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Abstract.  The response sensitivity method in time domain has been applied extensively for damage 

identification. In this paper, the relationship between the error of damage identification and the sensitivity 

matrix is investigated through perturbation analysis. An index is defined according to the perturbation 

amplify effect and an optimal sensor placement method is proposed based on the minimization of that index. 

A sequential sub-optimal algorithm is presented which results in consistently good location selection. 

Numerical simulations with a two-dimensional high truss structure are conducted to validate the proposed 

method. Results reveal that the damage identification using the optimal sensor placement determined by the 

proposed method can identify multiple damages of the structure more accurately. 
 

Keywords:  sensor selection; damage identification; response sensitivity; perturbation amplify effect; 

sequential algorithm 

 

 

1. Introduction 
 

Vibration damage detection methods have been developed for decades (Doebling et al. 1996). 

The fundamental principle upon which vibration-based methods are founded is that the structural 

parameters are functions of the physical properties of the structure. A change in the physical 

properties is associated with some changes in the vibration responses which may be detected. 

Existing damage identification approaches can be divided into two categories of frequency domain 

methods and time domain methods. Natural frequencies, mode shapes, and their derivatives, such 

as the mode shape curvature (Padey et al. 1991), flexibility matrices (Padey and Biswas 1994), 

modal strain energy (Shi et al. 2000b) etc., are usually taken as the measured information to 

identify the local structural damages in the frequency domain. With measurements of the structure 

in time domain, the location and severity of the local structural damage can be detected (Agbabian 

et al. 1991). Methods in time domain include the Ibrahim time domain method, least-squares 

complex exponential method, the ERA methods and so on (Nagarajaiah and Basu 2009). 

More recently, Law and his colleagues develop the sensitivity-based damage identification approach 

based on the response sensitivity (Lu and Law 2007a). Later, this method is developed for identifying 
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both the system parameters and input excitation forces of a structure (Lu and Law 2007b). It is 

found that the identification method based on the dynamic response sensitivity can provide more 

identification equations and only a few sensors are required. An adaptive regularization approach 

for solving the model updating problem is also presented (Li and Law 2010). A changing limit on 

the summation of the identified parameters in each iteration step is applied to ensure that the 

physical significance of the structural parameters is retained.  

It has been realized that the accuracy of the damage identification analysis may vary 

significantly with different spatial location of the response measurements (Sanayei and Salethik 

1996). Therefore, to identify damage successfully, proper measurement selection needs to be 

chosen carefully before field testing and damage identification analysis. Many methods, such as 

Effective Independence (EFI) method (Kammer 1992), Kinetic Energy Optimization Technique 

(EOT) (Heo et al. 1997), Effective Independence-Driving Point Residue (EFI-DPR) method (Meo 

and Zumpano 2005) etc. have been developed for the determination of sensor locations in modal 

testing and condition monitoring of structures. Besides, statistical-based approaches have been 

developed to provide rational solutions to the problem of optimal sensor selecting. Udwadia 

(1994) proposed that the sensor configuration which maximizes some norm of the Fisher 

information matrix be taken as the optimal configuration. Papadimitriou et al. (2000) introduced 

the information entropy as the measure of uncertainties that best corresponds to the objective of 

structural testing, which is to minimize the uncertainty in the model parameters. The most 

informative test data are the ones that give the least uncertainty in the parameter estimates or, 

equivalently, the ones that minimize the information entropy (Yuen 2001). The method can also be 

extended to the applications with multi-type sensory systems (Yuen 2015). Measurement selection 

for damage identification has also been studied. Cobb and Liebst (1997) proposed the optimal 

sensor placement for structural damage detection by maximizing system observability. Shi et al. 

(2000a) presented a method of optimizing sensor locations and detecting damage in a structure 

using the collected information. The sensor locations are prioritized according to their ability to 

localize structural damage based on the eigenvector sensitivity method. Only a small subset of the 

total structural degrees-of-freedoms (DOFs) is instrumented, and the in-completed modes yielded 

from these optimized sensor locations are used to localize structural damage. Xia and Hao(2000) 

proposed a concept of damage measurability that integrates damage sensitivity and noise 

sensitivity. Kripakaran and Smith (2009) used a global optimization approach to design the initial 

measurement locations for damage identification, and then, a greedy strategy is used to select 

measurement locations with maximum entropy among candidate model predictions. 

In this paper, the relationship between the error and the sensitivity matrix in damage 

identification method based on dynamic response sensitivity in time domain is investigated 

through perturbation analysis. An index is defined according to the perturbation amplify effect and 

an optimal sensor placement method is proposed based on the minimization of that index. A 

sequential sub-optimal algorithm is presented which results in consistently good location selection. 

Numerical simulations with a two-dimensional high truss structure are conducted to validate the 

proposed method. 

 
 
2. Damage identification method based on response sensitivity  
 

2.1 Dynamic response of a structure 
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For a general finite element model of a time-invariant N degrees-of-freedom (DOFs) damped 

structure, the equation of motion can be written as 

  Mx Cx Kx LF                                                          (1) 

where M, C, and K are the mass, damping and stiffness matrices of the structural system 

respectively. Rayleigh damping is adopted which is of the form 

1 2a a   C M K                                                             (2) 

where 
1a  and 

2a  are constants to be determined from the modal damping ratios of two modes. x , 

x  and x  are vectors of acceleration, velocity and displacement of the structural system 

respectively. F  is the vector of external excitation forces with matrix L  mapping these forces to 

the associated DOFs of the structure. If the external excitation forces and the finite element model 

of the structure are known, responses x , x  and x  in Eq. (1) can be solved using the step-by-step 

Newmark-   integration method. 

 

2.2 Dynamic response sensitivity method 
 
Damage in a structure can be defined in terms of a stiffness reduction factor. The change in the 

global stiffness matrix is 
1

ne

i i

i




 K K , in which 
iK  is the stiffness matrix of the ith element, ne 

is the number of elements in the structure, 
i  is the stiffness reduction factor of the ith element. 

The stiffness matrix of the damaged structure then becomes K K . The notations on the 

stiffness change in the following study are defined as follows: α  and Δα are the total stiffness 

change and the increment of an iteration with the size of 1ne , respectively. The superscript k in 
k
α  and k

Δα  denotes results obtained for the kth iteration. k
α and k

Δα are both vectors with size 

1ne . 
i  and 

i  are the ith element of the vector α  and Δα .  

Differentiate Eq. (1) with respect to 
i , we have 

2

i i i i i

a
    

    
    

    

x x x K K
M C K x x                                        (3) 

where / i x , / i x , / i x  are vectors of the acceleration, velocity and displacement 

sensitivities with respect to the stiffness fractional change respectively. Since x  and x  have been 

obtained from Eq. (1), the right-hand side of Eq. (3) can be considered as an equivalent forcing 

function, and Eq. (3) is of the same form as Eq. (1). The sensitivities / i x , / i x  and 

/ i x  can be also obtained by step-by-step Newmark- integration method. 

In the forward analysis, the dynamic responses and their sensitivities with respect to the 

structural parameters of a finite element system can be obtained from Eqs. (1) and (3). In the 

inverse identification problem, the stiffness fractional change will be identified from the measured 

responses at the accessible DOFs. The most commonly used measured response is acceleration 

because of its ease of measurement.  

An error function, defined as the difference between the calculated responses from the updated 

finite element model and the measured acceleration responses of the structure, can be written as 
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m cal  x x x                                                                (4) 

The identification equation can be expressed as the first order Taylor expansion of the 

acceleration responses (Lu and Law 2007a) 

  S x                                                                   (5) 

 

where S  is the acceleration response sensitivity matrix that can be calculated from Eq. (3), and it 

can be written as (Lu and Law 2007a) 

1 1 1 1

1 2 3

1

2 2 2 2

2

1 2 3

3 3 3 3

1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( )

j j j j

ne

j j j j

ne

i j j j j

j

ne

nt

t t t t

t t t t

with t t t t

   

   
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   
 

    
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 
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 
 
 
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 
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 
   
 

     

x x x

                  (6) 

where nt is the total number of time sampling points, Nm is the number of sensors and ne is the 

number of structural parameters to be identified.  mN nt ne 
S  is a two dimensional matrix 

representing three-dimensional array, with one dimension of time, one dimension of measured 

DOFs and the other dimension of the number of structural parameters to be identified. 

The relationship between x  and S  is nonlinear. Eq. (5) omits the high order terms, thus, a 

nonlinear model updating technique, like the Gauss-Newton method, is required. An analytical 

model of the target structure is treated as the reference model, and the measurements from the 

damaged structure will be used to update the reference model with iterations. The vector of 

structural physical parameters can be identified through model updating. The damage 

identification equation for the (k+1)th iteration can be written as 

1k k k S Δα Δx                                                               (7) 

where k
S  and k

Δx  are obtained from the kth iteration. Convergence is considered achieved when 

the following criterion is met 

1

1

k k

k
Tolerance








Δα Δα

Δα
                                                     (8) 

where k
Δα  is the stiffness fractional change from the kth iterative step. Tolerance is a small value 

to be defined. The final fractional change in the stiffness of the ith element after the nth iteration is 

0 1 2 n

i i i i i        Δ Δ Δ                                                 (9) 

in which n is the number of iterations, 0

i  is assumed as the initial stiffness reduction factor that is 
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usually equal to 0. 

 

2.3 Adaptive Tikhonov regularization method 
 

Like many other inverse problems, the solution of Eq. (7) is often ill-conditioned and 

regularization techniques are needed to provide bounds to the solution. The aim of regularization 

in the inverse analysis is to promote certain regions of parameter space where the model 

realization should exist. The two most widely used regularization methods are Tikhonov 

regularization (Tikhonov 1995) and truncated singular value decomposition (Hansen 1987). In 

Tikhonov regularization, Eq. (7) can be redefined as the minimization of the following objective 

function 

2 2
1 1 2 1

2 2
( )k k k k kJ     Δα S Δα Δx Δα                                        (10) 

This function has two parts: the first part minimizes the difference between measured and 

calculated quantities; the second part restricts the size of the update solutions. The regularization 

parameter   controls the weight given to the solution norm 
1

2

k
Δα  relative to the residual 

norm
1

2

k k k S Δα Δx . The key point of regularization is to find an optimal  , and then the 

identification equation can be solved. The L-curve method (Hansen 1992) is commonly used to 

find the optimal regularization parameter  . 

Inverse problem is always ill-posed and measurement noise may have adverse effect in the 

process of identification. The iterative identification methods should be able to ensure the 

significance of the structural parameters and mitigate the unfavorable effect of noise in 

identification. An adaptive regularization method with an adaptive upper limit on the identified 

damage (Li and Law 2010) based on results from last iteration steps is adopted. It has been shown 

that the adaptive Tikhonov regularization has obvious advantage over the traditional Tikhonov 

regularization with less false positives and false negatives especially when relatively high noise 

level exists in the measurements. The objective function of the optimization is expressed as 

2
1

2
1 1 2 ,*

2
1 2

( ) -
k

k k k k l k

l

J 


 



   Δα S Δα Δx Δα α                                 (11) 

where ,*k
α  is a value to coordinate the constraint of the solution in the kth iteration in the model 

updating process. Parameter ,*k
α  is defined as 

   
1,*

1 1

0 0

1,2, ,

0

k
l

l ik

i k k
l l

l li i

if

i ne

if



 

  
  

 
 

          



 

Δα

α

Δα Δα

                         (12) 

The adaptive Tikhonov regularization method has been proposed to improve the damage 

identification results by separating all the structural elements to be assessed into two categories of 

possible damaged elements and intact elements from results obtained in the previous iteration. The 

perturbations of elemental stiffness reduction factors of the possible damaged elements in each 
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iteration are then limited to the cumulative identified change of stiffness 
1

k
l

l i

 
 
 
Δα  and the 

reduction factors of other elements are restrained close to zeros.  

To minimize the objective function in Eq. (11), the sensitivity matrix is singular value 

decomposed as 

k   T
S U V                                                              (13) 

where U and V  are of dimensions  mN nt ne   and ne ne  respectively with  mN nt ne  . 

The vectors in U  and V  are orthogonal, i.e.,   T T T
U U V V VV I . However, T

UU I , 

because matrix U  contains only ne columns in the thin version of the singular value 

decomposition. This thin version decomposition is more economical and is usually sufficient for 

calculation (Weber et al. 2009).  1 2, , , nediag      has the singular values 
i  arranged in a 

non-increasing order such that 1 2 0ne      . 

The solution to Eq. (11) can then be obtained as a function of the regularization parameter 

 (Wang and Yang 2012) 

 1 2 1 2 ,*

1

( ) [ ( )] (1 )
ne

k k k k

k k k i i w i i v

i

f V f  



        T T
α S S I S x α α V x x            (14) 

where 
T k

i
w

i




U x
x  ,  T ,*k k

vx   V  and 
 

2

2 2

i
i

i

f


 



 is called filter factor. Since the 

range of the regularization parameter is 
1 ne    . It is noted that regularization method makes 

use of the filter factors to damp the effects associated with small singular values.   

 

 

3. Sensor selection approach 

 
The adaptive Thikhonov regularization method is applied to solve the ill-conditioning 

identification equation. However, the identification results can be significantly influenced with the 

spatial location of the response measurements. The identification results will be bad with non-

proper sensor placement although adaptive Thikhonov regularization is carried out.  

The relationship between the identification error and the sensitivity matrix is investigated and 

an optimal sensor placement method is proposed in the following paragraphs.  

 

3.1 Perturbation analysis 
 

The identification equation for the first iteration is that 

0 1 0S Δα Δx                                                              (15) 

in which 
0

S  is the sensitivity matrix calculated from the initial state of the structural reference 

model. For ease of discussion, it is assumed that Eq. (15) is a determined linear equation (the 

number of equation equals to the number of unknowns) and matrix 
0

S  is non-singular (with full 

rank). In this case, Eq. (15) has a unique least-square solution which is 

58



 

 

 

 

 

 

Sensor selection approach for damage identification based on response sensitivity 

 
1

1 0 0


Δα S Δx                                                           (16) 

Assume the perturbations in structural model and measurements are independent. The 

influences of these two kinds of perturbations on identification results are investigated 

respectively.  

 

3.1.1 Perturbation analysis on measurement noise 
Assume the noise in measurement 

mx  is 
x  such that the perturbation in right term of Eq. (15) 

is 
x  and it will result in perturbation 

n  in 1
Δα . The identification equation with noise 

perturbation can be written as 

 0 1 0

n x   S Δα Δx                                                 (17) 

n  is given by 

 
1

0

n x 


 S                                                           (18) 

According to the compatibility of matrix norm and vector and the theorem of triangle inequality 

(Golub and Van Loan 1996), we have 

 

0 0 1

1
0

n x 


 






Δx S Δα

S
                                                    (19) 

Then we have 

 
1

0 0

1 0

n x 

 S S
Δα Δx

                                              (20) 

It is founded that the perturbation n  in 1
Δα  will be amplified  

1
0 0



S S  times comparing 

with the perturbation x  in 0Δx . In matrix analysis,  
1

0 0


S S  is defined as the condition number 

of 
0

S  

 
1

0 0 0( )cond


S S S                                                 (21) 

 
3.1.2 Perturbation analysis on model errors 

Assume s  as the perturbation in 0
S  caused by structural model errors and it will result in 

perturbation 
m  in 

1
Δα , that is 

  0 1 0

s m   S Δα Δx                                                (22) 

Then we have 
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   
1 1

0 1 0

m s s m    
 

  S Δα S                                         (23) 

According to the compatibility of matrix norm and vector and the theorem of triangle inequality 

(Golub and Van Loan 1996), it has 

   
1 1

0 0 1(1 )s m s  
 

 S S Δα                                  (24) 

when  
1

0 1s


S , 

 

 

1
0 0

1 1 0
01

m s

s

 










S S

Δα SS
                                              (25) 

It is founded that the perturbation 
m  in 1

Δα  is also proportional to condition number of 0
S .  

According to the perturbation analysis, it can be concluded that condition number of the 

sensitivity matrix 0
S  can be a measure of the perturbation amplify effect of the identification 

equation. When the condition number of the sensitivity matrix is large, the measurement noise and 

structural model errors will propagate significant amplification.  

The above discussion is on the assumption that Eq. (15) is a determined linear equation. 

However, in time domain method, Eq. (15) is always over-determined and it can be expressed as 

   
T T

0 0 1 0 0S S Δα S Δx                                                    (26) 

Since 

    
2T

0 0 0cond cond 
 

S S S                                            (27) 

It is noted that for the over-determined identification problem,  
2

0cond 
 

S can measure the 

perturbation amplify effect of the over-determined identification equations and an index for the 

proposed sensor placement method is defined based on the perturbation amplify effect as 

 
2

0J cond 
 

S                                                         (28) 

 

3.2 Sensor selection method  
 
The goal of the proposed sensor placement algorithm is to minimize the perturbation amplify 

effect index J in Eq. (28). It is noted that the proposed sensor placement method is derived from 

the undamaged structure and thus it is independent of the damage configuration. Suppose the 

maximum number of sensor is sN  and the number of sensor candidate is cN . The total number of 

the possible sensor combinations comN  is given by the following binomial coefficient 
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 

!

! !
s

c

N s
com N

c s s

N
N C

N N N
 


                                             (29) 

It is obvious that for a structure finite element model with several thousands of DOFs, it is 

impossible to test all combinations, even for a few number of sensors. A sub-optimal sensor 

placement method is therefore required. 

A sequential sensor selection algorithm is proposed in which sensors are computed sequentially 

by placing one sensor at a time in the structure at a position that results in the minimization of 

index J. The detail algorithm for the optimal sensor placement is as follows: 

(1) Initialize: no sensors are selected, number of sensor 0mN   and the optimal sensor 

placement combination is  0L  . 

(2) If number of sensor mN  < the maximum number of sensors sN , do 

a. Consider combinations with one additional sensor, 1m mN N      

b. For counter 1i   to number of possible sensor locations  1c mN N   

i. Obtain sensor configuration  
mNL i  by adding sensor i to configuration  1mN

L


 

ii. Calculate the sensitivity matrix  0

mNS L i 
 with the new sensor configuration 

mNL  

iii. Evaluate the index  
mNJ L i 

  . 

c. End 

d. Select the sensor configuration  
mNL i  that minimizes the index J as the updated sensor 

configuration 
mNL  

e. If    1m mN NJ L J L  , break  

(3) End 

The algorithm can be stopped by two ways. The first way is that the criterion of 

   1m mN NJ L J L   is satisfied, then the algorithm can be stopped and the sensor configuration 

 1mN
L


 is selected as the optimal sensor placement. The second stop way is that when the number 

of sensor Nm equals to the maximum number of sensor Ns and the sensor configuration 
mNL  is 

selected as the optimal sensor placement.  

The algorithm for the non-optimal sensor placement is also required for comparison. It is 

similar to the algorithm for the optimal sensor placement and the differences between them are the 

step 2.d and 2.e., In 2.d the sensor configuration that maximizes the index J will be chosen and in 

2.e the stop criterion is changed to    1m mN NJ L J L  . 

 
 
4. Numerical studies 
 

4.1 Information of the two-dimensional high truss structure 
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Fig. 1 Finite element model of the two-dimensional high truss structure () denotes the element number 

 

 

A two-dimensional 50-meter high planar truss structure (Law and Ding 2011) shown in Fig.1 

is investigated to illustrate the proposed sensor placement method. It is a simplified model of a 

popular type of power transmission tower structure in China. The truss structure consists of 14 

nodes each with two DOFs. The two ends of each truss element are assumed hinged and the 

structure is found on supports at Nodes 1 and 2 with hinges. It has five levels with 10m high each. 

The mass density of material is 7.8×103 3kg/ m  and the elastic modulus of material is 2.06 GPa. 

The cross-sectional area of each truss element is 2.5×10-3m2. Rayleigh damping is assumed and the 

damping ratios for the first two modes are both taken as 0.02  . 

Two multiple sine wave external excitations are applied along the horizontal and vertical 

directions at Node 13. These two forces are 

1

2

( ) 325sin(10 ) 200sin(30 0.5 ) 165sin(80 0.9 )

( ) 300sin(20 0.1 ) 160sin(40 0.4 ) 220sin(100 1.1 )

t t t t N

t t t t N

    

     

    

     

F

F
       (30) 

The sampling rate is 500 Hz and the total sampling points is 250. When there is noise in the 

“measured” response, the polluted response is simulated by adding a random component to the 

calculated responses as 

( )m P noiseE  x x N x                                              (31) 

where mx and x  denote the polluted measured responses and the calculated responses without 

noise respectively. pE  is the percentage noise level, 
noiseN  is a standard normal distribution vector 

with zero mean and unit standard deviation, ( ) x is the standard deviation of the calculated 

acceleration response. In this simulation, measured responses with 5% measurement noise are 

considered. There is a total of 24 DOFs in the structure, and acceleration responses in the 

horizontal and vertical directions at Nodes 7, 8, 9, 10, 11, 12, 13 and 14 with 16cN  are assumed 

to be the candidate sensor locations. The maximum number of sensor sN  is assumed as 6.  

 
4.2 Analysis on index J 
 

The optimal and non-optimal sensor combinations are calculated by the proposed sensor 
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placement method. The optimal sensor combination includes six sensor locations which are 

N11(y), N14(x), N7(y), N11(x), N8(y) and N12(y) and the non-optimal sensor combination 

includes only two sensor locations which are N13(y) and N14(y). N14(x) and N11(y) denote the 

horizontal direction of Node 14 and vertical direction of Node 11 respectively.  The perturbation 

amplify effect index J of the optimal sensor combination is 123.56 which is much smaller than that 

of the non-optimal sensor combination 73.15 10 . 

 

4.3 Analysis on the effect of number of sensor  
 

To study the effect of number of sensor, the maximum number of sensor Ns is assumed equal to 

the candidate sensor location number, that is 16s cN N   for both of the optimal and non-

optimal sensor placement algorithms. The iterative procedures for both algorithms are allowed to 

repeat for all of the 16 candidate sensor locations without stopping criterion. Table 1 lists the 

sequence of the selection of the two kinds of sensor configurations.  

Figs. 2(a)-(b) show the relationship between the number of sensor and condition number of the 

sensitivity matrix calculated by the optimal and non-optimal sequential sensor placement 

algorithms. The sensor placements corresponding to different number of sensor are sequentially 

selected according to the sequences listed in Table 1. The smallest condition number 

corresponding to the optimal sensor placement is 55.88, with 11 sensors while the biggest 

condition number is 1123.96, with only one sensor. The smallest condition number corresponding 

to the non-optimal sensor placement is 119.16, with 16 sensors while the biggest condition number 

is 
72.34 10 with one sensor. The condition number with the non-optimal sensor combination is 

much bigger than that with the most optimal sensor combination.  
 

 

Table 1 Sensor location sequence for the optimal and the non-optimal sensor combinations 

Sequence Location 

No. Optimal sensor combination Non-optimal sensor combination 

1 N11(y) N14(y) 

2 N14(x) N14(x) 

3 N7(y) N13(y) 

4 N11(x) N12(x) 

5 N8(y) N11(x) 

6 N12(y) N13(x) 

7 N12(x) N10(x) 

8 N7(x) N9(x) 

9 N9(y) N10(y) 

10 N10(y) N12(y) 

11 N13(x) N9(y) 

12 N10(x) N11(y) 

13 N9(x) N8(y) 

14 N8(x) N7(y) 

15 N14(y) N8(x) 

16 N13(y) N7(x) 
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Fig. 2 Relationship between the number of sensor and condition number of the sensitivity matrix 

 

 

4.4 Discussion on identification results 
 
To illustrate the advantage of the measurement selection based on the presented sensor 

placement method in structural damage identification, two damaged states each with three 

different sensor placements are considered. The detail information is listed in Table 2. In the first 

damage state, element 16 is assumed deteriorated with a stiffness reduction by 10% while in the 

second state, damages are assumed on elements 4 and 13, each with 10% stiffness reduction. 

Averaging of 50 simulations are carried out for each case.  

Figs. 3(a)-(c) are the identification results for the case 1, 2 and 3 respectively. It is founded that 

the identification results with sensor placement no.1 (optimal sensor placement with 6 sensors) are 

of great accuracy. For the identification results with sensor placement no.2 (non-optimal sensor 

placement with 2 sensors), element 13 is wrongly identified as damaged element with more or less 

-3% damage ratio. The location of the real damaged element 16 can be identified but the damage 

ratio is much smaller than the true value. The identification results with sensor placement no.3 

(non-optimal sensor placement with 6 sensors) are similar to those with sensor placement no.2.  

Figs. 4(a)-(c) are the identification results for the case 4, 5 and 6 respectively. It is founded that 

the identification results with sensor placement no.1 are still of great accuracy. For sensor 

placement no.2, elements 1 and 16 are wrongly detected as damaged elements. The locations of 

the real damaged elements 4 and 13 can be identified. The identified damage ratio of element 13 

can be accepted while that of the element 4 is much smaller than the true value. Sensor placement 

no.4 is obtained from the optimal sensor location algorithm, and it has only two sensors. The 

location and damage ratio of the damage state 2 with multi-damages can be accurately identified as 

well.  

From the above observations, it can be concluded that, with the sensor placement derived by 

the proposed optimal sensor placement algorithm, the damage locations and damage ratios can be 

identified accurately while those sensor placements derived by the non-optimal sensor placement 

algorithm will cause false detection results.  
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Table 2 Detail of damage cases and sensor combinations 

Case Damage state 
Damaged elements  

(damage ratios) 

Sensor placement no. 

(Type, sensor number ) 
Sensor locations 

1 

1 Element 16, (-10%) 

1(Optimal, 6) 

N11(y), N14(x) 

N7(y), N11(x) 

N8(y), N12(y) 

2 2(Non-optimal, 2) N14(y), N14(x) 

3 3(Non-optimal, 6) 

N14(y), N14(x) 

N13(y), N12(x) 

N11(x), N13(x) 

4 

2 
Element 4, (-10%) 

Element 13, (-10%) 

1(Optimal, 6) 

N11(y), N14(x) 

N7(y), N11(x) 

N8(y), N12(y) 

5 2(Non-optimal, 2) N14(y), N14(x) 

6 4(Optimal, 2) N11(y), N14(x) 
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Fig. 3 Identification result of damage state 1 
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Fig. 4 Identification result of damage state 2 

 

 
5. Conclusions 
 

In this paper, the relationship between the error and the sensitivity matrix in damage 

identification method based on dynamic response sensitivity in time domain is investigated 

through the perturbation analysis. An index is defined according to the perturbation amplify effect 

and an optimal sensor placement method is proposed based on the minimization of that index. A 

sequential sub-optimal algorithm is presented which results in consistently good location selection. 

The proposed sensor placement method is derived from the undamaged structure and thus it is 
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independent of the damage configuration. Numerical simulations with a two-dimensional high 

truss structure are conducted to validate the proposed method. Results reveal that the damage 

identification using the optimal sensor placement determined by the proposed method can identify 

multiple damages of the structure more accurately. 
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