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Isolated RC wall subjected to biaxial bending moment
and axial force
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Abstract. A numerical study using nonlinear finite element analysis is performed to investigate the
behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-
plane bending moments. For a nonlinear finite element analysis, a computer program addressing material
and geometric nonlinearitics was developed. Through numerical studies, the internal force distribution in
the cross-section is idealized, and then a new design method, different from the existing methods based
on the plane section hypothesis was developed. According to the proposed method, variations in the
interaction curve of the in-plane bending moment and axial force depends on the range of the permissible
axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the
out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate
strength. The proposed method is then compared with an existing method, using the plane section
hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength
for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength
for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-
plane local behavior of the individual wall segments that may govern the ultimate strength of the entire
wall.

Key words: biaxial bending; compression; finite element; interaction curve; plasticity; reinforced con-
crete wall.

1. Introduction

For residential tall buildings up to 30 stories in Korea, the bearing wall-slab system is popular.
The isolated reinforced concrete walls with long rectangular cross-sections are the essential
structural elements in this bearing wall-slab system. The walls are subjected to considerable gravity
load and lateral load due to wind and earthquake. Gravity and lateral loads induce axial forces and
both in-plane and out-of-plane bending moments in the walls. According to ACI 318-95 (American
Concrete Institute 1995) and the Korean Building Code for structural concrete, walls subject to
combined flexure and axial loads can be designed in accordance with the provisions for
compression members. These provisions are based on a design assumption that strains shall be
directly proportional to the distance from the neutral axis. Current design methods for compression
members are based on this assumption. Structural engineers also use the design methods for RC
walls under combined biaxial bending moment and axial force.

However, it should be noticed that the assumption is applicable only to line members such as
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(a) ®)
Fig. 1 Assumption of strain distribution for compression members under biaxial bending moments and axial
force: (a) Reasonable assumption for column; (b) Unreasonable assumption for wall

columns, where the dimensions of the cross-section are much less than its length. For the line
members, it is generally accepted that during flexural deformation, a plane of the cross-section
remains plane, and that strains in the cross-section are directly proportional to the distance from the
neutral axis (see Fig. 1a).

On the other hand, the wall with the long rectangular cross-section has very little out-of-plane
bending stiffness, as compared with in-plane bending stiffness. Under biaxial bending moment, the
skew neutral axis causes out-of-plane flexural deformations along the length. As a result, a
distortion in the cross section occurs, and a plane section is not maintained during the deformation.
This out-of-plane local behavior of the wall segments may govern the ultimate strength of the wall.
In slender walls, for example, local buckling can occur in the compression zone (see Fig. 2).

Z

Fig. 2 Local buckling of slender wall under biaxial bending moments and axial force
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Accordingly, the plane section hypothesis is no longer effective for the walls (see Fig. 1b). Current
design methods using the plane section hypothesis could lead to an inaccurate estimation of the
ultimate strength in the entire wall.

To the knowledge of the author, experimental studies for isolated walls with long rectangular
cross sections that are subjected to combined axial force and biaxial bending moments have not yet
been reported. Aoyama and Yoshimura (1980) did experimental studies for walls under biaxial
bending moments without axial force. However, the cross-sections of the specimens are close to
columns rather than walls. Although Huria et al. (1991) did numerical studies for barbell walls
under axial force and biaxial bending moments, they also used the plan section hypothesis. There
has yet been no discussion about whether the plane section hypothesis is applicable to isolated walls
under these combined loads.

The primary goal of the study presented in this paper is to develop a design method for isolated
walls under biaxial bending moment and axial force, which is different from the existing design
methods based only on the plane section hypothesis. For this purpose, a computer program for
nonlinear finite element analysis was developed. The internal force distribution in a cross-section of
the wall was investigated by numerical studies, using the computer program. Then, a design method
using an idealized distribution of internal forces is proposed.

2. Numerical model and implementation

A computer program addressing material and geometric nonlinearities was developed for studying
the three-dimensional behavior of a wall subjected to combined in-plane and out-of-plane loads. For
a material model of reinforced concrete, the unified method developed by Park and Klingner (1997)
was used. The unified method combines plasticity and damage models. The concrete plasticity with
multiple failure criteria addresses strength enhancement under multiaxial compression, and tensile
cracking damage. The Drucker-Prager model is employed for the compressive and tensile failure
criteria:

fi:gi(o-aJZ)_a-i(gpi) i:1’2 (1)

where gi(0,J,)=A4,,014,,./3J,TA4, @)

Here g,(0,J,) =effective stress; and o; =failure surface, which is the function of equivalent plastic
strain, &,. The subscripts i=1 and 2 indicate compressive crushing and tensile cracking, respectively.
The constants, 4;, Ap, and A5 can be determined using existing experimental results (Park and
Klingner 1997). The compressive and tensile failure surface functions can be obtained from
experimental uniaxial stress-plastic strain curves.

Associative flow and isotropic hardening are used for the stress-plastic strain relationships of both
compressive crushing and tensile cracking. Total incremental plastic strain is defined by the sum of
incremental plastic strains of both compressive crushing and tensile cracking:

Ag,=Ag,, + Ag,, (3)

Shell elements are used for the three-dimensional finite element analysis (see Fig. 3). For
numerical integration over the volume of the element, 54 Gaussian points composed of X3 points



472 Honggun Park

G

S
\\

Fig. 3 Nine-node shell element
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in the plane with 6 points over the thickness are used.

1t is idealized that reinforcing steel has smeared properties in the plane where the reinforcing steel
layer is placed. Tension stiffening stress induced by the interaction between cracked concrete and
reinforcing steel is idealized by a combination of tension softening and bond stresses (Park and
Klingner 1997). The bond stress is considered in the orientation of each reinforcement layer. For
numerical integration, 3x3 Gaussian points are used in each reinforcing steel layer. Therefore, 36
Gaussian points are required for a wall with double layers of reinforcement in both vertical and
horizontal directions.

The slenderness effect with respect to out-of-plane bending is also addressed. The Updated
Lagrangian Formulation is used for the geometrical nonlinearity (Bathe 1982). At each loading step,
the coordinates and the directional cosine vectors perpendicular to the tangent planes of the shell
elements are updated by the corresponding displacements.

The solution strategies for nonlinear computation are described in a previous study (Park and
Klingner 1997).

Since experiments for slender walls with long rectangular cross-sections subjected to both biaxial
bending moments and axial compressive force have not been reported, it is difficult to verify the
proposed numerical method. However, the same numerical method was also used in a study for flat
plates subjected to combined in-plane compressive and out-of-plane loads (Park 1999). In the study,
the proposed numerical method was veritfied by comparison with existing experiments of plates
subjected to the combined loads. The study for flat plates is similar to the present study for the
slender walls in that the two studies deal with a slender membrane under both in-plane and out-of-
plane loads.

3. Numerical studies
3.1. Properties and finite element model of wall

Fig. 4 shows the dimensions and the properties of the wall to be studied. The wall measures
5,000-mm wide X 3,000-mm high X 200-mm thick. At the bottom, the wall is rigidly supported for
all translational and rotational degrees of freedom except out-of-planc rotation. At the top, it is
supported in the direction perpendicular to the face of the wall. For vertical reinforcement, 25-D13
(D13: As=127 mm?) are uniformly distributed along the length at each face of the wall so that the
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Fig. 4 Properties and finite-element model of wall

reinforcement ratio is 0.0063. The horizontal reinforcement ratio is the same as the vertical
reinforcement ratio. The concrete cover for the reinforcing steel bars is 20 mm. The compressive
strength of concrete is 30 MPa. The yield stress of the reinforcing steel bars is 400 MPa.

As shown in Fig. 4, the finite element model of the wall is composed of 121 nodes, 25 shell
elements, and 10 beam elements. Axial forces and out-of-plane bending moments are uniformly
distributed at the top of the wall. Out-of-plane bending moments with the opposite sign and the
same magnitude are uniformly distributed also at the bottom. For in-plane bending moment, linearly
distributed vertical forces are loaded on the top of the wall without horizontal forces so that shear
forces do not affect its ultimate strength. The linearly distributed vertical forces are loaded on the
rigid beams located at the top of the wall. The beams have infinite in-plane stiffness so that local
damage due to the vertical forces does not occur near the top of the wall.

3.2. Wall under uniaxial bending moment and axial force

As a preliminary study for the wall under biaxial bending moment, and for verification of the
proposed numerical model, numerical studies for a wall under both uniaxial bending moment and
axial force were done. Figs. 5 and 6 show the numerical results. Fig. 5 shows the interaction curves
of in-plane bending moment and axial force. Fig. 6 shows the interaction curves of out-of-plane
bending moment and axial force. For verification of the numerical model, the numerical results
were then compared with the interaction curves by PCACOL (Portland Cement Association 1992)
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that is commonly used for designing columns and walls. In the interaction curves by PCACOL, the
parabolic curve with the maximum stress of f,” is used for the compressive stress-strain
relationship. In this paper, the positive sign indicates compression.

As shown in the figures, for in-plane bending moment, the numerical results agree with the
interaction curve by PCACOL. For out-of-plane bending moment, on the other hand, the numerical
results slightly overestimate the ultimate strength, near the balanced strain condition. Fig. 6 also
shows the numerical results including the slenderness effect. The nonlinear curves of the
eccentricity ratio (e,/f) with the slenderness effect are compared with the linear eccentricity ratios
without the slenderness effect. ‘

3.3. Wall under biaxial bending moment and axial force

For a wall under biaxial bending moment and axial force, the loading path of the internal forces
in the wall segments is conceptually presented in Fig. 7. At first, the wall is subjected to uniformly
distributed axial force and out-of-plane bending moment. Subsequently, it is subjected to in-plane
bending moment. The in-plane bending moment induces axial forces in the wall segments along the
length of the wall. The axial forces are added to the external axial forces (see Fig. 7a). As a result,
each wall segment can be idealized as a compression or tension member subjected to a combined
out-of-plane bending moment and axial force.

In Fig. 7(b), the loading path of the internal force in the wall segments is shown in the interaction
diagram of out-of-plane bending moment and axial force. Under this external out-of-plane bending
moment and axial force, the internal force moves from O to C. In the compression zone where the
subsequent in-plane bending moment induces compressive axial force, the internal force moves
upward from C to A. In the tension zone, the internal force moves downward from C to B. As a
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Fig. 7 Wall segments subjected to out-of-plane bending moment and axial force: (a) Additional axial force
induced by in-plane bending moment; (b) Loading path of internal force in the interaction curve of
out-of-plane bending moment and axial force

result, the potential maximum and minimum axial forces correspond to A and B, respectively. All
the internal forces in the wall segments exist on the loading path between A and B. Regardless of
the amount of the out-of-plane bending moment, A belongs to the range of compression control,
while B belongs to the range of tension control. If the internal force in the compression zone
approaches A before the internal force in the tension zone approaches B, then a compressive
crushing of concrete controls the ultimate strength. On the other hand, if the internal force in
tension zone approaches B ahead, yielding of reinforcing steel controls the ultimate strength.

For slender members, the axial force magnifies the out-of-plane bending moment. Therefore, as
shown in Fig. 7(b), all the internal forces exist on the curved loading path between A’ and B’. The
potential maximum and minimum axial forces also correspond to A’ and B’, respectively. It should
now be noticed that the magnified bending moments at A’ and B’ correspond to the internal axial
force including the external axial force and the contribution due to the in-plane bending moment. In
the design of a compression member, generally, the moment magnification factor is determined by
the external compressive force. However, the wall segments in the compression zone are subjected
to the internal compressive force that is larger than the external compressive force. The moment
magnification factor should be larger than that determined by the external force. Therefore, the out-
of-plane bending moments in the individual wall segments should be magnified by the internal
compressive force.

For verifying the loading path of the internal force, the following numerical studies were done.
The wall is subjected to the uniform out-of-plane bending moment of 600 kNm (120 kN-m/m) or
300 kN-m (60 kN-m/m), accompanied by various magnitudes of axial forces. Then, the in-plane
bending moment is increased up to the ultimate strength. Figs. 8(a) and (b) show the numerical
results without and with geometric nonlinearity. The figures show the variations of the linearlized
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Fig. 8 Variations of intraction curve of in-plane bending moment and axial force with out-of-plane bending
moments: (a) in cases when the slenderness effect is not included; (b) in cases when the slenderness
effect is included

interaction curve of in-plane bending moment and axial force, with the given out-of-plane bending
moments. The shape of the interaction curves is similar to that for a curve not affected by the out-
of-plane bending moment. The interaction curve shrinks as the out-of-plane bending moment
increases. In cases when the slenderness effect is included, the range of the permissible axial force
diminishes due to the magnified out-of-plane bending moment. Accordingly, the interaction curve
shrinks further. In Fig. 9, this can be observed also for a 10 meter long wall with the same
properties as the 5 meter long wall.

Fig. 10 shows the profile of the internal axial force with the numerical results shown in Fig. 8(a)
in the cases when the slenderness effect is not included. The internal axial forces are measured at
the Gaussian points along the length at mid-height (see A-A section in Fig. 4). As noted above, the
maximum and the minimum internal axial forces are determined by the magnitude of the out-of-
plane bending moment. As shown in the interaction curve of the out-of-plane bending moment in
Fig. 8(a), for 300 kN-m (60 kN-m/m) of the out-of-plane bending moment, the potential maximum
and minimum axial forces are 27800 kN and 0 kN, respectively. The potential maximum force per
unit length is 55.6 kN/cm (the maximum axial force=27800 kN; the maximum axial force per unit
length=27800 kN/500 ¢m=55.6 kN/cm). The potential minimum force per unit length is 0 kN/cm
(the minimum axial force=0 kN). As shown in Fig. 10(a), regardless of the magnitudes of the
external axial force and the corresponding in-plane bending moment, the internal axial forces do not
exceed both the maximum and the minimum that are defined in the interaction curve of out-of-plane
bending moment and axial force. As shown in the interaction curve of the out-of-plane bending
moment in Fig. 8(a), for 600 kN-m (120 kN-m/m) of the out-of-plane bending moment, the potential
maximum and minimum axial forces are 23000 kN and 4500 kN, respectively. The maximum per
unit length is 46 kN/cm (=23000 kN/500 cm), and the minimum per unit length is 9 kN/cm (=4500
kN/500 cm). As shown in Fig. 10(b), the internal axial forces do not exceed the maximum and the
minimum, either. The figures verify that the internal axial force per unit length does not exceed the
range defined in the interaction curve of the out-of-plane bending moment.

As shown in the figures, the distribution curve in the compression zone is approximately
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parabolic. The ultimate internal force at the end in the compression zone is the maximum. The
internal compressive force gradually decreases along the length toward the tension zone. Once
approaching the minimum at a location, the internal axial force then becomes uniform with the
minimum in the tension zone and the compression zone beyond the location. This indicates that
regardless of the increase in the tensile strain beyond the location, the load capacities of the wall
segments become uniform with the minimum. The minimum belongs in the range of tension control
in the interaction curve. In the range of the tension control, since the yielding of reinforcing steel
occurs before the compressive crushing of concrete, the behavior shows a relatively large ductility,
and the ultimate strength is almost equal to the yield strength. The minimum is not necessarily a
tensile force and could be a compressive force. As shown in Figs. 8(a) and 10(b), for 600 kNm
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(120 kN-m/m) of the out-of-plane bending moment, the minimum is a compressive force that is 9
kN/cm.

4. Proposed method for estimating ultimate strength -

The distributed internal forces should coincide with the corresponding strains. However, to
estimate the distributed internal forces and the corresponding strains requires complex numerical
calculations. Therefore, simple methods are required in practice for member design. In Fig. 10, the
numerical results show the profile of the distributed internal force. Based on the numerical results,
the distribution of the internal force can be idealized, as shown in Fig. 11. The distribution curve in
the compression zone is parabolic. The ultimate force of the curve is defined by the maximum,
Prax s given in the interaction curve of out-of-plane bending moment and axial force. The internal
compressive force, P(x), gradually decreases along the length toward the neutral axis. The internal
axial force in the tension zone is uniform with the minimum, P, . If the minimum is a
compressive force, the internal force then approaches the minimum in the compression zone. In the
tension zone and the compression zone beyond the location, the internal force becomes uniform
with the minimum.

The proposed method for estimating the ultimate strength of the wall uses the idealized
distribution of the internal axial force. The procedures for the proposed method are summarized by
the following steps:

1) Plot the interaction curve of out-of-plane bending moment and axial force for a wall segment

with unit length.

2) In the interaction curve, determine the potential maximum and minimum of the internal axial

forces corresponding to the given amount of the out-of-plane bending moment (see Fig. 12a).
The maximum belongs to the range of compression control. The minimum belongs to the
range of tension control.

3) In cases when the slenderness effect is included, the maximum and the minimum should

correspond to the out-of-plane bending moments that are magnified by themselves. Thus, use
the iterative method to determine the maximum and the minimum forces corresponding to the
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Fig. 11 Profile of idealized internal force: (a) Pin<0; (b) Poin 20
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magnified out-of-plane bending moment.

4) For a given location of the neutral axis, plot the profile of the internal force as shown in Fig.
11. Then, calculate the axial force and the in-plane bending moment with respect to the
centroid of the cross-section.

5) Repeat step 4) for different locations of the neutral axis. Then, plot the interaction curve of in-
plane bending moment and axial force, as shown in Fig. 12(b).

5. Comparison with numerical results

Figs. 8 and 9 show the comparison of the numerical results and the interaction curves produced
by the proposed method. The maximum and the minimum internal forces used in the proposed
design method are obtained by the finite element analyses. As shown in Fig. 7(b), they can be
obtained by either increasing or decreasing the axial force up to the ultimate strength with the
uniform out-of-plane bending moment. As shown in Figs. 8 and 9, the interaction curves by the
proposed method agree well with the numerical results, whether the slenderness effect is inctuded or
not.

6. Comparison with existing method

In Figs. 13 and 14, the interaction curves from the proposed method and PCACOL(Portland
Cement Association 1992) are compared. PCACOL uses the general assumption that strains in the
cross section shall be directly proportional to the distance from the neutral axis. The interaction
curve of out-of-plane bending moment and axial force used in the proposed method is given by
PCACOL. Figs. 13 and 14 show the interaction curves without and with slenderness effect,
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respectively. In cases when the slenderness effect with respect to the out-of-plane bending is
included, the moment magnification factor in ACI 318-95 is used.

C 2
§=—"_>1.0, where P== EIZ @)
1_.114 (k1)
P

C

It is assumed that C,=0.4, k=0.8, [,=4.0m, E/=0.4E_l,, and Ec:4700JE . With the constants, P, is
approximately equivalent to 34000 kN (68 kN/cm). In PCACOL, the moment magnification factor
is calculated with P, which is the external axial force. In the proposed method, on the other hand,
the moment magnification factor is calculated at the wall segment at the compression end.P, is the
maximum internal force corresponding to the given out-of-plane bending moment.

As shown in Fig. 13, compared with the proposed method, PCACOL overestimates the ultimate
strength for low out-of-plane bending moments, while it underestimates the ultimate strength for
high out-of-plane bending moments. As shown in Fig. 14, in cases when the slenderness effect is
included, there is a wide difference between the ultimate strengths given by the proposed method
and by PCACOL. In PCACOL, under 20000 kN of the external axial force, the moment
magnification factor is 1.0 so the slenderness effect is not included. In the proposed method, the
out-of-plane moment in the compression zone is magnified by the internal axial force that is larger
than the external axial. Therefore, the slenderness effect appears even under 20000 kN of the
external axial force.

This example does not indicate that the moment magnification factor in Eq. (4) is applicable to
the actual local buckling that is a complex mechanism. However, if the local buckling strength at
the maximum internal force of the wall segments can be defined precisely, then the strength of the
slender wall under combined axial force and biaxial bending moments can be determined by the
proposed design method.
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7. Conclusions

Numerical studies using nonlinear finite element analysis were done for investigating the behavior
of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-
plane bending moments. For nonlinear finite element analyses, a computer program addressing
material and geometric nonlinearities was developed.

Through numerical studies, the distribution of the internal force over the cross-sections of walls
was investigated. The numerical results reveal that: (1) the range of the internal axial force per unit
length depends on the given amount of the out-of-plane bending moment; (2) the potential
maximum and minimum of the internal axial force per unit length can be determined in the
interaction curve of out-of-plane bending moment and axial force; and (3) the maximum belongs to
the range of compression control, whereas the minimum belongs to the range of tension control.

Based on the numerical results, the distribution of the internal force was idealized. Then, a new
method for estimating the ultimate strength of the wall was developed. According to the proposed
method, variations in the interaction curve of in-plane bending moment and axial force depends on
the range of the permissible axial force per unit length that is determined by the given amount of
the out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction
curve shrinks, which indicates a decrease in the ultimate strength.

The proposed method is not based on the plane section hypothesis, so it was compared with an
existing method based on the plane section hypothesis. The comparison has shown that the plane
section hypothesis can lead to an inaccurate estimation of the ultimate strength of the wall.
Compared with the proposed method, the existing method overestimates the ultimate strength for
low out-of-plane bending moments, but it also underestimates the ultimate strength for high out-of-
plane bending moments. For slender walls, there is a wide difference between the ultimate strengths
given by the proposed method and that by the existing method.

Obviously, current design methods based on the plane section hypothesis can not address the out-
of-plane local behavior of an individual wall segment, including local buckling that may govern the
ultimate strength of the entire wall. On the other hand, the proposed method provides a reasonable
approach that can address the out-of-plane local behavior of the wall segments.

The proposed method can be used only for isolated walls with uniformly distributed
reinforcements. Further studies are required for walls with different conditions.
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Notation

The following symbols are used in this paper:

Ay = area of reinforcing steel bar;

€ = eccentricity with respect to in-plane bending;

e = eccentricity with respect to out-of-plane bending;

E. = the modulus of elasticity of concrete, MPa;

f = failure criterion;

1. = concrete cylinder strength;

g = effective stress;

I = moment inertia of gross concrete section about centroidal axis;
S, = second deviatoric stress invariants;

k = effective length factor for compression members;

L, = unsupported length of compression member;

L = length of wall;

P, = external axial force;

P. = critical force;

P(x) = internal axial force per unit length at x along the length of wall;
P max = potential maximum axial force per unit length;

Pin = potential minimum axial force per unit length;

x = distance from neutral axis;

Xo = distance from compression end to neutral axis;

Ag, = total incremental plastic strain vector;

Ag,; = incremental plastic strain vector of compressive crushing or tensile cracking;
o = moment magnification factor;

= hydrostatic pressure; and
; = function of the failure surface.





