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Optimal damping ratio of TLCDs
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Abstract. The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached

to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two
vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio
of the length of the horizontal section to the effective wetted length of a TLCD considered as another
important parameter is also presented for investigation. A simple pendulum-like model test is conducted to
simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control.
Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD
(tuned-mass damper) are included for discussion.
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1. Introduction

There exists an effective way to control the vibration of a structure by utilizing the water
oscillating and sloshing in a tank (Fujiebd al. 1988, 1992, 1993, Sust al. 1989, Chaiseret al.
1989, Wakahara 1993, Kait al. 1994) or a U-shape vessel (Saakeal. 1998, Sakaet al 1989
and Sun 1994, Woat al. 1996). It is different from the conventional method to reduce the vibration
level of a structure or building, such as the base isolation (Kelly 1988, Ahshadi 1989 and
Buckle 1990), the viscoelastic damper (Zhatgl 1969), the added damping and stiffness device
(Whittakeret al. 1989 and St al. 1990), the structural bracing and tendon system (Soong 1990),
and the tuned mass damper (Hareigal. 1962, Changet al. 1980, Kayniaet al. 1981 and
Yamaguchiet al 1993). This technique has been successfully employed to control the rolling
motion of a ship in waves and the wobbling of a satellite in space (Lewis 1989, Wabater
1966, Bhutaet al. 1966, Alfriend 1974). In this paper the basic characteristics and application of a
TLCD is emphasized. It might have many advantages and some of which are as follows: (a) it is
easy to build and maintain, (b) it is space saving, (¢) there is no need to change the original
structure system of a building, (d) it is economical, etc. Therefore it would have a great potential to
develop this technique for the high-rise building or other flexible structures in the future.
Additionally it would not be much influenced from severe environmental conditions, so it would be
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quite suitable for ocean structures, such as the ship and the offshore platform.

The optimal damping ratio of a simple TLCD system, which is a two-degree-of-freedom system,
is derived and presented in this paper. Another important parameter: the ratio of the length of the
horizontal section to the effective wetted length of a TLCD is also studied in order to improve the
effectiveness of the vibration control. A simple pendulum-like model test is carried out for
demonstration including the free and harmonic vibrations. Comparisons of the experimental results
of the model tests with the analytic results of the optimal TLCD, TLD, and TMD systems are made
to see the effectiveness and potential of the vibrational control of a TLCD in engineering
application.

2. Fundamentals of TLCDs

A tuned liquid column damper is shown in Fig. 1. It is an U-shape vessel consisting of two
vertical columns and a horizontal section. The water can move freely inside the vessel and could be
assumed of being an incompressible flow. The cross-sectional dimension of the vertical column in
the plane of TLCD is much smaller than the length of the horizontal section; therefore the water
surface would be assumed to be flat during moving vertically. In practice, these two vertical
columns are usually identical.

If there is a disturbance of the TLCD alorglirection, sayx(t), the water level would move up
and down harmonically. The potential energy of the water with surface movgffeatgiven by

V=g A Y1) (1)

wherep, g, andA, represent the water density, the gravitational acceleration, and the cross-sectional
area of the vertical column, respectively.
The continuity equation of the incompressible flow is given by

Ay=A(S)S )

whereA(s) and s represent the cross-sectional area and the relative water velocity at anyssection
respectively.
The kinetic energy of water is given by

I
T‘zIOA(S)SadS (3)
wherel represents the total wetted length of the vessdl+.@H+B, ands, represents the absolute

water velocity at any sectian
The kinetic energy of watéf can be expressed by

7— y ()
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Fig. 1 A TLCD: An U-shape vessel
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T=[ PA(S)(S +X)dy+ [ pA(9)(S +X)dx )
0 2Jg

Substituting Eqg. (2) into Eq. (4) Eqg. (4) becomes as

T=pf [A( Ly A ay+d A 3y + ] ax )
Lagrange’s equation for this case is given by

diﬂ_a_-r ﬂ_V__% (6)
oty U dy gy oy

whereW; represents the work done by the non-conservative force resulted from the water-head loss
due to the friction between the water and vessel surface, and the resistance to water flow by any
mechanism installed inside the vessel. The term in the right-hand side of E&\(B)y represents
this non-conservative force which would be expressed by a nonlinear function of the velocity of the
free-water surface (Saoka al. 1998, Sakaget al. 1989, Suret al. 1994). Therefore the equation of
motion of the free-surface movemsi(i) due to ax-directional disturbancg(t) of the TLCD can be
achieved by substituting Egs. (1) and (5) into Eq. (6) and given as

rope 1 .
PAN'Y+ZPACylYly+2pgAy=—pA,BX (7

where Cy represents the head-loss coefficient, #nd  represents the effective wetted length defined
by

A
v q 8
Y S) (8)
If the vessel is uniform along its length, ilé. | =2H + B; if a symmetrical TLCD consisting of

two identical uniform columns of the cross-sectional agand an uniform horizontal section of
the cross-sectional arég, i.e. |’ =2H + B/R, whereR=A//A.
If the nonlinear damping force would be replaced by an equivalent linear one (Caughey 1963),
Eq. (7), would be rewritten as
m'y+m’ cy+wm'y=—m’ ax 9)

wherec represents the equivalent linear damping coefficient,/Andx and w, are defined as

m'=pA,I'
B
(JZI—,
w= 29 (10)

II
in which m' represents the effective total mass of wateéhe ratio of the length of the horizontal

section to the effective wetted length, asgd the natural frequency of a TLCD, respectively.
Eqg. (9) can be expressed in a simple form as

y+2&wy+wy=—ax (11)
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whereé represents the equivalent linear damping ratio of a TLCD and defingd @.&c/w,.

3. A simple TLCD system: A two-degree-of-freedom system

A TLCD is added to an one-degree-of-freedom system as shown in Fig. 2. A ground acceleration
u(t) is applied to this simple TLCD system, the equation of motion of this 2 d.o.f. system can be
expressed in the following form as

o] XD xO [k o |xo oM O
M maD_D’{C O}D,D‘f OG-0 , [ (12)
ma m |[¥O |0 mc/YO |0 mw,|¥YO OMag

whereM =m;+ m', andm’ =m, the mass of water for an uniform vessel.
The previous equation would be rewritten in a nondimensional form as

2 X0 |2nw, O |XO|f o |xO O 1 O
Loy o %% |00 oE-0 L, o (13)
a (|0 | 0 228wu |0 |0 pfef|YO O ald

where

U

2

y=

0O Z|3

T 2Ma,

o= [§ (14)

If the ground motion is harmonic, i.e.= €*' the response will also be harmonic and can be
expressed by

0 OXO e
F (15)
3 0vE

e

where w represents the frequency, and Y represent the complex amplitudes x¢f) and y(t),

y(t)
v ;’L
- ——x(t) |~
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Q

Fig. 2 A simple TLCD system
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respectively.
Substituting Eq. (15) into Eg. (13) can yield the following result as

2 2 2 2
S +2nw,s+w au’s XO 010
! zpz i 2 . 2\ 2 DYD:_D 2, B (16)
ap's (s"+28ws+a)u 070 WAl
wheres=iw
The dynamic magnification factors for responsgsandy(t) can be obtained and given as
_IX _IYl
D,= ER D,= 3. 17)

where & represents the static displacement of the total masg,; =eMg/K.
If n=0, bothD, andD, can be derived and given as follows:

b + &
2]
d% + &0
2__ P
Dy_q + rfz (18)

D2

where
a= (1_y2 + aZIJZyZ)Z
b= (2))?
¢ =[(1-B*)(1-y’)~(aupy)T*
d=[2y(1-B%)?
p=a’
q= (f 2_B2_f 2[32 + B4 _a2H2B4)2
r = 4f 2pA(1-B??
o
w, Y
B:

Gy (19)

eLle

4. Optimal damping ratio of TLCD

Based on Hartog's work for the optimal damping ratio of a simple TMD system (Hartog 1962), it
is possible to find an optimal damping ratio of a TLCD at proper valdeirobrder to achieve a
minimum value ofDy for the case that the damping ratjoof the main system is very small and
would be neglected. H/b = c/d, thenD,?= b/d as shown in Eq. (18). It means tiigtis completely
nothing to do withé. The equation for this condition can be obtained from Eq. (19) and given as

af*-a,F+f2=0 (20)
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where
a = 1-a?r
aZ 2
ap=1+f2- —2“— (21)
The solutions of# are given as
1
gzzzial {azi(a§—4alf 2)2} (22)

ThereforeD? can be determined By, bld= 1/(1-2 or
1 .
D=——, if F<1
1-p

or
szﬁ%l, it 2>1 23)

The curves for the relationship betweBpand 8 as given by Eg. (18) always pass through two
fixed points assigned a@;( Dx;) and (B,, Dy), no matter the value of the damping rafiof the
TLCD. If Dy =Dy, the value of can be found from Egs. (22) and (23) and given by

f=(1 - 1.50%1) (24)

Finally these two fixed points of same magnitudedgfcan be obtained by substituting Eq. (24)
into Egs. (22) and (23) and given as

NI

2 2

B, or B,= 11[2(%5{2—‘12)}

and

1

D=0, 28551 (25)
DO!ZHZ O

D,—B curves for the case @f=0.01 anda = B/I' =0.805 as an example are shown in Fig. 3. Also

shown in this figure are the two fixed points at (0.9710, 17.50) and (1.0282, 17.50) corresponding

to f = 0.9975.

The dynamic magnification factor of the respopdgis given by Eq. (18). If =0, thenDy2= p/

g, it means that the value @ is nothing to do with the damping ratoof the TLCD. Therefore

the curves for the relationship betwelepand  always pass through a fixed point, no matter the

value of the damping ratié. Sincer = 0, that isB= 1, andD, = as. Dy—p curves for the case of

(#=0.01 anda =B/I' = 0.805 as an example are shown in Fig. 4. Also shown in this figure is the

fixed point at (1.0, 124.2). Both the curvesfandD, as shown in Figs. 3 and 4 might have one
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Fig. 3 Dynamic responde, of a TLCD system Fig. 4 Dynamic responde, of the free-water surface

or two maximum points dependent on the damping valaeé TLCD.

If two maximum points oD,—f curve are just located at or very close to these two fixed points
of same value ob,, this TLCD system might be at the optimal condition to achieve the minimum
vibrational level of the masey. The damping raticc of TLCD at this condition is called the
optimal damping ratio and can be derived.

Eq. (18) can give an expressionéfas

cD:-a
F=— (26)
b—dD’
These two fixed points ob,—3 curve are not a function of the damping rafiotherefore&?
becomes indeterminate, i.e§?=0/0, at these two fixed points as defined by Eq. (26). A

neighborhood point is chosen in such a way fat 8, + € or * = B,° + &, whereg is a very small
guantity. Substituting these twés into Eq. (26) and omitting the high order terms gfand then
applying L'Hospital rule, the result & similar to Eqg. (26) would be obtained but the parameters

a, b, c andd are changed as follows:

a=2Aqa’P-1) + 2(1-2a P + a*1f) B2

b= 4f?

c=-2f%(1 +f2) + 2(1 + &2+ - 2a%1?)B% - 6(1 +f°— a?1P-a2Af A B4+ 4(1-2a %17 + a ) B°

d = 4f2(1-43% + 33%) (27)

Substituting Egs. (24), (25), and (27) into Eg. (26) would obtain the valgetwdt the curve of
D, has two maxima at or very close to the two fixed points. The average of these two vdlaes of
is assumed to be the optimal value of the damping ratio of the TLCD and assidiedssiming
u2 =0.01 anda = B/I' =0.805 as an example, the valued, @, 5., D1, andD,, have already been
calculated. Therefore the optimal damping rdtaf the TLCD can be determined by Eq. (26) and
given aséy=0.0494. The curve dd, for & is also shown in Fig. 3.

The dynamic magnification factdd, given by Eq. (18) would be influenced by the valueaof
which is the ratio of the length of the horizontal section to the effective wetted léngth |', and
2H + B/R for a symmetrical TLCD; therefore the area r&ican also affect the value B%. Fig. 5
shows that the maximum value Dbf would be decreased asincreases for the same caseu&f

=0.01.
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Fig. 5 Dynamic responde, at optimal condition

5. Design consideration

The following equation can be obtained from the definitiow gfiven by Eq. (10)

i 1
H—2Et¥ R (28)
Therefore
R>a (29)

The relationship between the water massand the effective mass’  of the TLCD is given by

m2=m'[l +a%?—é%} (30)

If a>1.0,thenrm,> m'. If R=1 for an uniform TLCD, themp,=m’.
The length of the horizontal secti@can be obtained from Eq. (10)

2g9a
p==992 (31)
wu
Substituting Eqg. (24) into Eq. (30) yields the result

- 29a
(1- 150" o

uz, a, andR should be chosen at first in the design of a TLCD system,ntheB, andH can be
calculated by Egs. (30), (32), and (28), respectively. The resdonsgven by Eq. (25) will
decrease as or [ increases. But increase af or 12 will also increase the water mass. In
practice the water mass should not be much greater than 10% or 20% of the total mass. The
maximum water leveymax should also be checked in order to make sureythat< H.

The optimal damping ratio of a TLCD can be calculated by Eq. (26). The value of the damping
ratio strongly depends on the shape and size of the orifice installed inside the horizontal section of
the TLCD. The result of the damping ratio from the model test can not be applied to the prototype

(32)
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directly. Nevertheless, the free vibration test of the free water surface in the columns of a prototype
TLCD is also easy to be carried out to determine the damping ratio. In general the damping ratio of
a prototype TLCD is smaller than the optimal damping ratio; therefore a proper-design orifice to the
TLCD is often necessary. The optimal damping ratio of a TLCD can be achieved easily by
adjusting the opening of the orifice. Before the construction of a TLCD, the damping ratio of the
TLCD with one or two orifices can be predicted by the finite-element analysis of the water-flow
problem. But more research works should be conducted to achieve this goal.

6. Experiment and comparison

A simple pendulum-like model test is set up as shown in Fig. 6 for the simulation of a long-
period motion. It consists of four 207.8 cm long vertical rods with a heavy rigid platform and a
TLCD. The total weight of the platform and TLCD without water is 198 kg. The dimensions of the
TLCD made of an uniform plastic pipe are as shown in Fig. 1 and given as faBed28 cm,
h=40 cm,H=0.0~16.5 cm, and the inner and outer diameters are 4 cm and 5 cm, respectively. The
natural frequency and period of this testing model without water is measured as 3.506 rad/sec and
1.7921 sec. The water head and weight of TLCD at this resonant frequency are 15.73 cm and 2 kg,
respectively. A rotating motor with an eccentric mass is attached to the platform in order to generate
a harmonic force.

6.1. Free-vibrational test

The free-vibrational test of this testing model with TLCD is carried out by setting an initial
horizontal displacement 4 cm to the platform. The free-vibrational decay curves of the motions of
the platformx(t) and the free-water surfagt) for the water headsl=0 (no water inside TLCD)
and H=16 cm are shown in Fig. 7. The influence of the decay time of the amplitudé) of
decaying to one tenth of the initial displacement from the water héadf(TLCD is shown in
Fig. 8. It shows that the decay time of the amplitude(tf decreases tremendouslyH#0. It can
also be seen that the effectiveness of TLCD is not very sensitive to the water head in the range of
10 cm=H < 18 cm. The free-vibrational tests are also conducted for different &hdletiveen the
plane of TLCD and direction. The initial displacement of the platform for these cases are also set
4 cm. The decay time of the amplitudex@) decaying to one tenth of the initial displacement is
also shown in Fig. 8. It can be seen in Fig. 8 that TLCD is still effective eveéh=dE’. It might

(Cf ©

MOTOR = x(1)

Fig. 6 A pendulum-like testing model
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be another advantage of TLCD in practice. The damping é@taf the testing TLCD can be
obtained by the free-vibration test of the free-water surjéiyeof the TLCD alone. In general the
damping ratioé of the TLCD depends on the length, size, and water head of the TLCD. The fluid
damping is nonlinear in nature; therefdrés also a function of the amplitude of the decay curve of
y(t). The value ofé would be evaluated by the averageéaheasured from several (generally four

to six) important consecutive amplitudesyf). Of course it is better to repeat the same experiment
of the free vibration ofy(t) several times. Finally the average valueédirom these experiments
gives the the damping ratio of the testing TLCD. The damping ratio of the testing TLCD is then
evaluated as 0.0528 at resonandel(5.73 cm), and it is very close to the optimal damping ratio
&0=0.0494. It is found that the damping ratio is not very sensitive to the water head around
H=15.73 cm.
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6.2. Harmonic-vibrational test

The harmonic-vibrational tests of the testing model with and without the water inside TLCD are
also carried out. The damping ratio of this testing model without water inside TLCD is assumed as
n =0.002 according to the result from the harmonic-vibrational test fitted by the analytic result as
shown in Fig. 9. The steady-state harmonic responses of both the plaffpand the free-water
surfacey(t) are measured fd#=0.0 andH=16.5 cm and shown in Figs. 9 and 10, respectively.

If the TLCD on the platform is replaced by a TLD as described by @heal (1995). The
experimental results of the model test with TLCD or TLD are shown in Fig. 11 for comparison.
Also shown in this figure are the analytic results of an optimal TMD system (€&h&in1995) and
an optimal TLCD system foo =1.3, respectively. It can be seen obviously that TLCD would
compete with TLD or TMD. The effectiveness of the TLCD for the case »fL..0 would be
further improved properly. Therefore it would be said that the TLCD might have great potential and
flexibility in application. Of course more research work should be encouraged.

gor-
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—=— MODET TEST, H=0.0
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Fig. 9 Harmonic respondg, of the model test with TLCD far=0.0 and 16.5 cm
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7. Conclusions

Some important conclusions could be drawn from this study and given as follows:

The natural freauency of a symmetrical TLCD can be adjusted by the watdH hiredlength of
the horizontal sectioB, and the area ratiB instead of the wetted water lengtfi.e. I=2H+B) only
for an uniform TLCD.

12, a, R, should be chosen at first, them, B, andH can be calculated by Egs. (30), (32), and
(28), respectively. In application, the water massshould not be much greater than 10% or 20%
of the total mas#/ (i.e. M = m, + ).

The optimal damping ratio of a TLCD can be determined easily by Eqg. (26), which is a function
of 1, a, f, B, andD,. Sincef, B, andD, are functions of# anda as given by Egs. (24) and (25);
therefore the optimal damping ratio of a TLCD is eventually a function of these two basic
parameterg? anda.

In an actual design, the optimal damping ratio would be achieved easily by adjusting the openings
of the orifices while performing the free-vibration test of the free water surface in the columns of
the TLCD. This should be an important advantage of a TLCD in application.

The responseB, andD, can be calculated by Eqgs. (25) and (18). The vibration of the main mass
my, can be controlled by? and a. The maximum movement of the water leygh, has to be
checked for the condition thgt.x < H.
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The effectiveness of a TLCD in vibrational control is not very sensitive to both the water head
and the angle between the plane of the TLCD and the ground motion (refer to Fig. 8). This is also
an important advantage of a TLCD in application.

In view of the results of the simple pendum-like model test with TLCD presented in this paper or
with TLD (Chenet al. 1995), and the analytical result of TMD (Chetnal. 1995) (refer to Fig. 11),
the effectiveness of a TLCD in vibrational control would be significant and excellent. Of course,
more research efforts including the theoretical analysis, the large-scale model test on the shaking
table, and even the prototype structural experiment should be encouraged.

Almost all the tall buildings in Taiwan have one or several water-storage tanks on the roof in
order to obtain sufficient height of water head for water supply. The total water capacity in the
water-storage tanks on the roof is about 50~200 tons. The water-storage tank on the roof of a high-
rise building can be designed properly as a TLCD. Probably no extra weight or space is needed to
install the TLCD (or several TLCDs) on the roof of the high-rise building, furthermore the original
structure of the high-rise building doesn't need to be changed, thus it can be said that TLCD is
economical and practical in application.

The water flow inside a TLCD, which is actually a long-and-narrow vessel or a tube-like vessel,
can be easily controlled such as by two impellers installed at the center of the horizontal section.
Recently the experiment of the same pendulum-like model test of a TLCD with two impellers
functioned as the active control as shown in Fig. 12 (Chen 1997) was also carried out, and the
result showed excellency in vibrational control. Therefore it may be said that the active TLCD
would be expected more efficient in application. Of course more research works should still be
done, espicially the large scale model test on the shaking table, before the actual design of an active
TLCD.
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