325 91.8 

CS_FEM 
(nSD=4) 0.155 1.587 318 103.7 

CS_FEM 
(nSD=8) 0.152 1.580 296 116.9 

 
 

6.3 Optimal numerical characterizations 
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According to the proposed optimal actuator chosen in discussions section, the final main 
specifications of this design including configuration of each microbeam in design domain (based 
on Fig. 6 definition), approximate weight, and velocity of micromotor for free condition in 
comparison with original mechanism can be summarized in table 3. 

The final acquired optimum velocity mentioned in table 3 is based on free load condition, so 
for real solution the speed variation via applied external load should be calculated. This curve can 
be obtained by solving general FEM equation in Eq.(17). This result has been shown in Fig. 10. 
This figure emphasizes that 50(gr) is approximately the linear motor breaking load. 

 
 
Table 2 Comparison of our final reanalysis designs (Threshold factor: 0.6) 

FEM 
analysis 

Initial optimized 
velocity (mms-1) 

Reanalysis 
optimized  

velocity (mms-1)

Reanalysis  
volume ratio (%) Reanalysis configuration 

Q4-FEM 1.464 0.816 0.666 

T3-FEM 0.908 0.643 0.666 

CS-FEM 
(nSD=2) 1.971 0.769 0.664 

CS-FEM 
(nSD=4) 1.587 0.962 0.668 

CS-FEM 
(nSD=8) 1.580 0.855 0.673 

 
 

7. Conclusions 
 

Piezoelectric microactuators are extensively being used in industrial and medical science 
technologies. However, to attain even higher operational and economic efficiency, the optimum 
design of these structures is required.  

The topology optimization of a prescribed linear piezoelectric micromotor needed to reach 
maximum velocity by satisfying the optimum volume (weight) fraction and required equilibrium 
equations has been evaluated in this research. The optimal volume fraction was found by 
comparing the topology optimization results of various volume fraction designs using Q4-FEM. 
Finally, the optimization process was determined using the softer cell-based smoothed FEM (as a 
branch of smoothed FEMs) results in comparison with standard FEMs results. These results show 
that the topology optimization design using the cell-based smoothed FEM (nSD=4), with 70% 
piezoelectric volume (weight) fraction, is preferred. So that, the optimum velocity obtained using 
this method is about 47% and 18% greater than the results of initial design and Q4-FEM analysis 
respectively. In spite of increasing velocity acquired through this algorithm, the final weight of this 
mechanism will be decreased about 14% respect to original motor. 

The considered micromotor is currently being produced commercially, and it can substantially 
improve the efficiency of these piezoelectric micromotors. 
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Considering the possible reliability constraints during development of the optimum design of 
MEMS structures is recommended; most are due to inherent variations incurred during the 
manufacturing process.  

 
 

 

  

 

 

 

 

 

 

 

 

 

Fig. 9 Our topology optimization designs with 70% volume fraction for :( a) Q4-FEM, (b) T3-FEM, (c) CS-
FEM (nSD=2), (d) CS-FEM (nSD=4) ,and (e) CS-FEM (nSD=8) 

 

 

 

(a)

(b)

(c)

(d)

(e)

256



 
 
 
 
 
 

Numerical characterizations of a piezoelectric micromotor using topology 

Table 3 Comparison of our topology optimization design with initial one 

Type of Design 

Micromotor 

Approximate 

Weight(gr) 

Micromotor 

Velocity 

(mms-1) 

Microbeam Configuration 

(for design domain) 

Initial Design 320 0.594 
 

Final Optimum 
Design 

275 0.962 

 

 

 
Fig. 10 Optimal end point velocity of each microbeam via applied external load 
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