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Abstract.    The objective of this paper is to develop on-line system parameter estimation and damage 
detection technique from the response measurements through using the Recursive Covariance-Driven 
Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of 
identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is 
presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. 
Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring 
experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and 
offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV 
provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency 
tracking which makes it possible for early warning. The peak values of the identified 1st mode shape slope 
ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak 
of 2nd mode slope ratio could be used as another feature to indicate imminent pier settlement. 
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1. Introduction 
 

The major reason for bridge collapse during typhoon and flood is the bridge scoring and this 
scoring may empty the foundation soil and cause the reduction of bridge bearing capacity, and is 
the primary cause of bridge failures. Because lack of bridge monitoring system as well as the 
monitoring techniques, it is impossible to send an early warning message before collapse. Based 
on all damage cases and harsh environmental conditions, it is necessary to upgrade the current 
bridge monitoring system on bridge structure, and develop reliable self-diagnosis monitoring and 
early warning system. 

For output-only measurements the Stochastic Subspace Identification (SSI) technique is a 
well-known multivariate identification technique. It was proved by several researchers to be 
numerically stable, robust to noise perturbation and suitable for conducting non-stationarity of the 
ambient excitations although its assumption is violated (Michèle et al. 2001). The stochastic 
realization algorithm mainly focused on SSI-DATA was fully enhanced by (Van and De Moor 
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1996, Bart 2000, Bart and Guido 2000), its application in understanding the dynamic characteristics 
of a cable-stayed bridge had been studied (Weng et al. 2008). As opposed to SSI-DATA, the 
SSI-COV algorithm avoids the computation of orthogonal projection; instead, it is replaced by 
converting raw time histories in co-variances of the so-called Toeplitz matrix. The merits of SSI 
are: (a) The identified modes are given in frequency stability diagram, from which the operator can 
easily distinguish structural from the computational ones, (b) Since the maximum model order is 
changeable for the operator, a relative large model order can improve the quality of the identified 
modal parameters, (c) Mode shapes are simultaneously available with the poles, without requiring 
a second step to identified them, (d) These methods are robust against non-stationary excitation 
and thus are applicable to structural vibration study in the presence of ambient excitation. 

Different from the off-line analysis, the on-line system identification and damage detection, 
based on vibration data measured from the ambient vibration of structure has received 
considerable attention recently. Therefore, the recursive stochastic realization by either the 
classical Covariance-driven SSI algorithm (RSSI-COV) or Data-driven SSI algorithm (RSSI-DAA) 
was proposed in (Goethals et al. 2004, Loh et al. 2011). In this paper, the recursive stochastic 
subspace identification (RSSI-COV) are discussed and used to estimate time-varying system 
natural frequencies directly from the response measurements. To avoid time-consumption of SVD 
in RSSI, the Extended Instrumental Variable version (EIV-PAST) is applied in SSI-COV. In 
addition, to consider the noise contaminated data, a recursive pre-processing technique called 
recursive singular spectrum analysis technique (rSSA) is proposed in this studt to enhance the 
accuracy and stability in the online tracking capability. 

 
 

2. Stochastic subspace identification 
 
Assuming a structure under consideration is being excited by un-measurable stochastic 

input forces, the discrete time stochastic state-space-model can be expressed as 
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where 12 ×ℜ∈ n
kx  is the state vector and 1×ℜ∈ l

ky is the measurement vector, wk and vk represent the 
system noise and measurement noise respectively. Basic Covariance-Driven Stochastic Subspace 
Identification method (SSI-COV) is to solve the problem through identifying a stochastic 
state-space model (matrices A and C) from output-only data. For the application of SSI-COV, 
instead of arranging the block covariances in the form of Toeplitz matrix, it must adopt the form of 
a Hankel Covariance matrix, which is the way as it is outlined in ERA (Eigensystem Realization 
Algorithm) (Caicedo et al. 2004). The Hankel Covariance matrix has the following factorization 
properties 
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where nli
i

2×ℜ∈O  is the same observability matrix and lin
i

×ℜ∈ 2Ω  is the stochastic 
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controllability matrix. The observability matrix can be obtained by applying SVD to the Hankel 
covariance matrix, and then the system matrices and modal parameters can be extracted in the 
same manner than that presented in SSI-COV off-line analysis. The Hankel Covariance matrix can 
be constructed by arranging the output measurements data vectors as follows 
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where 1y ×+ ℜ∈ il
k  and ilT

k
×− ℜ∈ 1y . l is the number of sensors and i is number of block rows which 

forms the Hankel covariance matrix, and k is ranging over the entire set of available data and p~  
is an optional normalization parameter ( p~ =1, in this study). The software library LAPACK is used 
in MATLAB to compute SVD, which uses the classical algorithms like Householder reflections 
and QR algorithm (Golub et al. 2006), but it is not suitable for on-line application. The need of an 
online application of SVD for implementing to SSI-COV becomes an important issue for 
continuous monitoring. 
 
 
3. Recursive stochastic subspace identification 
 

Instead of solving the SVD problem using classical approaches, a new approach called 
Projection Approximation Subspace Tracking (PAST) was initially developed by Yang (1995), who 
takes advantage of a mathematical lemma to find the required column subspace as an unconstrained 
optimization problem and try to update the column subspace. The PAST is originally a fast 
dominant-eigenvectors updating algorithm which is based on the following unconstrained cost 
function 
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where ( ) 1z ×ℜ∈ mt  is a random vector. To adapt the solution to a Recursive Least Square (RLS) 
approach, an “approximation” is introduced 

( ) ( ) ( )kkk H z1h −= W                           (5) 

which replace ( ) ( )ktH zW , and the assumption under this approximation is that the signal 
subspace is slow varying comparing to the sampling rate of data point. With this assumption, since 
the dominant subspace ( )1−kHW  is already known from the previous step k-1, the original cost 
function is converted to a quadratic criterion 
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which is a typical optimization function in Least Square problems and can be minimized by 

( ) ( ) ( ) ( )tttt hzh
1−=′= CCUW                      (7) 

where Czh is the covariance matrix formed by z(k) and h(k) 
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Thus, when there is a new incoming data at instant t, the matrix inversion lemma can be applied 
to Eq. (7) and the well-known RLS algorithm can be easily derived for updating W(t). 

  In output-only SSI, the input source kuB  is unknown, and assumed to be a stationary and 
spatially white noise. For this type of noise, it was proved in (Söderström and Stoica 1989) that the 
normal least square formulation will lead to a biased solution and it is not appropriate to handle 
this type of problem; instead, an Extended Instrumental Variable (EIV) approach must be used. 
The word “Extended” means that to solve the ill-conditioned for the inversion of cross-covariance 
matrix and to obtain a stable condition in the inversion process. The cost function to be minimized 
can be replaced by its corresponding EIV formulation 
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where the subscript F denotes the Frobenius norm defined as ( )Htr σσ . ( )tzξC  and ( )thξC  are 
defined as follows 
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The least square solution of (8) is readily found to be 

                  ( ) ( ) ( ) ( ) ( ) ( )[ ] 1−
=′= tttttt T

hh
T
hzEIV ξξξξ CCCCUW                  (9) 

The effect of the extra-added Frobenius norm, which is able to fulfill the need of Recursive 
Least Square (RLS) via matrix inversion lemma, is applied in EIV-PAST. 
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4. Application of EIV-PAST to RSSI-COV 
 

Let the random vector z(t) in EIV-PAST formulation be replaced by the corresponding data 
1y ×+ ℜ∈ il

k ; on the other side, the substitution of the instrument ( )tξ  is evidently ilT
k

×− ℜ∈ 1y . For 
convenience in notation, a new variable s = 2i – 1 is introduced. EIV Solution to the cost function 
will become 
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where ( ) ( ) +−+=+ k
H sksk y1h W  is the above mentioned approximation, and
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The dominant eigenvectors can be found by 
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It is derived to update the dominant eigenvectors of the covariance matrix. 
However, the SVD of a Hankel Covariance matrix is defined as 
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where U and V are orthonormal matrices, S is a diagonal matrix containing the singular values. 
Since 

Tcovcov HH  can also be expressed as 

( ) ( ) 1covcov −=== USSUUSSUUVSUSVHH TTTTTTT
             (13) 

which indicated that U can also be obtained from the ED of the Hankel Covariance matrix 
multiplied by its transpose. From the relationships shown above, the desired observability matrix 
Oi is the same as the column subspace U1 extracted from Hankel Covariance matrix using SVD. 
Hence, the so-called Extended Instrumental Variable Recursive Least Square (EIV-RLS) algorithm 
can be applied to solve the EIV-PAST problem, which fulfills the SVD-updating requirement of 
RSSI-COV to track the time-varying subspace U1(t). The explicit formulas to be implemented in 
RSSI-COV are shown below. Complete derivation of these formulas of EIV-RLS algorithm can be 
found in (Söderström and Stoica 1989), and listed as follows: 

(1)  From an initial SVD one can initialize the recursive algorithm with U1(t), P(t) and tH  

( ) t
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(2)  Given a new incoming data vector 1+ty , U1(t+1), P(t+1), and using the following algorithm 
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Then 1+tH  and 1+tH  can be updated. 
The use of moving window technique implies the same procedure shown above has to be done 

twice for each new incoming data: after adding the new incoming data (up-dating), the oldest data 
has to be subtracted from the moving window (down-dating). The same formulas can be applied 
for updating by setting forgetting factor equal to one, meanwhile several sign changes in the last 
four formulas. 

 
 

5. Recursive singular spectrum analysis (RSSA) 
 

SSA is a novel non-parametric technique used in the analysis of time series based on multivariate 
statistics. This method was firstly applied to extract tendencies and harmonic components in 
meteorological and geophysical time series (Alonso et al. 2005). Except the extraction of tendency, 
SSA can be applied to eliminate noise effect, or to detect the singularities, e.g., to extract structural 
residual deformation (Loh et al. 2010). Basically, this method is capable of decomposing the 
original series into a summation of principal components, so that each component in this sum can be 
identified as a tendency, periodic components (stationary), non-stationary signal or noise. The SSA 
procedure starts from: (1) Embedding, (2) Singular Value Decomposition, (3) The plot of the 
singular values in descending order is called the singular spectrum and is essential in deciding the 
index from where to truncate the summation, (4) Grouping. To be able to apply SSA in online 
filtering of vibration measurements, an on-line version of the algorithm that describe the current 
structure at each time instant is required. For subspace-based algorithms, the moving window 
approach is adopted and the number of block rows i’ is kept constant, meanwhile a new data point 
is appended as a new column to the moving window Hankel matrix 
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where ( ) KilN ×ℜ∈X , l is the number of sensors, i’ is the sliding window vector order, i.e., number 
of block rows of the Hankel data matrix; L’ is the length of moving window, K=L’–i’+1 is the 
number of columns, with K > i’. 

By applying SVD to the Hankel data matrix ( )1+NX , the left singular vectors U can be 
computed via Eigen-Decomposition (ED) of the covariance of sliding window vectors 
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where CSSA(N+1) is the covariance matrix of the sliding window vector XN-L’+i’+j. Since the 
eigenvectors of the covariance matrix CSSA(N+1) correspond to the desired column subspace, this 
is actually a typical rank-two modification of the symmetric eigen-problem. The above-mentioned 
projection approximation subspace tracking (PAST) algorithm is suitable to be implement to rSSA, 
because it is able to update in a recursive fashion the dominant eigenvectors of the signal 
covariance CSSA(N+1), i.e., the subspace of X(N+1). 

The PAST is a fast dominant eigenvector updating algorithm. To conduct the rSSA the cost 
function can be defined as 
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By introducing the same approximation, ( ) ( ) k
H kk X1h −=′ W , the original cost function 

is converted into a quadratic criterion 
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This became a typical optimization function in Least Square problems which can be minimized 
by 
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where hXSSA ′,C  is the covariance matrix formed by the sliding window vector Xk and ( )kh′ , and 

hSSA ′,C  is the covariance matrix formed by ( )kh′  and ( )kh′ T 
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When the matrix inversion lemma is applied to (19), the well-known RLS algorithm can be 
easily derived. The procedures are listed as follows: 

(1)  From the initial SVD the recursive algorithm can be initialized with ( )N1U′ , later  
)(, NhSSA ′C  and ( )NP′  can be computed 
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( ) ( )[ ] ( ) ( )[ ]TTT
hSSA NNNNN XUXUC 11, )( ′′=′               (21a) 

( ) 1
, )]([ −

′=′ NN hSSACP                        (21b) 

(2)  Given a new incoming sliding window vector XN+1, ( )11 +′ NTU , ( )1+′ NP  and ( )1h +′ N  
can be updated using the following algorithm 
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Therefore, after the column subspace ( )11 +′ NU  is updated, the filtered sliding window vector 
1X~ +N  can be computed by the projection 

( ) ( ) 1111 X11X~ ++ +′+′= N
T

N NN UU                  (23) 

where 
1

~
+NX  is the reconstructed data vector. Hence, for each new incoming data, a new vector 

column XN+1 is appended, the column subspace is updated to ( )11 +′ NU , and the reconstructed 
data vector 

1
~

+NX  can be obtained by procedure shown above. Finally, elements of the same 
time instant in Hankel data matrix (in the anti-diagonal direction) are averaged to reconstruct the 
signal 

   

(24)

 
6. Application of rSSA-RSSI-COV method to bridge scouring monitoring 
 

From experimental study, consider a four span bridge with its steel decks simply supported on 
three cylindrical piers as shown in Fig. 1. The piers are buried with 30 cm of depth and confined 
by coarse sand. The goal of the experiment is to monitor the state of the bridge under continuous 
scouring, and to extract its vibrating features directly using output-only vibration measurements 
which allow for early warning of the pier settlement or failure of the bridge foundation as well as 
to locate damage. In order to create a local damage caused by scouring at a single bridge pier, 
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(a) A schematic diagram of the test flume which shows the location of sensors and the 
dimension of the test flume 

(b) Model structure during the scouring test in 
the large flume (c) Model structure after the scouring test 

Fig. 1 
 
 
brick wall was used in flume bed so as to enhance the bridge scouring at a single bridge pier. Fig. 
1(c) shows the final state of the bridge pier after scouring test. A total of twelve VSE-15D velocity 
sensors (Tokyo Sokushin Corporation) as well as twelve acceleration sensors (AS-2000) were 
installed uniformly in the longitudinal direction and along the center line of the deck, as shown in 
Fig. 1. To analyze the vibration data from the measurement of the bridge under scouring test, the 
time-varying modal frequencies will be extracted along time axis to identify the abnormal change 
of the bridge system natural frequencies. Not only the rSSA-SSI-COV algorithm will be the main 
tool to carry out this analysis, but also the RSSI-COV algorithm is applied for comparison 
purpose. 

In this study all the acceleration data from twelve sensors was used simultaneously. The 
acceleration data was filtered in the field by an analog band-pass filter having its plateau zone in 
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Fig. 2 (a) Singular spectrum for different choices of singular values in rSSA, (b)~(e): Distribution of singular 

spectrum in SSI-COV analysis by using different number of singular spectrum from rSSA 
 

Table 1 Model parameters for rSSA-SSI-COV and RSSI-COV analysis from the 2011/03/29 test 

Parameter 
rSSA-SSI-COV 

RSSI-COV used alone 
rSSA RSSI-COV 

Window length L’ = 3000 points L = 5000 points L = 5000 points 
Block rows i’ = 100 i = 80 i = 100 

Order First 45 singular values First 44 singular values First 46 singular values
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Fig. 3 Evolution of bridge modal frequencies traced by both (a) RSSI-COV and (b) rSSA-SSI-COV, 
applying stability criterion, test conducted in 2011/03/29 measured by accelerometers 

 
 
the frequency response function between 0.02 Hz and 50 Hz. To apply the SSA the order must be 
determined in advance. The singular spectrum was first constructed using the initial data set. Fig. 
2(a) shows the distribution of the singular spectrum from the test data of 2011/03/29. Using 
different order chosen from SSA, the singular spectrum constructed in SSI-COV was generated. It 
is proved that the subspace order selected from SSA which shows the appearance of a jump in the 
distribution of singular spectrum of SSI-COV can lead to a better choice of for the system order. 
Fig. 2(b) to Fig. 2(e) show the constructed singular spectrum from SSI-COV by using the 
reconstructed data using different singular value of SSA (from Fig. 2(a)). From these figures it is 
observed that a clear jump appears at 44 SV in the singular value distribution of SSI-COV analysis 
by using 45 SV chosen from SSA (as shown in Fig. 2(c)). However, the jump becomes more clear 
with less SV be chosen from SSA. To be conservative and try to identify all the excited modes, the 
order shown in Fig. 2(c) is chosen. The model parameters for rSSA-SSI-COV are shown in Table 
1. 

Fig. 3 shows a comparison between the outcome of using RSSI-COV and rSSA-SSI-COV with 
the same stability criteria. Evidently the addition of rSSA to determine the system order before 

29



 
 
 
 
 
 

Chin-Hsiung Loh and Yi-Cheng Liu 

adopting RSSI-COV can enhance the tracking capability and stability. The pattern shown in the 
time-frequency plot indicated that the water head arrivals at about 860 seconds, after that the 
modal frequencies slowly decrease until the occurrence of the first settlement of the bridge pier 
which occurred at 5057 seconds. 

A close picture was taken to the identified traces between 4500 and 5500 seconds, as shown in 
Fig. 4. The 4th mode appears at about 4650 seconds and decreases rapidly at about 4950 seconds. 
At the same moment in which the traces of the 1st and 2nd mode modal frequency are almost 
completely lost. This indicates that there is a very unstable dynamic behaviour before the 1st 
settlement which occurs at 5057 seconds. This phenomenon together with the fast decrement of the 
4th mode constitutes a good indicator to identify the imminent bridge settlement. During the time 
period with successive settlements between 5057 and about 6000 seconds, the traces of modal 
frequencies are also very diversified and the reduction in 3rd modal frequency is evident. However, 
after 6000 seconds the modal frequencies slowly increase because the decks are getting stuck each 
other. 

A close look on the identified time-varying system frequencies, as also shown in Fig. 4, there 
are about two identified frequency traces for 3rd mode, three traces for 2nd mode and about six 
traces for 1st mode. All are very close one to another. These closely-spaced frequencies also 
indicate the time varying characteristic of the bridge natural frequencies under the scouring test. 

 
 

7. Damage location indicator: mode shape slope ratio 
 

The curvature of mode shape has been widely used to figure out the damage location by many 
researches. Larger curvature can be identified at node where the loss of stiffness loss occurred. 
Since the mode shape is a relative quantity which can be scaled arbitrary, however, the mode 
shape curvature is not independent of the scaling criteria and consequently, therefore the 
 
 

Fig. 4 Zoom in from Fig. 3(b) from time scale of 4500 sec to 5500 sec 
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Fig. 5(a) Plot of 1st mode shape slope ratio and the identified time-varying system natural frequency from the 
2011/03/29 test 

Fig. 5(b) Plot of the 2st mode shape slope ratio and the identified time-varying system natural frequency 
from the 2011/03/29 test 

 

Fig. 5 (c) Plot of the 3rd mode shape slope ratio and the identified system natural frequency from the
2011/03/29 test 
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identification of damage location depends on how one scale the mode shape. 
Taking into account of this fact, the curvature of the mode shape can be modified to a quantity 

which is independent of scaling. To cancel out arbitrary scaling, ratio between two consecutive 
slopes can be used to replace the rate of change of the slope of mode shape. Moreover, sign of the 
curvature indicates the concavity, and from the identified mode shapes the sign changes introduced 
in the concavity due to imperfection in the shape could make it difficult to identify the damage 
location. To avoid all these inconveniences, a new damage indicator defined as the mode shape 
slope ratio is presented: 

 

where mi is the slope of the ith discrete segment of the smoothed interpolated mode shape. 
By defining the slope ratio in this way, the sign problem can be avoided, and the resultant slope 

ratio will only reflect how big the slope change at a given point. However, at the peak point of the 
mode shape where the slope sign changes, the 3rd criterion can be applied by taking an average of 
the adjacent slope ratios. Finally, to avoid the disproportionate increment in slope ratio comparing 
to the others, when slope in the divisor is near zero, a base 10 logarithm can be applied to the slope 
ratio. For the implementation, the computed mode shapes can be smoothed by curve fitting and 
interpolated with a spline function, and then sampled at 52 points to obtain 50 slope ratios along 
the bridge. 

Based on the identified mode shapes (smoothed) from online identification, Figs. 5(a) and (b) 
show the mode shape slope change of the 1st and 2nd modes. The y-axis of Fig. 5 indicates the 
spatial distance along the bridge deck, and the x-axis is the time. 

From this figure it is observed that the zone with higher slope ratio become wider after 1000 
seconds, indicating that the system begins to be changed. Initially the peak is located at the center 
of the bridge which is expected for a 1st mode shape; while the scouring depth become deeper and 
deeper, the peak moves from the location at 300 cm to 250 cm, specially between 5000 and 5500 
seconds as that shown in Fig.5(a). The moment which corresponds to the imminent pier settlemen, 
precisely the pier 3 is located at 325 cm. 

The 2nd mode shape slope ratio is shown in Fig. 5(b). Two peaks exist in the 2nd mode shape as 
expected. Although the 2nd peak is located at 325 cm (pier 3 location), but it does not change at all 
along the time history, otherwise, the second peak located at 200 cm which is almost disappeared 
100 cm at about 5500 seconds. Therefore, the 2nd mode shape is not appropriate to identify the 
damage location in the bridge, but the drastic change of the 2st peak position is also an indicator of 
imminent pier settlement. Same situation was also observed for 3rd mode, as shown in Fig. 5(c). 
 
 
8. Conclusions 
 

The on-line system parameter estimation technique from output-only measurements is 
developed through using Covariance Driven Recursive Stochastic Subspace identification 
(RSSI-COV). To update the SVD through recursive analysis, Extended Instrumental Variable 
version of Projection Approximation Subspace Tracking algorithm (EIV-PAST) was adapted for 
this purpose. In order to have a stable result on identification, the recursive Singular Spectrum 
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Analysis (rSSA) algorithm which used the PAST concept is proposed as a data pre-processing filter 
before conducting the RSSI-COV for identification. To verify the effectiveness on using the rSSA 
as a data pre-processing tool, both RSSI-COV and rSSA-SSI-COV are applied to the experimental 
study of a bridge during scouring monitoring. Several conclusions were obtained from this study: 

 
(1) In applying the RSSI-COV for online system identification, the tracking stability increases 

with the longer window length. But this does not affect the computation time, however, the 
longer the window length is used the more delay time will be encountered to detect system 
change is observed. 

(2) The pre-subspace filtering using recursive SSA can enhance the tracking stability and allows 
tracking the time-varying modal information with less system order. From the experimental 
study on bridge scouring test, to observe the change of system natural frequencies, the 
rSSA-SSI-COV algorithm proves to be a very effective way on monitoring the structural 
system with time-varying modal characteristics. 

(3) The proposed mode shapes slope change which was extracted recursively can be used not only 
identify the occurrence time of damage but also can identify the damage location. 
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