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Abstract.    The present work develops an expert system for detecting and predicting the crude oil types and 
properties at normal temperature θ 25 , by evaluating the dielectric properties of the fluid transfused 
inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) 
technique, then used the data measurements from ECS to predict the types of the other crude oil transfused 
inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in 
the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity 
to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite 
element (FE) simulation model is developed to measure the capacitance values and node potential 
distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor 
characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the 
finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using 
MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus 
validating the accuracy and reliability of the proposed technique. 
 

Keywords:  Electrical capacitance sensor (ECS); Finite Element Method (FEM); crude oil type detection; 
GFRE composite pipe; Artificial neural network (ANN) 

 
 
1. Introduction 
 

The petroleum pipelines companies are the companies that to be used for transmission of crude 
oil with different types and properties from mining countries to customer countries or shipping 
places. In the most petroleum pipelines companies have one to two pipeline at maximum for 
transmitting several types of crude oil with different properties at the same time and side by side, 
because, it is impossible to transmit each type of crude oil in one pipeline alone, this means large 
pipeline installing area, and high installing cost. Therefore, the economic strategy for these 
companies aim to transmitting several types of crude oil at the same time in the same pipeline to 
save the cost. Among the most famous and largest companies in the Middle East, for example, 
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Arab petroleum pipelines company 'SUMED' in Egypt, this large company is for transmitting 

crude oil coming from Asia countries, especially the gulf countries, where receives the crude oil 

from the red sea and transmit it with different types in the same pipelines for charging in tanks 

before shipping in the white sea to customer countries in Europa and America, in order to save 

time and cost, instead of the other transmission methods. So, one of the major problems in these 

companies concerns how to separate the crude oil types coming in the same pipelines to charge 

each type in separate storage tank before shipping to customers.  

The common traditional techniques that used in most petroleum pipelines companies are 

achieved by taking samples from the pipe and analysis them as a function of time, this technique 

has loss the sensitivity, accuracy and allow to mix the different oil types in the same time, causing 

financial penalties of companies. 

ECS is one of the most mature and promising methods, which measures the capacitance change 

of multi-electrode sensor due to the change of dielectric permittivity being imaged, and then 

reconstructs the cross-section images using the measured raw data with a suitable algorithm. It has 

the characteristics such as low cost, fast response, non-intrusive method, broad application, safety 

(Yang, Stott et al. 1995a, Yang, Beck 1995b, Li and Huang 2000, Mohamad, Rahim et al. 2012, 

Zhang, Wang et al. 2014). 

ECS was first introduced in the 1980s by a group of researchers from the US Department of 

Energy Morgantown Energy Technology Center (METC), to measure fluidized bed system 

(Fasching and Smith 1988, Fasching and Smith 1991, Huang, Plaskowski et al. 1989). The 

technique have been developed rapidly during the past 10 years, and then they have become 

popular and gained importance to monitor industrial processes due to its low cost and its 

operability under harsh environmental conditions.   

The need for a more accurate measurement of ECS led to the study of the factors which have 

influence and effect on ECS sensitivity and sensitive domain of ECS electrodes. There are three 

factors have been studied and found which have effect on ECS measurements, e.g., pipeline 

material, inner dielectric permittivity (Jaworski and Bolton 2000, Pei and Wang 2009, Al-Tabey 

2010, Asencio, Bramer-Escamilla et al. 2015, Sardeshpande, Harinarayan et al. 2015, Mohamad, 

Rahim et al. 2016) and the ratio of pipeline thickness and diameter (Daoye, Bin et al. 2009, 

Altabey 2016), later Altabey (2016) found that the ECS environment temperature is effect on ECS 

sensitivity and sensitive domain of ECS electrodes with high percentage, so the environment 

temperature is the fourth factor of factors which have influence on ECS measurement sensitivity.     

The objective of this study is to develop a new non-destructive evaluation (NDE) technique for 

detecting and predicting the crude oil types transfused inside glass fiber reinforced epoxy (GFRE) 

composite pipes, as one of the most materials are utilized as transmission lines in the oil, gas, 

water and chemical industries instead of the steel pipe. This is due to their attractive physical, 

mechanical and thermal properties, particularly high stiffness and strength to weight ratio, 

excellent corrosion resistance and dimensional stability, this target will be achieved by detecting 

the local variation of the dielectric properties of the fluid inside the pipe at normal 

temperature (θ = 25℃) using an electrical capacitance sensor (ECS), and using the data coming 

from the sensory system to predict another types of fluids by designing and training an efficient 

artificial neural network (ANN) architecture is Radial Basis neural network (RBNN), with taking 

in to account the flow rate velocity and pressure effect. The simulation results are obtained using 

ANSYS and MATLAB software. The results show the excellent agreement between FE results and 

with RBNN results. 
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Fig. 1 Sketch of ECS system 

 
 
2. Electrical Capacitance sensor (ECS) 
 

ECS consists of insulating pipe, measurement electrode, radial screen and earthed screen (Yang 

and York 1999). The measurement electrodes are mounted symmetrically around the 

circumference of pipeline. Radial screen is fitted between the electrodes to cut the electro-line 

external to the sensor pipeline and reduce the inter-electrode capacitance. The earthed screen 

surrounds the measurement electrodes to shield external electromagnetic noise. In most application, 

ECS electrodes are mounted outside the pipeline which is called external electrode ECS (Yang 

1997). Electrical capacitance system includes sensor, capacitance measuring circuit and imaging 

computer is shown in Fig. 1. 

ECS converts the permittivity of inner media flow to inter-electrode capacitance, which is the 

ECS forward problem. Capacitance measuring circuit takes the capacitance data and transfers to 

imaging computer. Imaging computer reconstructs the distribution image with a suitable algorithm, 

which is called ECS inverse problem.  

 
2.1 The ECS geometrical model 
 

The model section comprises of an ECS column with 0.1 m inner diameter and 0.3 m height. 

The ECS is made up of GFRE composite material and having a ring of 12 electrodes (which are 
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separated from each other by small gap) on its outer periphery. Fig. 2 shows the cross section of 

12-electrode ECS system, in which R1 is inner pipe radius; R2 is outer pipe radius; R3 is earthed 

screen radius. The ECS also includes radial guard electrodes to constrain the field lines from the 

excited electrode and reduce the dependence of spacing between the electrodes and the screen as 

shown in the Figure. The function of the sensor includes measuring the capacitance between all 

possible combination pairs of the electrodes and converting the measured capacitance values in to 

the voltage signals. The sensors physical specification and the permittivity values of GFRE 

composite pipe are shown in Table 1. 

 
 
Table 1 Sensor physical specification 

ECS system Specification 

No. of electrodes  

Space between electrodes  

Inner/outer pipe diameter  

Earth Screen diameter  

Thickness of electrodes 

End guards 

Permittivity glass fiber/Epoxy 

Excitation voltage 

12 

2 mm 

94/100 mm 

110 mm 

1mm 

50 mm 

εg = 3.12 Fm
-1 

φ = 15 Volts 

 
 

 

Fig. 2 Cross section sketch of 12-electrode ECS 
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Table 2 Permittivity coefficient 𝜀𝑜 for the common crude oil types 

Crude oil (C.O) types according to gulf countries Permittivity coefficient  𝜺𝒐 

𝐴𝑖𝑟 𝜀𝑎 =  1 𝐹𝑚−1 

Saudi Arabia (𝑜𝑖𝑙1) 𝜀𝑜𝑆𝐴
=  2 𝐹𝑚−1 

United Arab Emirates UAE (𝑜𝑖𝑙2) 𝜀𝑜𝑈𝐴𝐸
=  2.2 𝐹𝑚−1 

Kuwait (𝑜𝑖𝑙3) 𝜀𝑜𝐾𝑢
= 3.75 𝐹𝑚−1  

Qatar (𝑜𝑖𝑙4) 𝜀𝑜𝑄𝑎
= 3.8 𝐹𝑚−1  

Bahrain (𝑜𝑖𝑙5) 𝜀𝑜𝐵ℎ
= 4 .15 𝐹𝑚−1 

Iraq (𝑜𝑖𝑙6) 𝜀𝑜𝐼𝑞
=  4.2 𝐹𝑚−1 

Oman (𝑜𝑖𝑙7) 𝜀𝑜𝑂𝑚
=  5.38 𝐹𝑚−1  

Iran (𝑜𝑖𝑙8) 𝜀𝑜𝐼𝑟
=  7.14 𝐹𝑚−1  

𝑊𝑎𝑡𝑒𝑟 𝜀𝑤 =  80 𝐹𝑚−1 

Data is adapted from: Saudi Aramco (2008), Saudi Aramco (2014) 
 
 

2.1.1 The physical properties of crude oil inside pipeline  
The measured electrical quantity of the crude oil types inside the pipe is depends on the 

conductivity and permittivity of the crude oil type. Permittivity is an electrical property that will be 

different for each of the crude oil type components, (permittivity is also sometimes called the 

dielectric constant). The permittivity can be measured using a capacitance sensor. The electrodes 

will act as a capacitance detector and the resulting capacitance can be measured between the 

electrodes. These capacitance will therefore vary when the permittivity changes, i.e., according to 

the type of crude oil. Table 2 shows the permittivity coefficient 𝜀𝑜 for the common crude oil types 

are mining in the gulf countries include Iran, Iraq, Saudi Arabia, Kuwait, Bahrain, Oman, Qatar, 

and the United Arab Emirates, comparing with permittivity coefficient of air and water.  

 
2.2 The ECS composition and working principle 
 

For 12-electrode system, the electrodes are numbered as shown in the Fig. 3, are excited with 

an electric potential, one at a time in increasing order, when one electrode is excited, the other 

electrodes are kept at ground potential as shown in the Fig. 3 and act as detector electrodes. When 

electrode No. 1 is excited with a potential, the change Q1,j  is induced on the electrodes, 

j = 2, ⋯ ⋯ , N can be measured. Next, electrode No. 2 is excited whereas, rest the electrodes are 

kept at ground potential, and the induced charges Q23, Q24, ⋯ , Q2N (𝑁 = 12) are measured. The 

measurement protocol continues unit electrode 𝑁 − 1  is excited. Using these charge 

measurements, the inter electrode capacitance Cij  can be computed using the definition of 

capacitance (Eq. (1)) i.e. 

𝐶𝑖𝑗 =
𝑄𝑖𝑗

∆𝑉𝑖𝑗
                             (1) 
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Where Qij is the charge induced on electrode j when electrode i is excited with a known 

potential. Vij is the potential difference between electrodes i and j (∆Vij = Vi − Vj). So the 

number of independent capacitance measurements M = 66 using Eq. (2) is 

𝑀 =
𝑁(𝑁−1)

2
                             (2) 

 It is important to note that these capacitances are dependent on the geometry of electrodes and 

the determined once size and location of the electrodes and the permittivity distribution ε𝑜(x, y) 

are known. A change in the permittivity distribution ε𝑜(x, y)  is naturally reflected in the 

capacitance measurements. The actual capacitance changes measured will be very small, in the 

order of Pico or Femto Farad(10−12F or 10−15F). Sequential electrodes are referred to as adjacent 

electrodes; have the largest standing capacitance, while diagonally or opposing electrodes will 

have the smallest capacitances. 

 

 

3. Finite element semulation model 
 

In terms of Electrical Capacitance sensor (ECS), the forward problem is the problem of 

calculating the capacitance matrix C from a given set of sensor design parameters and a given 

cross-sectional permittivity distribution ε𝑜. 

The forward model proposed for ECS (Xie, Huang et al. 1992) is based on finite element 

simulations. It is assumed that both the flow distribution and the electrical field during the 

measurement set are 2D and static. Changes in axial direction are neglected within the axial 

electrode length. Furthermore free charges in the flow are also neglected. Thus, the system obeys 

the following Poisson equation 

𝛻. ε𝑜(𝑥, 𝑦)𝛻𝜑(𝑥, 𝑦) = 0                      (3) 

The 2D models considered in this study were constructed using commercially available finite 

element software, ANSYS (The Electrostatic Module in the Electromagnetic subsection of ANSYS 

(2014), Al-Tabey 2012). The problem space was divided into triangular elements. In a region of 

ideal dielectrics and space charges, the potential distribution φ(x, y) inside the ECS is determined 

by solving the Poisson’s equation. For the boundary condition imposed on the ECS head by the 

measurement system, the potential distribution φ(x, y)  can be found. The electric field 

vector  E(x, y), the electric flux density D(x, y) and the potential function φ(x, y) is related as 

follows 

𝐸(𝑥, 𝑦) = −𝛻𝜑(𝑥, 𝑦)                          (4) 

𝐷 = ε𝑜(𝑥, 𝑦)𝐸(𝑥, 𝑦)                       (5) 

The change on the electrodes, and hence the inter electrode capacitances can be found using the 

definition of the capacitance and Gauss’s law based on the following surface integral 

𝑄𝑖𝑗 = ∮ (ε𝑜(𝑥, 𝑦)𝛻𝜑(𝑥, 𝑦). �̂�)
𝑆𝑗

𝑑𝑠                     (6) 

 

 

382



 

 

 

 

 

 

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN 

 

 

Fig. 4 (9798) Element map of finite element mesh 

 

 

 

Where: ε𝑜(x, y)  is permittivity distribution, ∇.   is divergence operator, ∇   is gradient 

operator, Sj  is a surface enclosing electrode j, ds is an infinitesimal area on electrode j, n̂ is 

the unit vector normal to Sj and ds is an infinitesimal area on it. 

 
3.1 The boundary conditions 
 

The potential boundary conditions were applied to the sensor-plate (electrodes). For one 

electrode, the boundary condition of electric potential (V=V0) with 15V (V0) was applied and 

another electrode was kept at ground (V=0) potential to simulate a 15V (RMS) potential gradient 

across the electrodes. For representing the natural propagation of electric field, the default 

boundary condition of continuity (n̂. (D1 − D2) = 0) was maintained for the internal boundaries. 

 
3.2 The field partition 
 

According to finite element analysis, we will carry out imaging of regional triangulation, it is 

necessary to divided pixel pipe into triangular finite element, because many pipes are round under 

the circumstances of a smaller number of pixels, we can achieve higher accuracy to use the 

triangle mesh than rectangular grids, To improve the accuracy of mesh, we will take subdivision 

method two times imaging region is divided into 4845 Elements. To improve the accuracy of mesh, 

we divided the meshed region again into 9798 Elements; the map is as follows in Fig. 4. 
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Fig. 5 The node potential distribution (Volt) of empty pipe (𝜀𝑎) right and full pipeline with oil1 (𝜀𝑜𝑆𝐴
)  

left 

 
 
4. Results and discutions 

 
4.1 The crude oil types detection 
 

The approach taken by ANSYS 2D is to divide the different materials and geometries into 

triangular elements as shown in Fig. 4, and to represent the electric field (see Eq. (4)) within each 

element with a separate polynomial. The software only computes the potential and the electric 

field values at the element nodes and interpolate between these nodes to obtain the values for other 

points within the elements. 

The Simulations, and node potential distribution of empty (𝜀𝑎) and full pipeline with oil1 (𝜀𝑜𝑆𝐴
) 

for the ANSYS 2D simulation, when electrode 1 is excited at normal temperature (θ = 25℃), are 

illustrated in Fig. 5 right and left respectively. 

The blue area represents the region of the pipe without potential i.e., φ = 0 but the colored 

areas represent the region of the pipe have the different potential (different node potential) i.e. the 

domain of electrode can be sensitive or detection domain. The red area represents the effect of the 

oil inside pipe on the node potential distribution when the pipe filling with was oil, and one 

electrode is excited; this means that high sensitivity to detect the change of fluid permittivity 

inside pipes. 

Using the scripting capabilities in ANSYS we can be simulated the M=66 capacitance 

measurements, for crude oil types. The 66 capacitance measurements from 2D ANSYS model for 

three types of crude oil are mining from gulf countries (oil1 (𝜀𝑜𝑆𝐴
), oil2 (𝜀𝑜𝑈𝐴𝐸

)  and oil6 (𝜀𝑜𝐼𝑞
)) 

comparing with Air 𝜀𝑎 and water 𝜀𝑊 at (θ = 25℃) are illustrated together in Fig. 6. 
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Fig. 6 Simulated capacitances from 2D ANSYS model for three types of crude oil (oil1 (𝜀𝑜𝑆𝐴
), oil2 (𝜀𝑜𝑈𝐴𝐸

)  

and oil6 (𝜀𝑜𝐼𝑞
)) at θ = 25℃ 

 

 

As shown in the Figs. 5 and 6 of model with permittivity changes we notice that the effect of 

the crude oil type changes inside GFRE pipe on the node potential distributions and capacitances 

values. When the primitively coefficient (εo) inside the pipe increase from value 1.0 for air to 80 

for water through different of permittivity values for crude oils, the node potential distributions 

and capacitances values decrease. So the node potential distributions depended on the type of the 

crude oil inside GFRE pipelines. 

The tendency curve of capacitance change against permittivity coefficient (εo) is shown in Fig. 

7. In first electrode pair, capacitance change decrease monotonously with the increase of 

primitively coefficient. Using the power formula (7) to fit the FE results of capacitance change 

have proved its suitability by giving acceptable values for the correlation factor (C.F) are very near 

to unity. The values of three constants (Crude Oil permittivity constants) 𝑎𝑖𝑗, 𝑏𝑖𝑗 and 𝑘𝑖𝑗 are 

displayed in Table 3. 

𝐶𝑖𝑗 = 𝑎𝑖𝑗𝜀𝑜
𝑏𝑖𝑗 + 𝑘𝑖𝑗                            (7) 

Where 𝑎𝑖𝑗=𝜀𝑎 is air permittivity coefficient, it is the permittivity baseline constant, 𝑏𝑖𝑗 is 

crude oil constant and 𝑘𝑖𝑗 is tendency constant between electrodes i and j, (i, j = 1,2,3,……,12). 

Fig. 8 shows the sensor sensitivity versus the permittivity inside the pipeline (εo). The sensor 

sensitivity is defined as 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦% =
𝐶a−𝐶o

𝐶a
× 100                   (8) 
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Fig. 7 Effect of crude oil type changes inside GFRE pipe on Capacitance measurements 

 

 

 

Fig. 8 Capacitance sensor sensitivity versus permittivity inside the pipeline (εo) 

 

 

Where Co and Ca  are the capacitance measurements for permittivity inside pipeline and air 

permittivity respectively. The sensor sensitivity increases with the increase in the absorption time, t 

as the sensor has a sensitivity ranging between 3.7777and 42.6421% for permittivity ranging 

between 2 for oil1 (𝜀𝑜𝑆𝐴
) and 80 for water (𝜀𝑊) and selected sensor geometrical parameters. 
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5. Artificial neural network (ANN) modeling 
 
Artificial neural network (ANN) is an attractive inductive approach for modeling non-linear 

and complex systems without explicit physical representation and thus provides an alternative 

approach for modeling hydrologic systems. Artificial neural network was first developed in the 

1940s. Generally speaking, ANNs are information processing systems. In recent decades, 

considerable interest has been raised over their practical applications. Training of artificial neural 

network enables the system to capture the complex and non-linear relationships that are not easily 

analyzed by using conventional methods such as linear and multiple regression methods and the 

network is built directly from experimental or numerical data by its self-organizing capabilities. 

Based on the different applications, various types of neural network with various algorithms have 

been employed to solve the different problems. In this work will be using the preferred ANN 

structures to predict the ECS capacitance change of presented numerical conditions.  

 

5.1 Radial Basis neural networks (RBNN) 
 
The RBNN has three layers consisting of input, a single hidden layer (function) and an output 

layer. The input layer is comprised of input data and the output layer yields the response of the 

network. The function layer is an intermediate layer between the input and the output layer. The 

activation function of the hidden layer neurons are a Gaussian transfer function. 

𝛷(𝑥) = 𝑒𝑥𝑝 *− (∑ ‖𝑥𝑗 − 𝑐𝑖‖
2𝑗𝑗

𝑗=1 2𝜎𝑖
2⁄ )+                 (9) 

Where (x) is the input vector, ci is the center of a region called a receptive field, σi is the width 

of the receptive field, Φ(x) is the output of the i
th
 neuron, and i is the number of neurons. 

RBNN network can learn faster than Feed-forward neural networks (FFNN) and needs fewer 

number of training data. The performance of RBNN critically depends upon the chosen center 

where the function value is higher and the spread, that is indicative of the radial distance from the 

radial basis function (RBF) center, within which the function value resides, is significantly 

different from zero (Buhmann 2003). The spread value in this work is selected arbitrarily based on 

the minimum error criteria. 
 
5.2 Performance evaluation measures 
 

It is very useful from the designer point of view to have an neural system aids to decide 

whether his suggested design is suitable or not by Compute the Mean Square error MSE from 

equation 

𝑀𝑆𝐸 = ∑ ((𝐶𝑖𝑗)
𝑛𝑛

− 𝐶𝑖𝑗)
2

𝑛⁄                      (10) 

Where (𝐶𝑖𝑗)
nn

 is the predicted capacitance change, 𝐶𝑖𝑗 the capacitance change measured 

from FEM, and n is the number of FEM measured data values. 

Thus, the performance index will either have one global minimum, depending on the 

characteristics of the input vectors. Local minimum is the minimum of a function over a limited 

range of input values. Local minimum is an unavoidable when the ANN is fitted. So a local 

minimum may be good or bad depending on how close the local minimum is to the global 
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minimum and how low an MSE is required. In any case, the method applied to solve this problem 

and descent the local minimum with momentum. Momentum allows a network to respond not only 

to the local gradient, but also to recent trends in the error surface. Without momentum a network 

may get stuck in a shallow local minimum. 

 
5.3 Radial Basis neural networks (RBNN) Design for ECS to predict  the types of the 

crude oil inside the pipe 
 
A RBNN structure is designed based on two layers, the first one with radial basis neurons while 

the second layer with pure linear ones as shown in Fig. 9.  

The training vectors formed the initial centers of the Gaussian RBFs. Determination of the 

hidden layer, in addition to the number of nodes in the input layer, for providing the best training 

results, was the initial phase of the training procedure. The target for MSE to be reached at the end 

of the simulations was 0.0001. Since the second step was largely a trial-and-error process, and 

involved RBNNs with the number of hidden layer neurons more than 10, it did not show any 

sizeable improvement in prediction accuracy. Thus the number of neurons (the number of RBFs) 

for the single hidden layer was selected as 10 neurons. Selection of the number of hidden layer 

neurons, with respect to the MSE term in the presence of different spread parameterized RBNNs 

are shown in Fig. 10.  

Choosing an appropriate spread constant will increase the accuracy of the network. The spread 

(the width of the RBFs’) constant of radial basis function was selected by using Genetic Algorithm 

(GA). GA may have the tendency to converge towards local optimum (Valle, Venayagamoorthy et 

al. 2008) rather than the global optimum of the problem, if the fitness function is not defined 

properly. The optimum spread parameter was selected as constant for all group of permittivity , 

after the trials with the selected hidden layer neurons number, the spread constant was selected as 

0.515 (see Fig. 11). 

RBNN is trained by measuring values of εo, θ to predict capacitance change 𝐶𝑖𝑗. In the first 

RBNN structure is applied for training the data of ECS for all types of crude oil are mining from 

gulf countries are presented in Table 2, comparing with Air 𝜀𝑎 and water 𝜀𝑊. Fig. 12 shows the 

training performance of suggested RBNN. Fig.13 represents the comparison between the FE data 

and the Radial Basis neural networks (RBNN) predicted data (ECS capacitance change) at 

(θ = 25℃) for first electrode pairs. The results of the RBNN show much satisfactory predication 

quality for this case study. 
 

 

Fig. 9 Schematic illustration of RBNN design for present study with input data εo, θ 
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optimum number of hidden layer neurons 

 
 

 

Fig. 11 Plot of MSE terms corresponding to selected spread parameters, used to select the optimum spread 

 
 
The value of mean square error (MSE) between the predicted and FE data for RBNN predicted 

for first electrode pairs, at (θ = 25℃), in order to obtain the best performances of the present 

network is 6.7398e-006. 
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Fig. 10 Plot of MSE terms corresponding to the number of hidden layer neurons, used for selecting the 
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Fig. 12 Training performance of suggested RBNN 

 

 

Fig. 13 Comparison between the FE data and RBNN predicted data at θ = 25℃ 

 
Table 3 Crude Oil permittivity constants (aij), (bij) and (kij) at θ = 25℃ 

 𝒂𝒊𝒋 𝒃𝒊𝒋 𝒌𝒊𝒋 C.F Error in (𝒂𝒊𝒋) % 

FE 1.083 -0.3584 0.7389 0.8801 8.3 

RBNN 1.125 -0.3329 0.6912 0.8819 12.5 

Avg. 1.104 ---- 0.71505 ---- ---- 

S.D. 0.029698 ---- 0.033729 ---- ---- 

10 20 30 40 50 60 70 80

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Permittivity (
o
) (F/m)

C
a
p

a
c
it

a
n

c
e
 C

h
a
n

g
e
 (

P
F

)

 

 

FE Data

RBNN Data

390



 

 

 

 

 

 

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN 

6. Discussion 
 

Fig. 13 represent the permittivity inside the pipeline (εo) against the capacitance change output 

from artificial neural network at (θ = 25℃). Using the power formula 𝐶𝑖𝑗 = 𝑎𝑖𝑗𝜀𝑜
𝑏𝑖𝑗 + 𝑘𝑖𝑗 have 

proved its suitability by giving acceptable values for the correlation factors (C.F) are very near to 

unity (see Table 3).  

Comparing the result predicted from artificial neural network and data obtained from FE 

method for the other values of permittivity inside the pipeline (εo), Table 3 it is concluded that the 

present artificial neural network is suitable and useful in predicting FE data. 

Analyzing the values of four constants  (𝑎𝑖𝑗), (𝑏𝑖𝑗) and (𝑘𝑖𝑗) taking into account the variation 

of permittivity inside the pipeline (εo), capacitance change (Cij), and considering Table 3 resulted 

in the following: 

1) For all pipeline environment temperature (θ), at maximum points, the tendency curve of 

capacitance change against εo, for the air permittivity 𝜀𝑎 has the highest capacitance change 

and the water permittivity 𝜀𝑊  has the lowest capacitance change, while the crude oil 

permittivity for the remaining capacitance change laid in between, with descending order from 

(𝜀𝑜𝑆𝐴
) to (𝜀𝑜𝐼𝑟

) with the same arrange in Table 2 respectively. 

2) The deviation in the values of the constant (𝑎𝑖𝑗) for FE data and RBNN data may be considered 

constant and equal to air permittivity 𝜀𝑎=1.0, the average value (Avg.) of constants (𝑎𝑖𝑗) was 

calculated of 1.104 and as the corresponding standard deviation (S.D) of 0.029698 was found to 

have acceptable values, as shown in Table 3. 

3) The values of the constant (𝑏𝑖𝑗) was found to depend on the permittivity inside the pipeline (εo) 

(i.e., crude oil permittivity) and capacitance change (Cij). 

4) The values of the constants (𝑘𝑖𝑗) for FE data and RBNN data may be considered constant and 

equal to slope of the tendency curve the average value (Avg.) of constants (𝑎𝑖𝑗) was calculated 

of 1.104 and as the corresponding standard deviation (S.D) of 0.029698 was found to have 

acceptable values, as shown in Table 3. 

 
 

 

Fig. 14 FE and RBNN results correlation using ECS 
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7. Conclusions 
 

For this work, the finite element method (FEM) and artificial neural network (ANN) techniques 

were used for modeling and simulating the electrical capacitance sensor (ECS) sensor to detect and 

predict the crude oil types transmitting inside GFRE pipelines, the following conclusions can be 

drawn:      

1) The pipeline internal permittivity, i.e., decrease of the pipeline inside permittivity, was 

discussed completely by using FEM numerical simulation software ANSYS. Maximum 

capacitance change is gotten at air permittivity 𝜀𝑎 = 1 𝐹𝑚−1, and the minimum the lowest 

capacitance change at water permittivity 𝜀𝑊 = 80 𝐹𝑚−1, while the crude oils permittivity for 

the remaining capacitance change laid in between, with descending order from (𝜀𝑜𝑆𝐴
) to (𝜀𝑜𝐼𝑟

) 

as shown in Table 2. 

2) A Radial Basis neural networks (RBNN) can be used as a method for simulating the ECS to 

predict the FE Data of capacitance change inside the pipeline due to change in the dielectric 

properties inside it (i.e., the crude oil types transmitting inside pipeline) at (θ = 25℃). 

3) Using the power formula 𝐶𝑖𝑗 = 𝑎𝑖𝑗𝜀𝑜
𝑏𝑖𝑗 + 𝑘𝑖𝑗 has proved its suitability for present study, and 

it is found that, the deviation of the constant (𝑎𝑖𝑗) for FE data and RBNN data with capacitance 

change (Cij) may be considered to be constant and equal to air permittivity 𝜀𝑎=1.0. 

4) The value of the constant (𝑏𝑖𝑗) was found to be depend on the permittivity inside the pipeline 

(εo) (i.e. Crude Oil permittivity) and the capacitance change (Cij) with high correlation factors 

(C.F).  

5) The values of the constants (𝑘𝑖𝑗) for FE data and RBNN data may be considered constant and 

equal to slope of the tendency curve. 

6) Finally, Fig. 14 shows a comparison between the capacitance change (Cij) obtained from the FE, 

(Cij)𝐹𝐸, and that of the RBNN, (Cij)𝑅𝐵𝑁𝑁. There are a good agreement between the RBNN and 

the FE results with a correlation factor of 0.9907. Thus validating the accuracy and reliability of 

the proposed expert system. 
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