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Abstract. Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully 
attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a 
mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is 
investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined 
envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited 
part of the previously measured torsional vibration signal at the tip of blade is decomposed through the 
Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to 
represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is 
obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated 
envelope process. The proposed online flutter monitoring method provided a practical and direct way to 
detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model 
for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 
50 3-D Bernoulli-Euler beam elements. 
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1. Introduction 
 

Flutter in wind turbine blades is caused by an unfavorable interaction of aeroelastic, elastic and 

inertial forces, which may lead to major structural failure of the blades. In a steady homogeneous 

wind field the onset of flutter takes place, if the average power absorbed by the structure from the 

self-induced loads exceeds the average power dissipated by the structural damping and other active 

or passive damping mechanism mounted on the structure. Classical flutter of a beam-like structure 

such as wind turbine blades is explained as an unfavourable aerodynamic coupling between 

flapwise and torsional vibrations of the blades, and appears in a rapid growth of the amplitudes of 
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the flapwise and torsional motions Politakis (2008), Zhang (2011), Hayat (2016). 

An early example of classical wind turbine flutter has been investigated in a laboratory test 

with a scaled Vertical Axis Wind Turbine (VAWT) model, Popelka (1982). For small Horizontal 

Axis Wind Turbines (HAWT) the critical rotational speed for flutter Ω𝑐𝑟  is known to be 

significantly higher than the nominal rotor speed Ω. The critical rotational speed for flutter of a 20 

KW HAWT with a rotor diameter of 5 m were found to be approximately six times the nominal 

rotor speed, Lobitz et al. (1998). For a 1.5 MW WindPACT wind turbines, the critical rotational 

speed for flutter is about twice the nominal rotor speed, Lobitz (2004). Such wind turbines do not 

experience flutter due to their high torsional angular frequency in comparison to the angular 

eigenfrequency in the critical flapwise bending mode of the blades. Further, studies also show that 

it was the second flapwise mode and the first torsional blade mode which coupled into flutter, 

Lobitz (2004), Hansen (2004). Similar result has also been found for a 5 MW NREL turbine. In 

this case it was shown the third flapwise mode that coupled with the first torsional blade mode, Bir 

(2007), Hansen (2007). Vatne (2011) showed that the critical rotational speed for flutter is found to 

be about 1.6 times the nominal rotor speed for a 10 MW NOWITECH wind turbine. Even though 

classical flutter has not been observed on modern full scale pitch-regulated wind turbines, it is 

believed that with further increase of the magnitude of wind turbines, flutter will become a more 

important design consideration, Zhang (2011). Actually, study on enhancing flutter stability of 

wind turbine blade has been discussed in detail by author in Bei (2016). 

Several studies have been carried out on the stability analysis, especially for the flutter of wind 

turbine blade. Bir (2007) proposed a Multi-blade coordinate transformation (MBC, Johnson (1980)) 

eigenvalue analysis. This approach involves a linearization of the structural equations of motion, 

the aerodynamic loads, the pitch and generator control laws about a steady-state equilibrium, 

Hansen (2007, 2004). If the nominal rotational speed of the rotor is assumed to be constant in time 

at the nominal value, this approach results in linear equations of motion with periodical varying 

terms in the system matrixes. Alternatively, the aeroelastic stability may be alternatively checked 

by a Floquet analysis on the nontransformed linearized equations, Nayfeh (1995), Tcherniak 

(2016). 

For the flutter monitoring studies, most works are offline and mostly are focused on aircrafts. 

little study has been carried out for online monitoring for the onset of flutter, especially for wind 

turbine blades. Mevel proposed a series of online statistical subspacebased methods for flutter 

monitoring of aircrafts. Each method evaluating a predefined stability criterion in terms of 

damping coefficient or flutter margin. Studies by Mevel (2005) show an online detection method 

for the onset of flutter of aircraft wing by monitoring the damping coefficient. Based on the state 

observer and Subspace Identification (SI), they defined a residual vector, which reflects the 

characteristics of damping coefficient. By using the online cumulative sum (CUSUM), the 

variation of the damping coefficient can be reflected through a statistical parameter. Their criterion 

for the onset of flutter is defined such that the damping coefficient decreases below some specified 

critical value. Similar studies has also been carried out by Zouari (2012). Based on the Subspace 

Identification method Zhou (2007) used an new parameter, the so called flutter margin basically 

indicating the numerical difference between two complex eigenvalues, to represents the interaction 

between the bending and torsional mode, which indicates the onset of flutter. 

From authors’ point of view, the stability analysis may also be performed by observing a certain 

envelope of the flapwise or torsional motions, indicating the evolution with time of the amplitude 

of the involved response quantities. Hence, flutter is defined to take place when the envelope of 

the torsional angle exceeds a certain critical value 𝜃𝑚. In this paper a monitoring technique for the 
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onset of flutter of wind turbine blades is described. Firstly, the original torsional vibration time 

series of the blade tip is decomposed into nth Intrinsic Mode Functions (IMFs) through Empirical 

Mode Decomposition (EMD). Then, the 1st IMF, which represents the flutter mode, is chosen to 

calculate the envelope process through the Hilbert Transform. Finally, a flutter onset criterion is 

proposed based on that envelope process. This approach is more practical and useful if the 

instability is dominated by nonlinear mechanisms, either structural or aeroelastic. 

 

 

2. Modelling of flutter induced vibrations of wind turbines 
 

In this section, a 907-DOF aeroelastic wind turbine model is presented. This model takes  

several important characteristics of a wind turbine into account, including time dependent system 

matrices, coupling of the tower-blades-drivetrain vibration as well as nonlinear aeroelasticity.  

urther, the aeroelastic load is described in detail. 

 

2.1 Wind turbine model 
 

Fig. 1 shows a schematic representation of the wind turbine model with definitions of the 

coordinate systems and the degrees of freedom of tower. As seen, the motion of the tower is 

described in a fixed, global (𝑋1, 𝑋2, 𝑋3)-coordinate system with a origin O at the interface to the 

foundation. Further, the motion of each blade is described in a moving, local 

(𝑥1, 𝑥2, 𝑥3)-coordinate system with origin O′ at the center of the hub. Neglecting the tilt and cone 

of the rotor, the 𝑋1- and 𝑥1-axis are unidirectional parallel to the mean wind velocity direction. 

(𝑥2, 𝑥3) and (𝑋2, 𝑋3) coordinate planes are placed in the rotor plane and is parallel to each other. 

The 𝑥3- axis is placed along the undeformed blade axis oriented from the hub towards the blade 

tip and the 𝑋3-axis is vertical. Then, the position of the local coordinate system attached to blade j 

is merely specified by the azimuthal angle 𝛹𝑗(𝑡)which is considered positive when rotating 

clockwise seen from an upwind position. 

The motion of tower is defined by the translational degrees of freedom 𝑞1(𝑡) and 𝑞2(𝑡) in 

the global 𝑋1- and 𝑋2-directions, and the rotational degrees of freedom 𝑞3(𝑡), 𝑞4(𝑡), 𝑞5(𝑡) in 

the global 𝑋1- and 𝑋2-directions. 𝑞3(𝑡) is considered positive in the negative 𝑋1- -direction, and 

𝑞4(𝑡) and 𝑞5(𝑡) in the positive 𝑋2- and 𝑋3-directions. 

L denotes the length of the blade from the hub to the blade tip. the height of the tower from the 

base to the nacelle is denoted by h, and the horizontal distance from the center of the tower top to 

the origin O′of the moving coordinate systems is denoted s. 

The tower is modelled as a Euler-Bernoulli beam fixed at the tower support, infinitely rigid 

against external deformations, and with variable mass per unit length and variable bending 

stiffness. 

The drive-train is modeled by the degrees of freedom 𝑞6(𝑡) and 𝑞7(𝑡)as shown in Fig. 2, 

indicating elastic deformation (the rotational angle of the rotor and the generator rotor), espectively. 

𝑀𝑟(𝑡) and 𝑀𝑔(𝑡) denote the work-conjugated rotor torque and generator torque. The gear 

wheels are considered rigid, and all flexibility is confined to the rotor and generator shafts. The 

sign definition shown in Fig. 2 applies to a gearbox with odd number of stages. In case of even 

number of stages the sign definitions for 𝑞7(𝑡) and 𝑀𝑔(𝑡)  are considered positive in the 

opposite direction. 

117



 

 

 

 

 

 

Bei Chen, Xu G. Hua, Zi L. Zhang, Biswajit Basu and S∅ren R.K. Nielsen 

 

 

 

Fig. 1 Definition of the fixed and the moving frames of reference and the degrees of freedom 𝑞1(𝑡), . . . , 
𝑞5(𝑡) 
 

 

Fig. 2 2-DOF model of flexible drive train with odd number of gear stages. Definition of degrees of freedom 

𝑞6(𝑡), and 𝑞7(𝑡) 

 

 

𝐽𝑟 and 𝐽𝑔 are the mass moment of inertia of the rotor and the generator, respectively. 𝑘𝑟 and 

𝑘𝑔 denote the St.Venant torsional stiffness of the rotor and generator shafts. The degrees of 

freedom 𝑞1(𝑡),…,𝑞7(𝑡) , which specified the motion of the tower and the drive train, are 

assembled in the column vector 𝐪0(t). The kinetic and strain energy of the tower and the drive 

train minus the rotor can be calculated on the basis of 𝐪0(t) and 𝐪̇0(t). The kinetic energy related 

to the rotor is accounted for at the analysis of the blades. 

The rotation of each blade is assumed to take place with a constant nominal rotational speed Ω. 

Then, the azimuthal angle Ψ𝑗(𝑡) for blade j may be given as 

Ψ𝑗(𝑡)  Ωt  𝑞6(𝑡)  
2 

3
(   )  Ωt  

2 

3
(   )                            (1) 
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Fig. 3 Definition of principal axis coordinate system 

 

 

where Ψ𝑗(𝑡) denotes the azimuthal angle of blade j = 1, 2, 3, Ω indicates the nominal rotational 

speed of the rotor. 𝑞6(𝑡) is a degree of freedom specifying the deviatoric rotation of the hub on 

top of the nominal rotational angle Ωt. Since 𝑞6(𝑡) is a numerically small quantities compared to 

Ωt, 𝑞6(𝑡)can be ignored in Eq. (1). 

Each blades is modeled as a Bernoulli-Euler beam with variable mass per unit length 𝜇(𝑥3) 
and variable bending stiffness in the flapwise and edgewise directions. Deformations from the 

shear forces are ignored. The elastic center E of all cross-sections along the blade are assumed to 

be placed along the ,𝑥3-axis. For each cross section a principal axis ( 𝑦1, 𝑦2, 𝑦3)- coordinate is 

defined as shown in Fig. 3. The 𝑦3-axis is unidirectional and parallel to the 𝑥3-axis. The 

orientation of the 𝑦2-axis is decided by the angle δ(𝑥3), indicating the angle from the 𝑦2-axis 

into the 𝑥2-axis in the positive 𝑥3-direction. δ(𝑥3) indicates the pretwist of the blade section. 

Fig. 3 also shows the aerodynamic center A, the shear center S and the mass center G. The position 

of the aerodynamic center A is assumed to be fixed with time. In order to decouple the equations of 

motion for the elastic torsion and bending displacement, the external aerodynamic lift force per 

unit length 𝑝𝑙 and drag force per unit length 𝑝𝑑 acting in the aerodynamic center is transferred to 

the shear center when formulated in the ( 𝑦1, 𝑦2, 𝑦3)- coordinate system. The inertial loads, 

including the gravity load, are acting in the mass center G. The gravity loads are referred to the 

shear center for the same reason as for the aerodynamic loads. The components of velocity vector 

and angular velocity vector of the mass center need to be interpolated from the time derivates of 

the degrees-of-freedom of the element. Hence, the kinetic energy, the mass matrix, the gyroscopic 

damping and stiffness matrices of the element can be calculated based on the above interpolation 

functions. However, the inertial loads are actually acting in the mass center G and not in the elastic 

center E, which will introduces couplings in the equation of motion of importance for the flutter 

stability. 

Fig. 4 illustrates that a blade has been divided into nth elements, including the global node 

numbering. 𝑥3 j indicates the position of node j of the element along the 𝑥3-axis. Also shown is 

the length of beam element j between the nodes j and j + 1 and the definitions of the twelve 
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degrees of freedom 𝑟1 j, . . . ,𝑟12 j in the principal axis coordinate system of each beam element. 𝑙j 

= 𝑥3 j+1  −𝑥3 j indicates the element length. The degrees-of-freedom specifying the elastic 

deformation of blade j relative to the hub in the local (𝑥1, 𝑥2, 𝑥3)-coordinate system, are assembled 

in the column vector 𝐪j(𝑡), j = 1, 2, 3 of dimension 6n. Based on the small elastic vibrations 

assumption, linear beam theory may be assumed with due consideration of the geometrical 

stiffening in the 𝑥3-direction, and the geometrical softening in transverse direction. The specific 

expression of the displacement and velocity vector of the blades can be found in Zhang (2014). 

The degrees of freedom of the system are assemble in the column vectors 𝐪(t) of dimension 7 

+ 18n 

𝐪(t)  [

𝐪0(𝑡)
𝐪1(𝑡)
𝐪2(𝑡)
𝐪3(𝑡)

]                              (2) 

The kinetic energy (𝐪 𝐪̇) and the potential energy  (𝐪) of the tower, drive train and blades 

may be calculated as a function of 𝐪(t) and 𝐪̇( ) based on the discretization of the blades. Then, 

the equations of motion of the tower, the drive train and the blades follow from the Euler-Lagrange 

stationarity condition of analytical dynamics, Lurie (2013), Hsu (2014) 

 

 𝑡
(
  (𝐪 𝐪̇)

 𝐪̇
)  

  (𝐪 𝐪̇)

 𝐪
 
  (𝐪)

 𝐪
  (𝐪 𝐪̇ t) ⇒ 

 (𝑡)𝐪̈(𝑡)   (𝑡)𝐪̇(𝑡)   (𝑡)𝐪(𝑡)   (  t)                  (3) 

 

 

 

Fig. 4 Nodal numbering and definition of degrees of freedom of a beam element 
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Under the linear elastic deformation assumption, the mass matrix  (𝑡), the damping matrix 

 (𝑡) and the stiffness matrix  (𝑡) merely depend 𝐪0(𝑡) and 𝐪̇0(𝑡), and more specific on 𝑞6(𝑡) 
and 𝑞̇6(𝑡). But as elaborated in Eq. (1), the 𝑞6(𝑡) and 𝑞̇6(𝑡) can be ignored. Thus the mass 

matrix  (𝑡), the damping matrix  (𝑡) and the stiffness matrix  (𝑡) all becomes periodic 

functions of t with the period   Ω⁄ . The mass matrix  (𝑡) is symmetric and positive definite, 

whereas the damping matrix  (𝑡) and the stiffness matrix  (𝑡) are nonsymmetric due to 

gyroscopic forces. The periodicity of the motion function can be eliminated by applying the a 

MBC (also known as the Coleman transformation Johnson (1980), Laks (2011)) Hansen (2004). 

 (  t) on the right hand side of Eq. (3) indicates the load vector conjugated to 𝐪(𝑡) from 

self-induced aeroelastic loads and pitch control. Eq. (3) can be further written into a state vector 

form, with  (t) indicating the system 

 (t)  [

𝐪(𝑡)
𝐪̇(𝑡)
 (𝑡)

]                               (4) 

The sate variable  (𝑡) denotes a full-span collective pitch angle with a time delay determined 

by the first order filter 

 ̇(𝑡)  
1

 
( 0(𝑞6 𝑞̇6)   (𝑡))                       (5) 

 (𝑡) is considered positive, when rotating in the positive 𝑥3-direction, see Fig. 3.  0(𝑞6 𝑞̇6) 
indicates the pitch demand, which is modeled as PI controller with feed-back from 𝑞6(𝑡) and 

𝑞̇6(𝑡) Ogata (2010), Luo (2012). The parameter   specifies the reaction time of the pitch 

actuators. 

 

2.2 Aeroelastic load model 
 

The boundary layers on the profile are assumed to be fully attached, and the quasi-static 

aerodynamic is assumed, which means a change of the angle of attach is causing a comparable 

change of the aerodynamic loads without time delay. Assuming locally 2D-flow around the profile 

the lift and drag load per unit length 𝑝𝑙(𝑥3 𝑡) and 𝑝𝑑(𝑥3 𝑡) at the position 𝑥3 at the time t 

become 

𝑝𝑙(𝑥3 𝑡)   𝑙( )
1

2
  2(𝑥3 𝑡) (𝑥3)

𝑝𝑑(𝑥3 𝑡)   𝑑( )
1

2
  2(𝑥3 𝑡) (𝑥3)

}                    (6) 

where  𝑑(𝑥3 𝑡) and  𝑙(𝑥3 𝑡) indicate the lift and drag coefficients obtained from static 2D wind 

tunnel test data,  (𝑥3 𝑡)  is the instantaneous angle of attack,   is the mass density of 

air, (𝑥3 𝑡) is the resulting wind velocity and  (𝑥3) is the chord length of the profile at the 

coordinate 𝑥3. 

The direction of mean wind velocity  0 is parallel to the global 𝑋1-direction, and is assumed 

to be constant over the rotor area. Further, the nominal rotational speed of the rotor Ω is also 

assumed to be constant in time. Hence, the resulting wind velocity  (𝑥3 𝑡) on the profile is given 

 (𝑥3 𝑡)  √ 1
2(𝑥3 𝑡)   2

2(𝑥3 𝑡)                      (7) 
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Fig. 3 shows the wind velocities in the rotor plane.  1(𝑥3 𝑡)  and  2(𝑥3 𝑡)  are the 

instantaneous wind velocities in local 𝑥1-direction and 𝑥2-direction, respectively, seen by an 

observer fixed to the moving (𝑥1, 𝑥2, 𝑥3)-coordinate system. These are given as 

 1(𝑥3 𝑡)  (   ) 0   1(𝑥3 𝑡)   ̇1(𝑥3 𝑡)

 2(𝑥3 𝑡)  (   ́)Ω𝑥3   2(𝑥3 𝑡)   ̇2(𝑥3 𝑡)
}               (8) 

where  (𝑥3) and   (𝑥3) indicate the axial and tangential induction coefficients, obtained by 

BEM Hansen (2015).  𝑗(𝑥3 𝑡) indicate the components in the moving frame of reference of the 

rotational sampled turbulence at the position 𝑥3, at the time t.  ̇𝑗(𝑥3 𝑡) denote the corresponding 

moving frame components of the velocity vector of the blade at the abscissa 𝑥3, due to elastic 

deformations of the tower and the blade.  

A frozen isotropic and homogeneous turbulence field is modelled using fully correlated vector 

ARMA model Krenk (2011), Do (2016). Based on the Taylor’s hypothesis of frozen turbulence, 

the rotational sampled turbulence is obtained by converting the frame field into the rotor in the 

global 𝑋1-direction with a mean velocity  0.  

The instantaneous angle of attack is given as 

 (𝑥3 𝑡)   (𝑥3 𝑡)   (t)   (𝑥3)                    (9) 

where  (𝑥3 𝑡) indicates the flow angle defined as, see Fig. 3 

tan (𝑥3 𝑡)  
  (    )

  (    )
                          (10) 

The lift coefficient  𝑙( )  and drag coefficient  𝑑( )  are calculated based on the 

instantaneous angle of attack together with 2D profile data. The delay effect on the loads due to 

change of   has not been considered here. 

 

 

3. Flutter monitoring 
 

At the onset of flutter the coupled torsional and flapwise vibrations are harmonic with the 

angular frequency  0. Hence, the torsional vibration at the position 𝑥3 may be written as 

𝜃(𝑥3 t)    ( (𝑥3) 
    )                       (11) 

where  (𝑥3) is the torsional flutter mode. This may be complex indicating possible phase lags 

along the blade.  0 is identified by FFT of the obtained value of the torsional angle.  

The torsional vibration signal 𝜃(𝑥3 t) is specified as one of the components of 𝐪(𝑡) and can 

be obtained through an actual-torsional arithmetric unit of the structural monitoring system, which 

transformed the strain signals measured by a series of strain sensors mounted on both the leading 

edge side and the trailing edge side along the center of torsion of the blade to the real torsional 

angle, Ako (1992). Here, we only consider the torsional vibration signal of the blade tip 

𝜃(𝑡)  𝜃(  𝑡). 
Due to the non-stationarity of the flutter process, the actual measurement 𝜃(𝑡) under flutter 

condition contains some lower frequency components other than the flutter mode component. 

Hence, in order to extract the torsional flutter mode signal, the Hilbert-Huang Transform (HHT) is 

applied.  
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𝜃𝑒(𝑡) is defined as a envelope process of the torsional flutter mode signal that can be obtained 

through the Hilbert-Huang Transform (HHT), Huang (2014), Chu (2014), Yan (2014), Tang 

(2011). Firstly, the measured original torsional vibration signal 𝜃(𝑡) is decomposed into nth 

Intrinsic Mode Functions (IMFs) through Empirical Mode Decomposition (EMD) that each 

resulting IMF only has one natural frequency component, given as 

𝜃(𝑡)  ∑   (𝑡)   𝑛(𝑡)
𝑛
  1                         (12) 

where   (𝑡) denotes the ith mode IMF, Huang (2014),  𝑛(𝑡) is the residual signal at a truncation 

at nth mode.   (𝑡) can be obtained through the following process.  

Firstly, based on the original signal 𝜃(𝑡), the upper and lower envelopes can be obtained. 

𝑚1 0(𝑡) indicates the mean value of the upper and lower envelopes of the original signal 𝜃(𝑡). 

The difference between the original signal and 𝑚1 0(𝑡) is the first protomode,  1 1, given 

 1 1(t)   𝜃(𝑡)  𝑚1 0(𝑡)                        (13)  

Then, in order to satisfy the definition of an IMF, the Eq. (13) should be repeated as many 

times as is required. 

After k times of iterations 

 1  (t)   1   1(t)  𝑚1   1(𝑡)          𝑘        𝑛             (14) 

𝑚1   1(𝑡) denotes the mean value of the upper and lower envelopes of  1   1(t). the stoppage 

criteria Huang (2014) are satisfied, and  1  (t) becomes the 1st IMF  1(𝑡), given 

 1(𝑡)   1  (t)                             (15) 

The 1st IMF  1(𝑡) should contain the finest scale or the shortest-period oscillation in the 

signal 𝜃(𝑡). The residue,  1(𝑡), still contains longer-period variations. This residual is then 

treated as the new original signal and subjected to the same sifting process as described above to 

obtain an IMF of lower frequency. The procedure can be repeatedly applied to all subsequent 

  (𝑡) and the result is Huang (2008) 

 1(𝑡)  𝜃(𝑡)   1(𝑡)                         (16) 

   1(𝑡)    (𝑡)    (𝑡)                n                 (17) 

Since the frequency contents of 𝜃(𝑡) under flutter condition is dominated by the highest 

frequency component, apparently, the 1st IMF  1(𝑡) should be chosen to represents the flutter 

mode signal. Finally, 𝜃𝑒(𝑡) can be obtained by calculating the amplitude of the 1st IMF  1(𝑡) 
through a Hilbert Transform, given 

𝜃𝑒(𝑡)  | ( 1(𝑡))|                          (8) 

where H(·) signified the Hilbert Transform. 

The criterion of onset of flutter is taken as 

𝜃𝑒(𝑡)  𝜃𝑚 

Here, the critical value 𝜃𝑚 has been set as the mean value of the time serious of torsional 

angle of the blade tip plus three standard deviations under the stability situation for the following 

reason. Let 𝜇  and    indicate the mean value and the standard deviation of elastic deformations 

of the torsional rotation 𝜃(𝑡), caused by the turbulence alone. The indicated statistical moments 
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and determined by ergodic sampling of a suitable line series before the onset of flutter. The value 

of 3 standard deviations from the mean value 𝜃𝑚  = 𝜇  + 3    has been chosen as a 

compromised to limit the probability of false alarms due to elastic exceedances of the threshold 

level, and to prevent structural damages at the onset of flutter. 

 

 

4. Numerical example 
 

Data from the DTU 10MW reference wind turbine Bak (2013) have been used to calibrate the 

structural model. The constant parameters employed in the 907-DOF wind turbine model are 

calculated and provided in Table 1. The frequency characteristics of the 907-DOF wind turbine 

model is provided in Table 2.  0 and I denote the structural damping ratio and turbulence intensity, 

respectively. 

 

 

 
Table 1 Parameters in the 907-DOF wind turbine model 

Parameter Value Unit 

L 89.166 m 

s 5 m 

h 119 m 

𝐽𝑟 1.5696∙10
8
 kgm

2
 

𝐽𝑔 2328.24 kgm
2
 

𝑘𝑟 3.48∙10
9
 Nm/rad 

𝑘𝑔 1.392∙10
6
 Nm/rad 

𝛺 1.0053 rad/s 

𝑔 9.81 m/s
2
 

𝜃𝑚 0.045 rad 

  1.0∙10
3
 kg/m

3
 

 0 15 m/s 

𝜁0 0.005 - 

I 0.1 - 

 
 

Table 2 Natural frequencies of the 907-DOF wind turbine model 

Item Value Unit Description 

 𝑓 4.15 rad/s 1st flapwise frequency of blade 

 𝑒 6.09 rad/s 1st edgewise frequency of blade 

   37.77 rad/s 1st torsional frequency of blade 

 𝑓𝑎 2.75 rad/s 1st tower fore-aft frequency 

 𝑙  2.75 rad/s 1st tower lateral frequency 
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4.1 Result and discussion 
 
Fig. 5 shows the original time series and corresponding Fourier spectrum of the torsional 

vibration signal of the blade tip 𝜃(𝑡). For the convenience of representation, only three IMFs are 

plotted as follow. As seen, 𝜃(𝑡)is mainly dominated by one frequency component (i.e., the highest 

frequency component).  

 

 

 

 

 

Fig. 5 Original signal and its Fourier spectrum of torsional angle of the blade tip. (a)(b) Time series of 

torsional angle 𝜃(𝑡) of the blade tip, (b) Fourier spectrum 𝜃( ) 
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Fig. 6 IMF and Fourier spectrum of the decomposed 1st mode  1(𝑡). (a)(b) Time series  1(𝑡), (b) Fourier  

spectrum  1( ) 

 

 

Fig. 6-8 show the 1st, 2nd and 3rd IMFs of 𝜃(𝑡), respectively. Fig. 6(b) shows that the 1st IMF 

contains the same highest frequency component as the 𝜃(𝑡) does. Due to the lower frequency 

components, the mean value of  1(𝑡) is a little bit smaller than 𝜃(𝑡) by comparing Figs. 5(a) and 

5(b) with Figs. 6(a) and 6(b). Figs. 7(b) and 8(b) show that the 2nd and 3rd IMFs contain lower 

frequency components of 𝜃(𝑡) and their contribution is much smaller than  1(𝑡). Apparently, 1st 

IMF  1(𝑡)plays significant part in 𝜃(𝑡), which represents the flutter mode. 
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Fig. 7 IMF and Fourier spectrum of the decomposed 2nd mode  2(𝑡). (a)(b) Time series  2(𝑡), (b) 

Fourier  spectrum  2( ) 
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Fig. 8 IMF and Fourier spectrum of the decomposed 3rd mode  3(𝑡). (a)(b) Time series  3(𝑡), (b) 

Fourier  spectrum  3( ) 

 

 

Fig. 9 shows the time series of the envelope process 𝜃𝑒(𝑡) calculated from Eq. (18). As seen, 

as the envelopee 𝜃𝑒(𝑡) exceeds the critical value 𝜃𝑚(𝑡), the vibration starts to increase beyond 

limits, indicating instability. 
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Fig. 9 Time series of envelope process 𝜃𝑒(𝑡) 

 

 

5. Conclusions 
 

Motivated by the flutter monitoring problem of wind turbine blade, we have proposed an output 

only online approach towards fast online detecting of the flutter onset. The criterion for the onset 

of flutter has been described in detail. This method firstly decomposes the original torsional 

vibration time series of the blade tip into several IMFs. Then, the 1st IMF is chosen, which 

represents the flutter mode, to calculate its envelope process through the Hilbert Transform. 

Finally the flutter onset criterion is described. This method can be carried out online without any 

time delay. Further, the criterion for the onset of flutter is more practical for engineers to determine 

the stability of wind turbine blade merely based on the online measurements. The effectiveness 

and accuracy of the proposed method has been verified numerically through a 907-DOFs 

aeroelastic model, which is supposed to mimic the real turbine in a turbulent inflow to the rotor. 
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