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Abstract. This paper reported test of full-scale cables attached with four types of dampers: viscous damper,
passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper.
The logarithmic decrements of the cable with attached dampers were calculated from free vibration time
history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum
damping ratio were derived, which was very important for practical damper design and parameter
optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The
effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically.
Approximate formulations were derived and verified using numerical solutions. The critical values for
non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were
approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively.
The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and
negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated
mass was more effective than negative stiffness for higher vibration modes.

Keywords: stay cable; damper; damping ratio; negative stiffness; concentrated mass

1. Introduction

Stay cables are vulnerable to environmental excitations (Hikami and Shiraishi 1988). Harmful
vibrations can lead to collisions or induce secondary stress for the HDPE sheath near the cable
anchorage. Engineering societies have mainly attributed the reported corrosion and failure of
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high-strength wires of stay cables with a shorter-than-expected life-span to damage in corrosion
protection system.

Throughout the last four decades, bridge engineers have been proposed different measures to
suppress these harmful vibrations. One typical countermeasure is to attach the damper near cable
anchorage to provide additional damping for the cable (Yamaguchi and Fujino 1998). Different
kinds of dampers with varying working mechanisms have been employed to suppress harmful
vibrations. Theoretical studies have also been conducted to explore damping effects. Pacheco et al.
(1993) proposed a “universal design curve” for damper constant optimization. Then, an
approximate closed-form solution was further developed by Krenk (2000) and widely applied in
engineering practice for optimization of linear viscous damper constant. However, each kind of
damper has a specific force—velocity relationship. Non-ideal factors, such as cable bending
stiffness (Tabatabai and Mehrabi 2000, Main and Jones 2007), cable sag (Xu and Yu 1998, Krenk
2002), damper supporter flexibility (Xu and Zhou 2007), damper friction threshold (Main and
Jones 2002a), and damper internal stiffness (Zhou et al. 2014a, b) can affect damping of a cable
with attached damper. Addressing these factors precisely by theoretical analysis alone remains
challenging, as their effects are combined together. These factors are also difficult to quantify
because they are related to boundary conditions or a complex damper/cable working mechanism.
As such, testing a full-scale stay cable with damper is crucial to measuring actual damper
performance. The ratio of the tested damping ratio to the maximum theoretical damping ratio can
be derived from the test; which can then be feedback to optimize damper parameters. This paper
reported full-scale cable tests of four typical kinds of dampers. Factors that could affect damper
performance, especially those may increase the attainable maximum damping ratio, were
addressed theoretically for further damper development.

2. Passive dampers

Different dampers have different working mechanisms. In this paper, four representative kinds
of dampers (viscous damper, magnetorheological (MR) damper, friction damper and high damping
rubber (HDR) damper) were tested with the full-scale cable.

2.1 Viscous damper

The viscous dampers in this test were jointly developed by Tongji University and Shanghai
Materials Research Institute. The ideal damper force is highly dependent on velocity

F (V) = C|Vd HVd (1)

where F, isthe damper force, C is the damping coefficient, & is an exponent that varies from

0.3-1.95 in engineering practices (Lee and Taylor 2001), and V, is damper piston velocity. The
viscous damper will be similar to a friction damper when & =0 (Fig. 1).
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Fig. 1 Schematic force—velocity curve of power—law damper (Main and Jones 2002c)
2.2 MR damper

The tested RD -1005 MR dampers were purchased from Lord Corporation. It is a special type
of damper that contains MR fluid as viscous fluid. It is also a controllable damper as the MR fluid
greatly increases its apparent viscosity when subjected to a magnetic field (Spencer et al. 1997).
Although this damper offers the advantage of semi-active control, it can also be used as a passive
damper for the sake of simplicity.

2.3 Friction damper

The friction damper in this study was provided by VSL International. It translates kinetic
energy into heat by coulomb friction. Compared to the above two dampers with viscous fluid, the
friction damper uses solid materials for energy dissipation. The friction force is unrelated to
velocity; also due to static friction, the friction has a “fuse” force (amplitude, for cable vibration)
to start working.

2.4 HDR damper

The HDR damper in the test was developed in Japan by Sumitomo Rubber Industries. The
HDR damper has the advantage of low sensitivity to temperature, and the optimum damping
coefficient does not vary depending on the vibration frequency (Nakamura et al. 1998). Similar to
friction damper, HDR dampers are highly compact and easy to implement as they are also in a
solid state and can be modularized in applications (Fig. 2).

Fig. 2 HDR damper pad
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3. Full-scale cable test
3.1 Experimental setup and test method

There were three prototype cables tested in three cable factories (Jiangyin Fasten, Shanghai
Pujiang and Liuzhou OVM). The test cases were shown in Table 1. The two cables in Jiangyin
Fasten and Shanghai Pujiang cable factories were identical. Installation locations of viscous
damper, MR damper and friction damper were also the same. The cable parameter and damper
location in Liuzhou OVM were different from the above two cables as listed in Table 2. The tested
results in Jiangyin Fasten and Shanghai Pujiang cable factories were almost the same, so the test
results of the MR damper and friction damper in Jiangyin Fasten cable factory and the viscous
damper in Shanghai Pujiang cable factory were reported in this paper for the sake of simplicity.

The instrument setup of the test in Jiangyin Fasten and Shanghai Pujiang cable factories were
shown in Fig. 3. There were 6 displacement meters installed at the damper location, L/8, L/2,

L/4, 3L/4,and 7L/8 in vertical direction. Five vertically oriented accelerometers were placed
near the damper location, and at L/8, L/2, L/4, L/2; L was cable chord length. One
transversely oriented accelerometer was located at 7L/8. The load cells were connected to

viscous and MR dampers in series during the test; however, there was no load cell for the friction
damper test. The experimental setup in Liuzhou OVM was simple compared to that of the above
two factories. Three displacement meters in vertical direction (at damper location, L/4,and L/2,

respectively) and two accelerometers also in vertical direction (at L/4 and L/2, respectively)

were installed for the HDR damper test in Liuzhou OVM. There was no load cell in series with the
tested damper in Liuzhou OVM too.

Table 1 Test cases

Cable factories Tested dampers

Viscous damper
Jiangyin Fasten MR damper
Friction damper

Viscous damper
Shanghai Pujiang MR damper
Friction damper

Liuzhou OVM HDR damper

Table 2 Parameters of the full-scale cables

Natural frequency

Cable Tension Cable . (Hz)

Location length ?t/{)e;s)s force type D(l;rrnne)ter
(m) (kN) (PWS) 15t ond 3rd
(éﬁgg-‘f:i) 215.58 1061 395580  @7x151 113 0658 1316 1974

Liuzhou 168.25 4.71 2731 D7x85 87 0.928 1.856 2.784
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Fig. 3 Experimental setup (Jiangyin and Shanghai)

(b) Viscous damper (Shanghai)
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(f) HDR damper (Liuzhou)
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(e) Friction damper (Jiaﬁgyin)
Fig. 4 Full-scale cable test
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The tested four types of dampers are shown in Fig. 4. The installation position of viscous
damper, MR damper and friction damper was 5.0 m from the anchorage (l,/L =2.32%, |, is
distance from the damper location to the nearest cable end). The two viscous dampers (Fig. 4(b))
were placed on the cable at an angle of 60° to suppress vertical and transversal cable vibrations;
while the two MR dampers (Fig. 4(d)) were placed on the cable at an angle of 45°. The voltages
applied to the MR dampers ranged from 0.0 V (no voltage applied), 3.0V, 6.0V, 9.0V and 12.0V,
respectively (Zhou and Sun 2013). The tested friction damper included four friction pads (Fig.
4(e)), which were attached to the steel plate by high-precision bolts. The friction force could be
adjusted by loosening or tightening the bolts (Fig. 4(e)). The damping force of the friction damper
was set to 2000N and 2500N (Zhou et al. 2006). A pair of HDR dampers was used in the full-scale
cable test (Fig. 4(f)). The installation position of HDR dampers was 6.73 m from the cable

anchorage (1, /L =4.00%).

The full-scale cable could be easily excited by human excitation at the anti-node of the
vibration mode shape with the frequency tuned to the cable frequency. The location of human
excitation was L/2 for the first and the third modes, L/4 for the second mode. When the

vertical vibration amplitude reached to the designated value, the excitation was stopped and then
the cable continued to decay freely. The free decay time history of the vertical vibration was

recorded and the logarithmic decrement of the cable 5; could be estimated using the following

formula (Clough and Penzien 2003)
o1 -
S, =— IH(MJ 2)

b Aa+b/2

where A, ,, A, are the double amplitude of the (a—b/2)th and the (a-1-b/2)th period of

oscillation, respectively, and 5; denotes the logarithmic decrement corresponding to A, (i.e.,

the double amplitude of the a™ period). In this paper, the data was processed using b =20 for
those cases with dampers and 100~300 for free cable. As the damping value of the cable
before/after damper installation is very small, the corresponding modal damping ratio of the cable

&, could be estimated (Clough and Penzien 2003)

&~ —6, 3)

3.2 Damping and frequency of free cable

Fig. 5 shows the first mode free vibration decay and the calculated logarithmic decrement of
free cable in Shanghai Pujiang cable factory. Table 3 lists the first three mode vibration frequencies
using Fast Fourier Transform from free vibration decay of the free cable. The mean logarithmic
decrements for the first three modes of free cable were also listed in Table 3. It was found that the
tested damping of free cable was very small, about 0.0112 in mean logarithmic decrement value
for the first mode, and even lower for the second and the third modes. The internal damping of the
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Fig. 5 Test results of the free cable (first mode)

Table 3 Measured frequency and mean logarithmic decrement of the free cable

Mode No. 1% 2ne 3t

Frequency (Hz)* 0.653 (-0.73%) 1.294 (-1.70%) 1.940(-1.75%)

Logarithmic decrement 0.0112 0.0021 0.0014
(Mean value)

*in bracket is the difference between measured and calculated frequency

cable is thus ignored in the following analysis. The measured frequencies of free cable were very
close to the predicted ones based on the taut string assumptions (Irvine 1981).

3.3 Tested mechanical behavior of viscous and MR dampers

The force—velocity relations of the viscous damper and MR damper (input voltage of 6.0V) in
the first mode of vibration were shown in Figs. 6(a) and 6(b), respectively. Fig. 6(a) showed force—
velocity relation of the viscous damper was nonlinear; the force increased much more quickly
when the velocity was small. The force—velocity relationship in Fig. 6(a) was also scattered in a
particular area, indicating that the viscous damper provided elastic restore force component. Fig.
6(b) showed the force—velocity relationship of the MR damper at an input voltage of 6.0V. The
force obviously increased faster than that of the viscous damper at a lower velocity, but the force
did not increase when it reached about 2000N. The elastic restore force component also appeared
in the force-velocity curve of the MR damper, especially at lower velocities as the force—velocity
dots were clustered in a certain area as shown in Fig. 6(b).
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Fig. 6 Tested force—velocity data of damper (first mode)
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3.4 Tested logarithmic decrement

Figs. 7-10 showed the tested logarithmic decrement of the cable attached with four different
dampers derived from the free decay of the first and the second modes, respectively. Logarithmic
decrement values corresponding to double amplitude lower than 10 mm were considered not to be
reliable, as the effects of a small gap and friction became significant for small-amplitude vibration.
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Fig. 7 Tested logarithmic decrement of full-scale cable attached with viscous dampers
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Fig. 10 Tested logarithmic decrement of full-scale cable attached with HDR damper

Fig. 7 showed the logarithmic decrement of the cable attached with viscous dampers for the
first mode and the second mode. The logarithmic decrement of the first mode decreased gradually
as the amplitude decreased. It reached a maximum of approximately 0.05 when the double
amplitude was around 100 mm. The logarithmic decrement of the second mode increased firstly as
the amplitude decreased, then reached a maximum value and began decreasing again. The
maximum logarithmic decrement of the second mode was about 0.05 when the double amplitude
was around 50 mm. It should be noted that similar phenomenon was found for the logarithmic
decrement of the third mode in the test.

Fig. 8 depicted the MR-damped cable with 6.0V voltage for the first mode and second mode.
The logarithmic decrements of the first mode and the second mode were larger than 0.04 when the
double amplitude was around 10mm. The first mode logarithmic decrement decreased to a
minimum value and then increased again as the vibration amplitude decreased. The minimum
logarithmic decrement of the first mode was approximately 0.03 when the double amplitude was
around 70mm. The logarithmic decrement of the second mode decreased firstly as the amplitude
increased, then reached a minimum value and began to increase again, eventually reached a
maximum value and then once again decreased with increasing amplitude. The minimum
logarithmic decrement of the second mode was approximately 0.02 when the double amplitude
was around 40 mm. The maximum logarithmic decrement of the second mode was approximately
0.05 when the double amplitude was around 90 mm. It was also found that the logarithmic of the
third mode had similar phenomenon.

Fig. 9 showed the tested logarithmic decrement of the cable with an attached friction damper
for the first mode and second mode. As amplitude decreased, the logarithmic decrement of the first
mode increased firstly and reached a maximum value of approximately 0.075 at double amplitude
around 45 mm, then decreased sharply as the amplitude continued decreasing to the “stop”
amplitude. This “stop” amplitude corresponded to the static friction force that locked the cable.
Then the friction damper did not work, and the rest of the cable vibrated with a damping value the
same as that of the free cable. The logarithmic decrement and amplitude curves were similar for
the second mode except that the maximum logarithmic decrement of the second mode was
approximately 0.07 when the double amplitude was around 40 mm.

The logarithmic decrement of the cable attached with HDR damper (Fig. 10) tended to increase
first as the amplitude decreased for the first mode and the second mode, and then the logarithmic
decrement decreased as the amplitude decreased. The logarithmic decrement of the first mode
reached a maximum of approximately 0.04 when the double amplitude was around 50 mm. The
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logarithmic decrement of the second mode was similar to that of the first mode, however, the
maximum logarithmic reached a maximum of approximately 0.04 when the double amplitude was
around 30 mm.

The above test results indicated the dependence of damping on amplitude due to the effects of
nonlinearity (Main and Jones 2002c). It also showed that the tested maximum logarithmic
decrement was lower than the theoretical maximum logarithmic decrement. To compare damper
performance, the damper efficiency ratio was defined as the mean logarithmic decrement to the
maximum theoretical logarithmic decrement. And the attainable maximum theoretical logarithmic

decrement O, was calculated using the following formula (Krenk 2000)

5max ~ 27z-§max ~ ﬂ.ll/L (4)
Where & is the maximum theoretical damping ratio of the cable attached with linear damper.
The damper efficiency ratio } was calculated using the following formula (Zhou 2005)
S, S,
=y _—m 5)
5max T Il / L

where 5,'“ is the measured mean logarithmic decrement of the cable attached with the damper.
For the same installation location of viscous damper, MR damper, and friction damper (I, /L =
0.023), 8, is about 0.072. For the installation location of the HDR damper (/L = 0.040),
0, is about 0.126.

max

Table 4 Mean logarithmic decrement values and efficiency ratios

Mean logarithmic

Passive dampers Mode No. d Efficiency ratio
ecrement value
1 0.045 0.63
Viscous damper 2n 0.038 0.53
31 0.042 0.58
1 0.043 0.65
MR damper (6.0V) 2 0.041 0.57
31 0.041 0.58
I 0.043 (0~1.00)
Friction damper 2 0.033 (0~0.92)
31 0.028 (0~0.60)
1% 0.042 0.33
HDR damper PA 0.037 0.29

3rd 0.034 0.27
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Table 4 listed the mean logarithmic decrements of the first three modes of the cable attached
with dampers and the corresponding efficiency ratios. The mean logarithmic decrement was larger
than 0.03 for most tested cases. The friction damper was an exception because of its unique
working mechanism, which will stopped operating when the vibration amplitude was below the
“threshold” value. The efficiency ratio was approximately 0.6 for viscous damper and passive MR
damper. The HDR damper was inferior to the others with an efficiency ratio of about 0.3; however,
it was still acceptable as the mean logarithmic decrement was larger than 0.03 for the first three
modes.

The test results show that many non-ideal factors can affect passive damper performance in
engineering applications, some of which may reduce damper performance, especially in terms of
stiffness observed in the force-velocity relation (Zhou et al. 2014a, b). Therefore, some researchers
have proposed installing viscous damper with negative stiffness spring to improve damping
performance (Chen et al. 2015, Zhou and Li 2016, Shi et al. 2016). While recent investigation
shown that the effects of concentrated mass exert similar damping improvement effects as negative
stiffness (Lazar et al. 2016, Lu et al. 2017, Zhou et al. 2018). The effects of the two factors will be
discussed in the following section.

4. Effects of negative stiffness and concentrated mass
4.1 Dynamic formulation

Fig. 11 shows a taut cable with an attached damper with a concentrated mass and negative
stiffness spring. The cable tension force is T and the mass per unit length of the cableis m. M is
the concentrated mass and |, =L—1, —K is the negative stiffness and K >0, the damper is

assumed as linear with damping coefficient C. The effects of cable sag are small for most of
cables and therefore were ignored.

The free vibration equation of the cable system in the transverse direction can be expressed as
follows (Irvine 1981, Main and Jones 2002b)

mazyggpat)ﬂ azyap(xzpat) ©
XP

where yp(xp,t) is the transverse displacement of the cable at point X,, and X, is the

p b
coordinate along the cable chord axis in the pth segment ( P <2). To solve Eq. (6) under

boundary, continuity and equilibrium conditions, and a distinct solution over the two cable
segments is assumed to exist for this the form (Main and Jones 2002b)

yp(xp’r):Yp(Xp)eh (7

where the non-dimensional time 7=t , and @, =7r/ LyT/m; A is a dimensionless

eigenvalue that is generally complex. A can be expressed as follows (Main and Jones 2002b)
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i I m N T

Fig. 11 Taut cable with attached damper, concentrated mass and negative stiffness spring

h=2erifing )=arip ®

@y,

Where & the modal damping ratio, @ is the modulus of the dimensional eigenvalue. [ is the

non-dimensional frequency and 1 =+/—1 is the imaginary unit number.
By substituting Eq. (7) into Eq. (6), the following equation can be obtained
d 2y (X ) A 2
d; 2 = (Tj Yp(xp) )

p

Assuming the equation of mode shape (Main and Jones 2002b)
sinh(;z/i Xp/L) “C cosh(;zﬂ, Xp/L)

Y = 10
p(Xp) P sinhiﬁ/ﬂp/Li P coshiﬂﬂlp/Li (10)

where B, and C, are complex parameters, and u,=rl, / L are the non-dimensional cable

segment lengths.
The displacement boundary conditions at the cable ends, displacement compatibility equation
and the force equilibrium equation at the damper location are

y,(x, =0,7)=0,p=12 (11a)
y1(|17r)= y2(|2,T) (11b)
2
T 071 G =—ky,| _ +c% +May21 (11c)
axl X =h axz Xy =l, e at x =l axl X, =

By substituting Eq. (7) and Eq. (10) into Eq. (11) the following equations are derived
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C,=C,=0 (12a)
B,+C,—B, =0 (12b)
|7+ 02+ 92 + 2 coth (14,4)B, + A coth (1,4)B, =0 (12¢)

where the non-dimensional mass coefficient is ¢ = 7M / (mL), the non-dimensional damping

constantis 7 = C/ AJTm and the non-dimensional negative stiffness constant is —y = —kL/#T .
Eq. (12) can be transformed into matrix form

H® =0 (13)

Where H is the complex matrix

1 1
= 14
L y+nA+¢2 + Acoth(l,) Acoth(T,) (14
where I') = 7l b / L and @ is the corresponding complex vector
®=[B B,[ (15)

The infinite set of nontrivial solutions (@ # 0) means that det( H)=0 and the characteristic
polynomial is

Asinh(T)+ |- 7 + 4 + g2 Jsinh(T )sinh(T, )= 0 (16)

4.2 Approximate formulations

When the damper, negative stiffness spring and concentrated mass are near the cable end and
the change in the eigenvalue A induced by the damper, spring and concentrated mass is small,
the approximate relationships can be found (Main and Jones 2002b, Zhou et al. 2014b) for the
damping ratio and non-dimensional frequency

=Y
| /L)=E,  — "
‘fn/(l/ ) mk 1+(Ekaﬂ.2)2 (173)
B, = |’l+l772/v‘13n3 _ﬂlzn[l_ﬂ1(7+¢n2)K7/+¢nz)
R Y S L

where the non-dimensional damper parameter grouping is x =nzl, / (Lﬂ) , N is the mode number.

(17b)

The factor that considers the effects of the concentrated mass and the negative stiffness spring is:

1

E. = . 18
C -y ) 1o
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The maximum damping and corresponding non-dimensional damping constant can be derived
from Eq. (17a)

1
‘fn,max/(ll/L) = E Emk (19)

Mopt = L/ (7 NE ) (20)

Figs. 12(a) and 12 (b) show a comparison of the numerical and approximate solutions for the
maximum damping ratio for the first three modes when the damper position is |, / L =0.02 and the
non-dimensional concentrated mass and negative stiffness coefficient change from 0 to 1,

respectively. The ratio ggf }?lax / 00 and §0’7 / 0 can evaluate the effects of ¢ and y,

n,max n,max n,max

respectively, where ggf }gax and rfo’y are the N" mode maximum damping ratio for different

n,max
0,0 . . . .
values of ¢ and y, and &, . is the maximum damping ratio when ¢=0, y=0 for the
th
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24 = s 11
1% mode, Mumerical solution — 1" mode, Numerical solutan
22} === 2" mode, Numerical soluion 1 R '_
] - + 2™ mode, Numerical solution
37" mode. Numerical sslution ¥ 1.08H -~ 3™ mode, Numencal soluton
2 ° 1" mode. Approdme soluson 3 © 1" mode, Approxmate solution
H 2™ mode. Approximale soluion ¥ - 2% mods, Approsimate solution _+
& 18| ¥'moseAspraametesohiton o 1 o £ 108f + 59 moe. soproumae solobon P o
“-.H ‘:\: "-"
s E 16 - E el
xF - 5104 G
" ¥ 3
14 . o ] r.‘_’_‘_,..o
12 ot = =X 102 _._‘_.q
I T e
R e o oo o go oee—eo0 N
0 0 04 06 08 1 0 0.2 0.4 06 0.8 1
é ¥
(a) Effects of concentrated mass on maximum (b) Effects of negative stiffness on maximum
damping ratio damping ratio
24 24
—— 1" mode, Numerical solution ©  1"mode, Approximate solution 1* mode, Numerical solubon i 2 1" mode, Appronmate solution
20 - — - 2 mode, Numerical solution < 2™ mode, Approimate solution 20} | —— - 2 mode, Numerical solution | % 2 mode, ApproXimate solution
_l\"llu.)_qe.m.!nen_c!_lus_.ol_ _i_ | 3" mode, Numerncal solution | + 3" mode, Approxmate solution
oo o oo o o o . o . 16¢- oo - —6- .
25. 12 -_:5 12
Bl e e e e e B P i bt i 3 P e —H 5 S B e B e
. L e e DT b BT a e e Oy S S e R e 4
S
0 - 0
0 02 04 06 08 1 0 02 0.4 06 08 1
¢ ¥
(c) Effects of concentrated mass on optimum (d) Effects of negative stiffness on optimum
damping constant damping constant

Fig. 12 Maximum damping ratio and optimum damping constant (I, / L =0.02)
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Fig. 12(a) indicates the maximum damping ratio increased in line with the non-dimensional
concentrated mass coefficient. The increase in the maximum damping ratio was nonlinear for
higher modes of vibration, and the maximum damping ratio of the third mode was much higher
than that of the first mode. Fig. 12(b) illustrates that the maximum damping ratio increased when
¥ increased; however, in contrast to the effects of the non-dimensional concentrated mass
coefficient, the maximum damping ratio of the first three modes were almost identical as Eq. (18)
shows the effects of non-dimensional negative stiffness is independent from the mode number.

Figs. 12(c) and 12(d) indicated that the non-dimensional optimal damping coefficient
corresponding to the maximum damping ratio decreased with an increase in ¢ and y ,
respectively. The non-dimensional optimal damping coefficient also decreased when the mode
number increased, as Eq. (20) shows the mode number in the denominator.

Figs. 12(a) and 12(b) show ff 0 and f:,’éax increase with increase in ¢ and y for the

first three modes, respectively. The approximate formulation could accurately predict the
maximum damping ratio for ¢ and y when they were smaller than 1.0. Figs. 12(a) and 12(b)
also show a distinction that the factor of concentrated mass on maximum damping ratio was
multiplied by n* as indicated in Eq. (18), while the negative stiffness has no such factor. The
difference between the numerical and approximate optimum damper coefficient of the third mode
became increasingly obvious as indicated in Fig. 12(c), especially when ¢ approached 1.0.
However, Fig. 12(d) shows the numerical and approximate optimum damper coefficient of the
third mode were in good agreement.

4.3 Critical negative stiffness and concentrated mass coefficient

The above show that negative stiffness and concentrated mass could both increase the damping
of a taut cable with an attached damper; however, the results are based on an assumption of small
frequency change. The critical values of negative stiffness and concentrated mass could be
deduced from Eq. (17(b)) when 77 =0

I +¢n’
panh sl )2 n @1)
L 1=y + )
When the system frequency is reduced to zero, then S, =0 in Eq. (21), and the following Eq.
(22) can be derived

crit ~ #L (223)
L+l
L 1
- — 22b
¢cr|t L+ I1 ﬂan ( )

Fig. 13(a) shows the numerical and approximate solutions of the non-dimensional first mode
frequency /3, decreased as y increased, the approximate formulation could accurately predict

the numerical results y <10, it also roughly predicted that 3, decreased to zero when » was
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Fig. 13 Non-dimensional first mode frequency with increasing concentrated mass coefficient and
negative stiffness constant ( |1 / L =0.02)

around 15.6, 16.4, respectively. It should be noted that the frequency of cable with concentrated
mass will not reach to zero. Fig. 13(b) shows modal crossover phenomena (Zhou et al. 2018) for

the first and the second mode when 77,, =6.3 and ¢ ~15.1 from numerical solution, while the

approximate solution (Eq. 22(b)) indicated the critical ¢ was around 15.6. It was found that the
Eq. 22(b) could roughly predict this critical ¢ as it corresponding to one solution branch with

significant lower damping compared to the other. Anyway, the above shows there are critical
negative stiffness and concentrated mass and Eq. (22) can roughly predict the critical value as it
was based on the assumption of small frequency shifts.

5. Conclusions

This paper reported tests of full-scale cable with four different types of passive dampers. The
logarithmic decrements of the cable with the damper were calculated from the free vibration time
histories. The damper efficiency ratio was derived based on the test results. The effects of
concentrated mass and negative stiffness on the damping performance were discussed and
compared theoretically. It was found that:

e The tested damping of the cable with a damper was always lower than the theoretical

damping due to the effects of stiffness. The non-ideal stiffness may introduce from different

mechanism: the damper itself due to compression of viscous fluid, air chamber in the damper
or supporter flexibility.

e The tested damping of the cable with a non-linear damper was strongly related to the cable

vibration amplitude. An extreme example was the cable with friction damper: the highest

damping reached the theoretical maximum and the lowest damping was the same as that of the
free cable.

e The efficiency ratios of the tested viscous damper, passive-on MR damper, HDR damper

were approximately 0.6, 0.6 and 0.3, respectively. The efficiency ratio of the friction damper

was between 0—1.0 due to the special working mechanism.
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e Negative stiffness and concentrated mass could both increase damper performance. The
effects of concentrated mass are different from each mode as the factor contains the square of
the mode number, whereas the effects of negative stiffness are independent from the mode
number.

e The proposed approximate formula can accurately predict damping behavior when ¢ and
¥ are smaller than 1.0 for lower mode of vibration. There are critical ¢ and ) values
and the proposed equation can roughly predict these values.
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