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Serendipity and bubble plus hierarchic finite
elements for thin to thick plates

Lucia Della Crocet and Terenzio Scapolla¥

Dipartimento di Matematica, Universita di Pavia, 1-27100 Pavia, Italy

Abstract. In this paper we deal with the numerical solution of the Reissner-Mindlin plate problem with
the use of high order finite elements. In previous papers we have solved the problem using approximation
spaces of Serendipity type, in order to minimize the number of internal degrees of freedom. Since further
numerical experiences have evidenced that the addition of bubble functions improved the quality of the
results we have modified the previous family of hierarchic finite elements, adding internal degrees of
freedom, to make a systematic analysis of their performance. Of course, more degrees of freedom are
introduced. Nonetheless the numerical results indicate that the reduction of the error outnumbers the
increase of degrees of freedom and therefore bubble plus elements are preferable.
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1. Introduction

The so-called Reissner-Mindlin plate describes the deformation of a plate subject to a transverse
Joading when transverse shear deformation is taken into account. According to the model fibers normal
to the undeformed middle surface remain on a straight line which is not necessarily normal to the
deformed middle surface. The model, in its formulation, involves the transverse displacement of the
midplane and the rotation of fibers normal to the midplane. The variational setting makes use only of
first derivatives. For this reason continuous functions ensure a conforming approximation. Despite its
simple approach the discretization of the Reissner-Mindlin model is not straightforward. The inclusion
of transverse shear strain effect in standard finite element models introduces undesirable numerical
effects. The approximate solution is very sensitive to the plate thickness and, for small thickness, it is
very far from the true solution. The phenomenon is known as locking of the numerical solution. As the
plate thickness becomes small the Reissner-Mindlin model enforces the Kirchhoff constraint that the
rotation equals the gradient of the displacement. At the continuous level this means that the solution of
the Reissner-Mindlin model converges to the solution of a biharmonic problem. At the discrete level the
KirchhofT constraint is imposed on the finite element subspaces in the limit.

Standard low order finite clements are not able to meet the Kirchhoff constraint and therefore are
subject to the locking phenomenon. The most common way to avoiding the locking problem is to
modify the variational formulation in order to enforce a weaker discrete Kirchhoff condition (see, e.g.,
the MITC formulation (Bathe 1982, Brezzi et al. 1991, Della Croce et al. 1995)). In previous papers
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(Della Croce er al. 1992) we have dealt with the Reissner-Mindlin problem combining its plain

formulation with the use of hierarchic high order finite elements. The locking phenomenon was
strongly reduced and the numerical performances were quite effective for all practical values of
thickness. However, analyzing the behavior for # — 0, it appeared that locking was still present. To keep
low the number of degrees of freedom we used finite elements of Serendipity type, where the number
of internal shape functions is highly reduced. A natural idea is to test complete finite elements, i.c.,
clements using complete polynomial approximation spaces, for comparing their performances against
Serendipity elements. Such a problem has been recently addressed and carefully analyzed by Babuska

and Elman (1993) in the framework of the so-called 4-p version of the finite element method. We focus
our attention on the performances of the finite elements applied to the Reissner-Mindlin plate problem.
Due to the hierarchic structure the implementation of the new elements has required only minor
modifications of the previous program. Two main results have been achieved. First, a remarkable
improvement of the quality of the results; when cost versus accuracy is considered, complete elements
are more convenient: the gain in convergence outnumbers the increase of cost due to the larger number
of degrees of freedom. Second, from the value p=3 onwards the elements exhibit a weaker form of
locking. The reason is due to the fact that the corresponding approximation spaces are “enough rich”, in
a sense that will be explained on a mathematical basis, to overcome the numerical misbehavior and
produce satisfactory results.

The outline of the paper is the following. In Section 2 we recall the Reissner-Mindlin model for
plate problems. In Section 3 we describe the finite elements approximation and introduce the new
hierarchic finite elements. In Section 4 we deal with the discrete problem. Finally, several numerical
results are reported.

2. The Reissner-Mindlin assumptions for the plate problem

Hereafter we shortly recall the problem. Details can be found, e.g., in Zienkiewicz (1991). We
consider the Reissner-Mindlin assumptions for the plate bending problem. This plate theory takes
into account the transverse shear deformations. The theory uses the hypothesis that particles of the
plate originally on a line that is normal to the undeformed middle surface remain on a straight line
during deformation, but this line is not necessarily normal to the deformed middle surface. The so-
called in plane displacements u, v and the normal displacement w have the form

u(x,y,2) = 2y,(x, y)
V(6 y.2) = 2y, (x, )
wx, y,2) = V(%) (1)

The functions y; and v, are the rotations of the normal to the undeformed middle surface in the x-z
and y-z planes, respectively. The strain energy U can be written in the two components U, and U,
representing the bending and shear contribution to the energy, respectively. Setting U=U,+U, we have

3
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In the previous relations Q denotes the domain of the plate, £ the Young's modulus, ¢ the thickness of
the plate, v the Poisson's ratio, k the shear correction factor (usually taken as 5/6). The solution of the
problem requires the potential energy to be stationary, i.e., the functional U=U(¥, V,, V) attains its
minimum. Taking into account the contrlbutlon of the external load flx, y), after scaling, normalizing
some physical constant and setting 5 (0. 9,)s l[/ (y,, y,) the problem can be stated as:

Find((?), w) € WXV satistying
J@w) = min J( v) @)

(g, v)e ¥XV

%
where J(y;, v) is of the form
> 1, . >-> 1. >
J(Wv) = SA(Y W) + 5t Avo-3l- ;v
and A($, W) is defined as

A((;’ —ll>/) E(l—j {¢x/xl//x/x+ ¢y/yl//y/y

+v((tb)(/x“//y/v + ¢y/yl)l,x/x)+ (¢x/y + ll/y/x)(l//x/y + l,/y/x) }dXdy (5)

We consider, for the sake of simplicity, the case of a clamped plate. In this case we have %(H(l))z
and V= H(l). Setting

T =34 ) - (S V) ©)
1 v-3vo-p M
I, V)=J,(%, 0) + £ (W, V) ®)

we are looking for

min  J(% )= min [J,(% )+ 1 L V)]

(;,v)e?’xV (y,v)e ¥xV

©)

We are interested in finite elements that yield good approximations when the thickness ¢ becomes
small. An optimal element is one that is uniformly good for # — 0. The limit problem for =0 can be
written as

. >
Ji($w)=  min  J(¥ )
(¢, v)e ¥xV (10)
Jz(;y>, 0)=0
In the limit case =0 we have $:Vw , 1.e., the Reissner-Mindlin problem converges to the Kirchhoff
problem.
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3. Finite elemént approximation

In Della Croce et al. (1992), we have introduced a family of hierarchic finite elements to
overcome the locking of the numerical approximation of the Reissner-Mindlin plate. While the
common feature of most finite elements proposed by several authors is the low order together with
a modified formulation, we have combined the plain formulation with the use of high order finite
elements. Although our numerical results indicate that high order elements are able to absorb the
locking phenomenon for all thickness of practical interest, we have noticed a relation linking the
order of the polynomials used in the approximation and the locking behavior. Since we have used
classical Serendipity elements, i.e., elements with the minimum number of internal degrees of
freedom (see, e.g., Szab6 ef al. 1991), a natural idea is that of testing the performance of complete
finite elements. Hereafter we first briefly illustrate the features of the Serendipity finite elements and
then we explain the modifications made to add internal degrees of freedom. Only polynomial
functions are used to construct the approximation spaces. The same spaces arc used to approximate
normal deflection and rotations. The degree of the polynomial spaces varies from one to four. The
family is hierarchic, i.e., new shape functions are added to increase the degree of approximation,
leaving unchanged the previous functions. The functions used are based on the family of Legendre
polynomials to reduce the roundoff error accumulation with respect to the increase of the
polynomial degree. Moreover, the orthogonality properties of Legendre polynomials are transferred
to the elementary stiffness matrix which has the minimum number of nonvanishing elements. Finite
elements of Serendipity type are used in order to minimize the number of internal degrees of
freedom. We denote the elements of the family with the names R4, R8, R12, R17, where R stands
for rectangular element and the number refers the degrees of freedom (of each field).

As previously mentioned, in this work we present a new family of finite elements characterised
by the presence of suitable internal functions. These functions are frequently named bubble
functions, since they vanish along the whole boundary of the finite element and are different from
zero only in the interior of the element. The use of bubble functions is known to be rather effective
(see, e.g., Babuska et al. 1993, Pinsky et al. 1989). The aim of this work is to analyze the effect of
additional functions and to evaluate the global performance with respect to an accuracy versus cost
criterium. We introduce the family of modified elements, named R9, R16, R25, according to the
previous convention. We note, on passing, that as an intermediate step we introduce two other
elements, denoted by R15, R22. These elements, beside having good convergence properties, have
been proved to be useful in the framework of a special mixed formulation (see Della Croce ef al.
1995, Perugia et al. 1997). We observe that the element corresponding to p=1 does not include
internal degrees of freedom, since the space of bilinear functions is fully described by four shape
functions. Therefore the elements are the same in the old and new family. The family {R4, R,
R16, R25} is still hierarchic, i.e., the stiffness matrices of lower degree are simply the submatrices
of the one of higher order. The improved hierarchic elements are obtained by adding internal
degrees of freedom to the previous family {R4, R8, R12, R17}. Only the number of internal
functions is modified, while nodal and side functions are left unchanged.

Let P, denote the space of polynomial of degree up to p in each of the two variables. Let S, be
the polynomial spaces of the Serendipity hierarchic shape functions of degree p. Let 0O, be the
standard complete space of polynomials of degree p in each of the two variables. Let B, be the
intermediate space, obtained by S, adding only a limited number of bubble functions. Due to the
construction, for a given degree p, the following relation hold between the finite dimensional
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Table 1 Total number of shape and bubble functions for the spaces S, B, O,

Shape functions Bubble functions
p
Sp By O Sp B, O
1 4 4 4 0 0 0
2 8 9 9 0 1 1
3 12 15 16 0 3 4
4 17 22 25 1 6 9
spaces:
pP,cS,cB,cQ, (11)
and therefore
dimP,<dimS,<dimB,< dimgQ, (12)

In Table 1 the dimensions are given for some values of the degree p. Moreover, the number of
internal functions is reported.
For a general value of p the dimension of each space is:

dimSp:4p+%(p—2)(p—3) (13)
dimB,= %p(p+7) = 4p+%p(p— 1) (14)
dimQ, = (p+1)°’ = 4p+(p-1)° (15)

To obtain the space B, we take all monomials of the space S, and we add the following monomial
terms:

p=2: 0

p=3: (0 XY

p=4: {0, X, A, P, 2
A convenient basis for the space O, will represent all polynomials made of monomials of degree up
to p in each of the two variables x and y. In Table 2 the single monomials terms of the spaces S,,
B,, O, are listed. More precisely, for the standard hierarchic space S, the monomials are added to
increase the degree p. For the spaces B, and (), only the monomials to be added to the
correspondent space S, and B, respectively, are listed.

Let us describe the main features of the new elements compared with the old ones. We consider
the standard square reference element -1, +1]x[-1, +1].

Table 2 Monomial terms of the spaces S, B,, O,

P Serendipity space S, Intermediate space B, Complete space (),
1 {L, x, y, xy}

2 2, Xy, 07, '} )

3 0, Xy w7, '} {7, X2, Xy’ Xy}

4 0, 1y, ot 4, ) &5, 5, 0, 1, Y L, oy, XY
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o o
°
o— o -

R8: 3 x 8 dof R9: 3 x9 dof
Fig. 1 Serendipity and complete element for p=2

Element R9. The classical Serendipity element of degree two has eight degrees of freedom. The
improved element is obtained by adding the sole bubble functions of degree two, i.c., the function

bi(x,y) = (1-x")(1-y%) (16)

In Fig. 1 both Serendipity and complete element are shown. We recall that for each node three
degrees of freedom (one for the displacement and two for the rotations) are present.

Elements R15 and R16. The classical Serendipity element of degree three has twelve degrees of
freedom. The improved element is obtained by adding three bubble functions. Since we are dealing
with hierarchic elements we keep the previous function and to obtain R15 we add the following
functions:

bz(x,J’) = XXbl(x7y) (17)

b3(x>y) :yXbl(x’y) (18)

In a different way, the bubble functions we have added can be described as the product P,®b,(x,
y). Furthermore, by adding the function

b4(x:J’) = XJ’Xbl(x,J’) (19)

we get the element R16. In this case the set of bubble functions we add can be described as the
product O; ® b(x, y). In Fig. 2 the elements are shown.

Elements R22 and R25. The classical Serendipity element of degree four has seventeen degrees of
freedom and includes the bubble function b,. Adding five bubble functions we get the element R22.
We keep all the previous bubble functions and add:

bs(x,y) = x* X by(x,y) (20)
2 2
2 2 2 .3 2 2
2 2
R12 : 3 x 12 dof R15: 3 x 15 dof R16 : 3 x 16 dof

Fig. 2 Serendipity, intermediate and complete
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3 3 3
F— o o
3 @ 3 3 @F 3 3 @Y 3
3 3 3
o — o [
R17: 3 x 17 dof R22 : 3 x 22 dof R25 : 3 x 25 dof
Fig. 3 Serendipity, intermediate and complete
be(x.) = ¥' X bi(x,7) 1)
The set can be described as the product P, ® b1(x, y). Furthermore, by adding the functions
ba(x,y) = X'y xbi(x,y) (22)
bs(x,y) = xy" X by(x,y) (23)
by(x,7) = X'y’ X by (%, ) (24)

we get the complete element R25. In this case the set of bubble functions can be escribed as O, ®
bi(x, ). In Fig. 3 the elements are shown.

4. Discrete problem
Problem in Eq. (4) can be given the following discrete formulation:
Find((?)h, w,) € W, X V,satisfying
JGpw) = min  J(, v,) @5)

O v e WXV,

where J( 17/;1, v,,) is of the form
-> 1, > - 1 >
J(y, v,) = EA(Wh, Vi) + >t ZHVUh - UhH =/, V)

and the bilinear form A is defined as in (5).
We can write the problem as

? . ->
J(@nwy) = . min J (Wi, V)
(yn, v,) e W, xV, (26)

N
Jr(yn v,) =0

with J,(Ws, v,) and J,(W, v,) defined as in Egs. (6) and (7).
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The previous relation is valid for the limit problem (¢ — 0). The locking phenomenon, i.c., the
degeneration of the numerical solution, is due to the fact that the discrete space

Ky = {(¥ 1) € WX V0 = V,} 27)

reduces to the null function. Equivalently, we have locking when

H%, - VvhH= 0= 1_/)/,, =Vy, = 0 (28)

When the space K, is “enough rich” then locking can be avoided and error estimates of the
following type can be proved:

min  ([§- %l + o w1 = 00 (29)

(Y ) € K,

for some positive constant o.

We show that the element R16 satisfies relation (29) with =2. Such an estimate is not optimal
but nevertheless guarantees a stable numerical behaviour.

Let us denote by Z, the space corresponding to the finite element introduced by Bogner, Fox and
Schmit (see, e.g., Ciarlet 1978). Such a finite element has 16 degrees of freedom and the shape
functions are locally represented by the space (J;, consisting of the polynomials of degree up to
three in each of the two variables x and y. The Bogner-Fox-Schmit element is of class C'. When the
space V}, is such that

V,>Z, (30)

then, given a function v € ¥, we can take its interpolated v’ € Z,. Due to the C' continuity the
function V v/ is of class C°. Having satisfied the inclusion

¥, o5VZ, 3D
we can take W = Vv, thus having all the pairs (17/], Ve K » - We can show that when the spaces

V, and ¥, satisfy inclusions (30), (31), and therefore K, does not reduces to the null function, then
the following estimate holds:

min (|-Gl + o= w1 = 0 (2)
(Wi vy) € Ky
Indeed we have:

min ([ 3=l o- vl <dF- s+ o ol

(W v,) € K,y
= [[vo-voli + -1 <fv-2, (33)

and since v’ € Z, = Oy O P;5 (32) is proved using the standard interpolation estimate
[v- . = o*) (34)

Let us explain how relations (30)-(31), and therefore the estimate (32), hold for the finite element
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R16 giving some more details. The shape functions of the finite element R16 are locally represented
by the pace (s, i.e., exactly the same space used in the Bogner-Fox-Schmit element. Therefore we
have

Vi=Z, (35)

In the finite elements we have introduced the same approximation spaces are used for both normal
displacement and rotations, and therefore the following relation is satisfied:

Y, =V, (36)

Of course, such a choice guarantees that Eq. (31) is satisfied.

5. Numerical results

The following variational formulation has been used for the implementation of the finite elements
previously introduced:

Find((?)h, w,) € ¥, X V,such that

) (37
—E A T+ 3o (T B0, V0, - ) = (£ 0) (T, v) € ¥,

12(1 -v7) (1+v)

We consider a unit square plate with uniform decomposition in rectangular elements. Due to the
symmetry of the domain the computations have been performed on a quarter of plate only. Numerical
experiences with distorted decompositions have been carried out using the hierarchic finite elements
for shell structures in the Naghdi's model, based on the Reissner-Mindlin assumptions (see Della
Croce, Scapolla 1999a and 1999b). It is known that high order finite elements are able to deal with
severely distorted decompositions (see Szabo, Babuska 1991).

The plate is subject to the uniform load f=1.0. We take Young's modulus £=3 X 10° and Poisson's
ratio v=0.3. Different boundary conditions have been imposed: clamped, soft and hard simply supported.

To compute the integrals appearing in Eq. (37) we use classical quadrature formulas of Gaussian
type. Let us denote by MD the maximum degree of the polynomials appearing in the integrals, by
NPI the number of points of integration and by ED the degree of exactness of the correspondent
quadrature formula. In the following table we report the quantities related to the degree p of the
finite elements:

Using the number of integration points indicated in Table 3 we compute exactly all the integrals
appearing in Eq. (37). We remark that the actual computation of the stiffness matrix is made simpler
by the fact that the same discrete space is used to approximate displacement and rotation

Table 3 Type of Gaussian integration formulas

p MD NPI ED
1 2 2X2 3
2 4 3%3 5
3 6 4% 4 7
4 8 5%5 9
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components. The quantities are computed and stored once for all and then used to assemble the
stiffness matrix. Hereafter we present some results related to the clamped plate problem. The
clamped plate is the more effective test to check the robustness of finite elements respect to the
locking effect. The reason is due to the fact that a clamped boundary is more prone to locking than
a simply supported boundary. For a clamped plate we impose the following condition on the
boundary 02 of the plate

w(x,y) = 9.(x,y) = ¢,(x,y)=0 on 0Q (38)

Several tests with different values of thickness have been performed toanalyse reliability and
robustness of finite elements. For each test, among others, displacement at the center C of the plate
and the discrete strain energy have been computed. Let w,(C) denote the exact displacement at the
center of the plate (see Timoshenko 1970) and wy(C) the finite element solution. The relative
displacement error is defined as

wex(c) — Wh(c)

oo X100 (39)

The exact strain energy was not available. Out of the discrete strain energy an extrapolation has
been made in order to get an accurate value of the energy. Let £, denote such an energy, let £, be
the discrete energy. The relative energy norm ||| of the error e=w,.,—w; can be expressed in the
following way:

E _FE 1/2
lell = ( ” ”) x 100 (40)
EEX

Pointwise evaluation of the displacement error is, of course, a local error indicator whereas the
energy norm error is a global indicator. The following figures give the displacement error versus the
number of degrees of freedom and the energy norm error versus the reciprocal number of the mesh
size parameter. In each figure the dashed line refers to the Serendipity elements, the continuous line
to the complete elements, except for the R4 element where only one line is present. We consider a
range of values of ratios between thickness and side length varying from =0.1 (thick plate) to
t=0.0001 (very thin plate). In each figure we show the performance of the family of finite elements
for a prescribed thickness. Since the numerical results obtained with the elements R15 and R16,
R22 and R2S, respectively, are very close and the corresponding line overlap in the figures, only the
the results for R15 and R22 are reported. We give some comments to the numerical results shown
in Figs. 4 to 12.

Let us consider first the displacement error (Figs. 4, 6, 8, 10, 12). In all the figures we can
observe that the performance of the complete elements is substantially improved with respect to the
Serendipity elements and the locking phenomenon is kept under control, especially when the
thickness of the plate becomes smaller. More precisely, for thick plates ¢(=0.1 and #=0.01 the
improvement is less pronounced due to the fact that the corresponding Serendipity elements already
give good results. For =0.001 the improvement is quite remarkable for p=2 and p=3, where the
Serendipity elements had poor performances. For /=0.0001 the element R9 and R15 outperform the
corresponding Serendipity elements R8 and R12, clearly subject to locking behavior. The element
R22, compared with R17, shows very precise results even for coarse decompositions. For very thin
plates (+=0.00001) the performance of the elements R15 and R22 is strongly improved with respect
to the elements R12 and R17.
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Let us now consider the energy norm error (Fig. 5, 7, 9, 11, 12). As we have already pointed out,
the energy norm error is a global error indicator. Since no “exact” value of the energy is available.
the computation of the energy error is based on an extrapolated value. Following the literature we
have computed a value for the “thick” plate (=0.1) and another value, suitably scaled, for “thin”
plates. Such a process, even though not mathematically rigorous, give useful practical hints, since
the stabilization of the values of the energy norm error means that the corresponding energy has
reached a stable value. The improvement of the performance is unquestionable for all the elements,
expecially when thickness becomes smaller. We note that the element R22 is strongly convergent.
The other elements all give errors well below the engineering range of accuracy.

6. Conclusions

The numerical results show that the performance of the bubble plus elements is substantially
improved with respect to the Serendipity elements and the locking phenomenon is kept under
control. The rate of improvement increases as the thickness of the plate becomes smaller. As
regards the locking we observe that for p=2 the bubble plus element outperforms the corresponding
Serendipity element. For p = 3 the results show that bubble plus elements strongly reduce the effect
of locking. We remark that very close performances are obtained with both the pairs of elements
R15, R16 and R22, R25. The cost of the increase of the number of degrees of freedom is negligible
compared with the improvement of the results. Therefore, based on our numerical experiences,
bubble plus finite elements are more convenient than the corresponding Serendipity elements for
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solving Reissner-Mindlin plate problem in its plain formulation.
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