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Experimental determination of the buckling load of a flat
plate by the use of dynamic parameters

Cheer Germ Got and Cheng Dar Liou#

Department of Civil Engineering, National Chung Hsing University, Taichung, Taiwan, R.O.C.

Abstract. After manufacturing a structure, the assembly of structural components is often not as perfect
as expected due to the immaturity of current engineering techniques. Thus the actual buckling load for an
element is sometimes not consistent with that predicted in the design. For design considerations, it is
necessary to establish an analytical method for determining the buckling load experimentally. In this
paper, a dynamic method is described for determining the linear buckling loads for elastic, perfectly flat
plates. The proposed method does not require the application of in-plane loads and is feasible for arbitrary
types of boundary conditions. It requires only the vibrational excitation of the plate. The buckling load is
determined from the measured natural frequencies and vibration mode shapes.
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1. Introduction

Thin plate elements in engineering structures are often subjected to in-plane loads of normal and
shearing forces. If these in-plane forces are sufficiently small, the equilibrium is stable and the
resulting deformations are characterized by the absence of lateral displacement. As the magnitude of
these in-plane forces increases to a certain load intensity, the stable equilibrium becomes unstable
and a marked change in the character of the deformation pattern takes place (Szilard 1974). That is,
simultaneous to the application of a disturbing force, (with the exception of in-plane deformations),
lateral displacements are introduced. In this condition, the plate is buckled. The importance of the
buckling load is the initiation of a deflection pattern, which, if the load is further increased, rapidly
leads to very large lateral deflections and eventually to structure failure (Ghali and Neville 1978). In
many practical situations it is necessary to determine the magnitude of the in-plane loads at which a
plate buckles. Conventionally, the buckling load is determined by measuring the plate's deflections
while increasing the imposed in-plane loads. However, an in-plane force may be difficult to impose
experimentally in many cases. Thus, an alternative method for determining the buckling load
without imposing in-plane loads must be developed. Research efforts (e.g., Lurie 1952, Baruch
1973, Sweet et al. 1971, 1976, 1977, Segall 1980, 1986, Sang 1988, Laura 1989) in this field of
buckling measurement may be classified into two categories: the static approach and the dynamic
approach. For the static approach, the implementation of a simulated load on the structure may not
be easy. For the dynamic approach, the characteristic dynamic parameters related to the bucking
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load are the major considerations. In 1997, Go et al. proposed an experimental method to determine
the buckling load of a straight structural member using dynamic parameters (Goet al. 1997). In this
paper, Go’s proposal is extended to the plate problem for determining the buckling load. This
method requires vibrational excitation of the plate. The buckling load is then determined from the
vibratory data, natural frequencies and mode shapes.

2. Analysis model

Consider a flat plate subjected to the action of in-plane forces,N,, N,, and N,,, as shown in Fig. 1.
Its strain energy, U, may be related to its deflected shape # (Timoshenko 1984), viz.
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The buckling shape of the plate may be expressed by the use of Lagrange’s interpolation function
W(x, v) (Zienkiewicz 1989),
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and D; denotes the deflection at the interpolation point {;, ;).

The equivalent nodal force Fj;, as shown in Fig. 2, which is associated with the displacement D
may be obtained by using Castigliano’s First Theorem (Ghali 1978)
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By introducing the definitions of in-plane forces Ny, Ny and Nyy as shown in Fig. 1
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Fig. 1 Flat plate subjected to forces N,, N, and N, Fig. 2 Scheme for the coordination of equivalent
nodal forces
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Ny=Nfi(x, y)
Ny=Nf;(x, )
Nxy=Nf3(x, y) (5)

then
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Dy, denotes the deflection at the point (K, /). Eq. (6) may be represented in matrix form as
{F'}=N[BI{D"} (7

where the matrix {F *} and {D*} are column matrices. Also, the equivalent force {F *} , may be
related to the deflection {D } as

{D}=[GUHF} ' ®)

where [G] is the flexibility matrix and its element G; the flexibility influence coefficient defined as
the displacement at node i due to a unit load applied at node j. Substituting Eq. (7) into Eq. (8)
yields

{D}=[GI{F }=N[GIIBI{D"}, M{D"}=[G][BI{D"} 9)
where /l:]lv
For a non -trivial solution one must have
ILG1[B1-ALI1|=0 (10)

The solution for the maximum eigenvalue A, , is related to the bucking loadN,,

using N,,= (11)

3. Establishment of the flexibility matrix

The differential equation of free vibration for a structural flat plate may be stated as (Timoshenko
1984):

DV* W+p‘92—ZV=0
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Assuming that the solution of Eq. (12) is separable into time and space factors, one may write
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where D=
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Substituting Eq. (13) into Eq. (12), leads to two differential equations
T+ T,=0 (14)
DV*p—pw; ¢,~0 (15)

where ®; and ¢;(x,y) are the natural frequency and corresponding mode shape of the ith mode
respectively. The model shape, ¢,(x,y) must satisfy the orthogonal condition

| [¢:9,pdxdy=M,5, (16)
(4)

where 0, is the Kronecker delta, p is the area density, and A/, is the generalized mass determined
using

M= | [¢;pdxdy (17)
(4)

The equivalent equation of the above-mentioned system, which is subjected to a static unit load
F=8(x—-&)8(y — 1), at the position x =, y =n, may be expressed as
DV W=5(x ~ &)y~ m) (18)

By Galerkin’s method, #{(x, y) may be approximated by a linear combination of function @, ¢,,
¢s,....) as

oo

W(xy)= Y, a;d(x.y) (19)
k=1
where g, are unknown constants that can be determined, and thus
¥ a [ [ (DV'0x9))-9,x.p)dxdy= [ [ 8(x— )8y — m)¢,(x.p)dxdy (20)
k=1 (4) (4)

By comparing Eq. (15) with Eq. (20), the unknown constants g; may be simplified by the use of
Eq. (17) to

ak:q)k(ésg) (21)
M, w;
The deflection curve W(x, y) may thus be obtained by substituting Eq. (21) into Eq. (19) to yield
SIRAACSY)
W(xy)= D, 2= (22)
k=1 M,
For x=&, y=n, the flexibility influence coefficient G; in Eq. (8) can then be determined:
| SIRAC)INESY)
G,=G(x,y; EM=W(x,y)= X, 2= (23)
k=1 M, w,

The parameter G(x,y; £,17) denotes the deflection at point (x,y) due to a unit lateral load at point
(£,m) (Bisplinghoff 1955). All of the information regarding the boundary conditions and material
properties are contained implicitly in the parameter G (Segall 1986).
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4. Solution consideration

Theoretically, the interpolation function of Eq. (3) for the buckling shape plays a dominating role
in the accuracy. With proper selection of the interpolation points (i.e., stations in the
experimentation) one may obtain a well-defined shape, which leads to satisfactory solutions.
Examples with extreme end constraints (e.g., free end and clamped end constraints) are chosen to
illustrate the feasibility of this method. The feasibility of the proposed approach was investigated
using the analysis of a rectangular flat plate with various end constraints, as shown in Fig. 4(a-f),
where S, C, and F represent simply supported, clamped and free ends, respectively. A simplified
and practical case, which still represents the characteristics of the general problem, is a rectangular
plate subjected to in-plane forces (Segall 1986). For example, in the case N=Nf (x, y) but N, and
N,=0, the first five modes of vibration were considered. By referring to Eq. (3) and Eq. (12), the
minimal number of stations (5x5), were implemented as shown in Fig. 3. At loading conditions f;(x,
y)=1, N,=N,,=0 and a/b=1.0, the results were very close to the exact solutions, as shown in Table 1

X

Fig. 3 Uniform distribution of 5x5 stations for the analysis of buckling load
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Fig. 4 Flat plates for analysis on solution consideration
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(Timoshenko 1984), except for the case of C-C-C-C. Theoretically, the buckling load is significantly
affected by the distance between the inflection points of a structural member, viz. the effective
length. Thus an increasing number of test stations provides a better representation of the buckling
shape and may improve the results. This improvement is also shown in Table 1 for 7 stations
instead of 55 stations. For the case of a non-uniform load distribution, as shown in Fig. 4(g-h), the
proposed approach also gives a very good result in comparison with the existing result, as shown in
Table 2. The presence of shearing force, (as shown in Fig. 4(i)), leads to good results when the
placement of stations is 7x7, as shown in Table 3. All of these examples lead to the conclusion that
the 7x7 station arrangement is sufficient for dependable accuracy.

5. Feasibility of experimental identification
In practice, the accuracy of the cxperimental determination of the buckling load is always affected

Table 1 Buckling load for varied boundary conditions

Exact solution 5XS5 stations 7x7 stations
Boundary
condition NC,(%) Ncr(%) Error% NN(%) Error%
b™h b h bh
S-F-S-F 9.695 9.585 -1.13 9.570 -1.28
S-S-S-F 14.212 14.240 -0.20 14,193 -0.15
S-C-S-F 16.778 16.829 +0.30 16.801 +0.13
S-S-S-S 39.478 35.509 +0.08 39.482 0.00
C-S-C-S 66.521 64.159 -3.55 67.130 +0.92
C-C-C-C 99.387 84.504 -14.97 97.672 -1.72

Table 2 Buckling load for varied loading conditions

Exact solution 5X5 stations 7x7 stations
O'C,(—?—) O'cr(—?‘) Error% O'C,(%) Error%
b h b h b°h
Triangular load 76.983 77.534 +0.72 77.123 +0.18
Biaxial load 19.739 19.754 +0.08 19.741 0.00

Table 3 Buckling load for the clamped plate subjected to axial force and shear force

. Exact solution 5X5 stations 7x7 stations

! r(%) : rc,(%) Error% TC,(%) Error%
b°h b°h b°h

0 145.182 161.597 +11.30 146.973 +1.23

0.5 69.975 67.484 — 3.56 70.890 +1.30

1.0 44.413 39.273 —11.57 44.740 +0.73

1.5 31.978 27.206 —-14.92 35.152 +0.54

2.0 24.773 20.707 -16.41 24914 +0.57
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Table 4 Maximum % errors of simulation experimentations

Experimental Boundary condition

error range%o S-F-S-F S-S-S-F S-C-S-F S-S-S-S C-S-C-S C-C-C-C
2 6 5 S 5 6 6
4 11 10 10 10 1 11
6 17 16 17 16 17 17

by factors such as experimental apparatus error, operator error, etc. To assess the possible errors for
the buckling load determination, a simulation experimentation was designed (Hillier 1974) and
carried out as follows: .
(1) calculation of theoretical vibration parameters [¢, ] and w, ;
(2) generation of experimental errors e within an error range using the Monte-Carlo method
(Hillier 1974); _

(3) simulation of experimental vibration parameters [¢, ] and @, using formulas ¢,=¢, X (1+¢,)

and ®,=w, x (1+e,);

(4) determination of [G] using Eq. (23);

(5) determination of [B] using Eq. (7);

(6) identification of N, using Eq. (11).

In the analysis, three different cases, with error ranges 2%, 4% and 6% were taken into
consideration. With 10,000 simulation experimentations in each case, the maximum error of N,, for
different boundary conditions is shown in Table 4. It may be inferred that the accuracy of the
buckling load identification is proportional to the measurement errors.

Since the model testing technique is well established, an identification error within 3% can easily
be reached. This means, from Table 4, that the proposed approach can provide an effective way to
determine the buckling load.

6. Conclusions

An analysis model for determining the buckling load of a flat plate utilizing dynamic parameters
determined experimentally was proposed in this paper. It was concluded that the proposed analysis
model is a valid method for determining the buckling load. The main advantages of applying the
proposed analysis model may be stated as follows:

(1) It requires only dynamic parameters, i.e. natural frequencies and the corresponding mode

shapes, for buckling load determination.

(2) 1t is suitable for all kinds of boundary conditions.

(3) There is no axial force required in the process.

(4) It is suitable for various loading situations.

(5) It does not require a detailed knowledge of the material properties.
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