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A model to analyze a buried structure response
to surface dynamic loading
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Haifa 32000, Israel

Abstract. A relatively simple model of a buried structure response to a surface loading that can
simulate a possible opening and closure of a gap between the soil and the structure is presented. Analysis
of the response of small and medium scale buried roof slabs under surface impulsive loading shows that
the model’s predictions are in fairly good agreement with the experimental results. Application of the
model to a study case shows the relative influence of system parameters such as, the depth of burial, the
arching coefficient, and the roof thickness, on the interface pressure and on the roof displacement. This
model demonstrates the effect of a gap between the structure and the soil. The relative importance of
including a gap opening and closure in the analysis is examined by the application of the model to a
study case. This study results show that the deeper the depth of burial, the longer the gap duration, and
the shorter the duration of the initial interface impact, while the higher the soil’s shear resistance, the
higher the gap duration, and the shorter the initial interface impact duration.
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1. Introduction

Analysis of the response of a buried structure to surface loading requires knowledge of the
external surface loading, the way it is transmitted through the soil-backfill media, and how it
interacts with the structure at the soil-structure boundary. For an external dynamic loading, most of
the experimental and analytical studies focused on the response at the soil-structure boundary. For
example, Getchell et al. (1984) conducted a series of tests of full scale buried structures that were
subjected to external explosive excitation, which showed an interface loading that was different than
that of the free field. Weidlinger et al. (1988) and Drake et al. (1989) proposed a Single Degree Of
Freedom (SDOF) system model to simulate the effect of wave propagation at the soil-structure
boundary. Their model accounts for the effect of the soil mechanical impedance, for the soil and the
structure particle velocities, and for the free field loading, on the total interface pressure that is
loading the structure. It allows de-coupling of the soil-structure system, and therefore, a separate
analysis of the structure response. This model is usually applied under the assumption that an
incident, uniformly distributed pressure wave, p(f), propagates from the soil surface into the soil
media. At the soil-structure interface, the structure response induces reflected and transmitted stress
waves that depend on the structure velocity and on the incident wave. The structure's roof mass and
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stiffness and the soil's mechanical impedance are presented in the SDOF model by adequate
transformation factors, which are also used for an SDOF representation of the incident pressure, in
order to form the structure's roof equation of motion. This model, which has been extensively used
to analyze the response of a buried structure to dynamic loading (e.g., Chen er al. 1996), can also
predict the time of a gap opening between the structure and the soil. However, being a SDOF model
which de-couples the soil response from that of the structure, it cannot predict the gap closure time,
nor can it analyze the response of the system after the gap closes. In some cases this analysis is
sufficient to describe the main part of the structure response, which is the response to the initial
interface impulse. However, when the gap opening duration is relatively short, or when the structure
sustains the initial interface impulse, the response of the structure after the gap closes (or due to a
process of multiple gap openings and closures) should be analyzed. In these cases, it is important to
evaluate whether the gap remains open long enough to enable damping of further loading, or if the
gap opening duration is so short that further loading of the structure will cause significant damage.
Weidlinger and Hinman (1990) analyzed the characteristics of a soil-structure cavitation that
develops under external dynamic excitation and its effects on the structure response. Their analysis
used one-dimensional linear plane wave approximations and lumped mass models. That analysis
used a pre-defined incident pressure wave at the soil-structure interface, which together with the
soil’s one-dimensional mechanical impedance represented the wave propagation phenomena in the
soil medium above the structure.

A model of a buried structure subjected to surface impulse loading was proposed by the authors
in a previous paper (Dancygier and Karinski 1999). The model (Fig. 1) delineates phenomena that
relate both to wave propagation and to the effect of the soil shear resistance on the response. These
phenomena consider, respectively, the relative particle velocities at the soil-structure interface, and
the relative displacements in the soil media above and near the structure, as observed mostly under
static loading conditions (e.g., Terzaghi 1943, Newmark 1964). However that model simulated the
response only as long as no gap develops between the soil and the structure. This paper describes a

P..t)

L C
v“r»”vvv*v¢vvv¢v¢vv R —
: . - :

ZVY “’ ‘D
1 -
; i
Y e /

Units:

[M] = mass/unit area A Hw A

[u] = stiffness/unit area T
Mw,

(a) (b) (c)

Fig. 1 Model of the soil-structure system
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further development of the model, which includes simulation of the gap opening and closure, and
shows the importance of considering this part of the response in the analysis of buried structures.

2. The model

The model is of an axisymmetric system and is described in Fig. 1b. It consists of a radial soil
column attached at its bottom to a Single Degree Of Freedom (SDOF) mass (M) on spring (4) system,
representing the structure. The model assumes a linear elastic behavior for the soil and the structure
(strains are assumed small). The surface loading is either uniformly distributed over a large area
(relative to that of the structure roof), or assumed to generate a plane pressure wave into the soil (an
assumption that is used also in other models, e.g., Drake er al. 1989, Weidlinger ef al. 1988) in Fig.
la. Material and geometric nonlinearities and radiation damping effects are not considered here.
Damping effects may be important when the loading is acting on a relatively small area, or for
relatively deep structures. These effects become negligible at relatively shallow depth of burial, or
when the pressure wave front is relatively wide (e.g., as in the FOAM HEST experiments, Getchell et
al. 1984). Nonlinearities and damping may be included in a further development of this model, which
nevertheless in its current form agrees well with experimental results and shows the major trends and
characteristics of the behavior (Dancygier and Karinski 1999, and also as shown later in the text).

Models of arching under static loading employed many times an analysis of a vertical shear
failure surface that represented the somewhat curved, experimentally observed failure surface in the
soil backfill. This approach simplifies the analysis and reduces it to a study of a soil column with a
span that is similar to that of the buried structure (e.g., Terzaghi 1943, Allgood 1972, Murtha 1973).
Similarly, in the current model, the soil column's radius, r, is equal to the radius of the structure,
and its height, D, is equal to the soil backfill depth. The influence of soil arching, which is caused
by the relative vertical displacements in the soil, above the roof mid-span and above its supports, on
the soil-structure contact pressure, is included in the model by a friction traction, 7 (¢, x), which acts
on the perimeter of the soil column, and depends on the vertical displacement, U(t, x), Fig. 1b. For
simplicity, the relation between 7 (¢, x) and U(¢, x) was assumed linear,

T, x) = k-U(t, x) (nH

where k is a constant, ‘arching coefficient’, which depends on the soil properties, and represents
its shear stiffness. In most cases the structure stiffness (represented in the current model by ) is
larger than the soil shear stiffness. The following analysis is performed for these cases, with a
further assumption that the difference between 1 and k is large enough to maintain the following
condition, which is also necessary to obtain a mathematical solution in the form of a Fourier
series (see below):

u 2k
M > o )
where M is the SDOF mass per unit area, u is the SDOF spring stiffness per unit area, and p is
the soil mass density.
The deflections of the SDOF mass, W(f) and of the soil column bottom (x=D), U(t, D), are
identical as long as the contact stress between the soil and the structure, o (f, D), is compressive,
that is, as long as, o (t, D)= E + U(t, D) <0, where E is the soil Young’s modulus, and U,=dU(t, x)/
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dx. A positive contact stress, o (¢, D), marks a gap opening, which sets the soil-structure contact
pressure to zero, and an independent motion of the structure and of the soil. This state continues
until the gap closes when there is another contact between the soil and the structure, which occurs
on condition that W(r) = U(z, D) (no overlapping).

2.1. Mathematical formulation and solution

Mathematically, the model for a state of a closed gap (Fig. b, ¢) is described by the one dimensional
wave propagation equation:

pU—EUn+%kU=O 3)

with the initial conditions (at r=0 or after each closure of the gap):

U(ty, x)=U (1, x)
Up(ty, x); 0<x<D

U(t,, X)={ .
W,(ty) x=D 4)

where 1, is the last gap closure time, U, U,, are the soil displacement and velocity of the
“previous state” at 1=ty (U,(ty, D)=W,(1)), and W,, W, are the mass (structure) displacement and
velocity (at the same time, ). When the soil-structure gap is opened or closed, the conditions
prior to the gap closure or opening are defined as a “‘previous state”.

The boundary conditions are:
U1, 0)=p(1)/E %)
U(1. D) + iU (1, D) + AU(1, D)=0 (6)

where c?zE/M,,LNl = WM, U=dU/dt", and U=0Uldx. The first boundary condition, Eq. (5),
expresses the normal stress at the soil surface, and the second condition, Eq. (6), is the SDOF
mass equation of motion, Figs. 1b and c.

For the open gap state, the soil motion is described by Eq. (3) with the initial conditions
Eq. (4) (where 1y=t; is the gap opening time, W,=U,(D)), and with the following boundary
conditions:

U.(t,0)=p(t)/E (7)
U.(1,D)=0

The equation of motion and initial conditions of the mass, M, are given, respectively, by Egs. (8)
and (9):

W(r) + EW(1)=0 @)
W([(i)z l.]p(tG" D)
W(is)=Up(tg, D) )

The gap opening and closure conditions are as follows:
A gap is opened at:
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EU.(t,D)=0 (10)
An open gap is closed at: U(t, D)=W(t)
The solution of Eqgs. (8) and (9) is given by:

U,7 ,
W(r)=U, (1, D) cos[ Rt — 1)1 + (f in[ (1)) (1)
v

The following substitution is carried out in order to obtain homogenous boundary conditions for
the soil column:

2
U(t, x)=U(t, x) + ) (D=x)

E 2D (12)

Hence, the wave equation, Eq. (3), and the initial and boundary conditions, Eq. (4) and Eqgs. (5),
(6), and (7), will take the form:

U-c* Uy + kU= (1, x) (13)
Ulte, )=fo(x): Dt 0)=f(x); (14)
U(t, D) + iU (t, D) + LU(1, D)=0 for a closed gap

U1, 0)=0;
U.(t,D)=0 for an open gap (15)

where ¢? = Elp, k =2ki/pr, the gap opening time f, =1, and,

0, 1) =521 (1) + Ep(1)(D ~0)2p(1)] (16)
. p(t,) p(ty) 2 {fjp(t()a x); 0<x<D
£0=L8 b D s fi=22 s
DE 0 2DE Woi); x=D (7

The solution is sought by applying the Fourier method, thus:
U, x)= 3 T()X,(x) (18)
n=10

Subject to the condition that k< p(see Eq. 2), the eigenfunctions X,(x) are solutions of the
following boundary problem:

X, - 92x,=0 (19)

—for a closed gap: X;,(O):O; c]X,l(D) +(U+A)X(D)= 0 (20)

— for an open gap: X, (0)=0: X,(D)=0 Q1)
where,

A=—(k +c"90) (22)

which satisfies —C2\9i=/; + A, <0 in order to yield a non-trivial solution. The boundary conditions,
Eq. (20), yield the eigenvalue, Y,, that satisfies the following equation:
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u-k MJ,
tg("gnD): -
c?@n P

(23)

and the solution of Eq. (19) is given by the eigenfunctions: X,(x)=cos(Y,x). Note that the
structure properties, which are represented in this model by a SDOF system, are included in the
modes of the overall, continuous, soil-structure model through the parameters 9,

Orthogonality conditions for the eigenfunction system are as follows:

[X,(0)X,(x)dx + px (D)X, (D)=0; (n#m) (24)

0

and the norm of the eigenfunction, X, has the form:

~ - -1
MQ
x| —jx (ydr + Axpy=2 4 =X M, n-k (25)
; p 2 2 a9, P T
For the boundary conditions, Eq. (21), the classical solution is obtained in the following form:
X,,(x):cos(%x); 9,,:% (26)
r ,» | D/2;n#0
[X,(0X,(x)dx=0; (n=m);  |X,)’= 27)
0 D; n#0

Expansion of the functions given in Eqs. (16) and (17) in terms of X,(x), subject to the
orthogonality conditions, Eqgs. (24) and (27), yields:

0(1.)=Y 0,(0X,(0): () =S £,%,00: /=0, 1 (28)

n=0 n=0
where, for a closed gap:
(1) + kp(t) DY, —sin(DY,)  ¢* sin(DJY,)
B )EDP( ) Sl ST (29)
Gl%l) e

P.(1)=

ty) DY,—sin(DJY, 1 |M
for= Pty ) sin( )+ {_

D~
W, s(9, D)+ | U,(1,, 9,x)d 30
D g e e )+ [ Up(t, x)cos (9,) x} (30)

0

and for an open gap:

P +kp()(2DY
2ED (nnj ;. n#0
?,(1)= . , 31)
P+ kp(OD_C

2FE 3 ED
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plty) 2D 2 7%- n
ALy l_)'[ (tO,x)cos(—b—x)dx n#0

E
(32)

ﬁ)n: b
p(ty) 15~ nn
—6~EO— D+ = jU,,(t(), x)cos(Bx)dx; n=0

For both open and closed gap f;,i=a fon! O ty. Substituting the Fourier transformation of the solution
for the “previous” state at t=t,, U,(t,, x), in the integrals in Egs. (30) and (32) yields,

—for a closed gap:

- ”(’0) D9, =sin(DY,) M, (10)c0s(9,D)+9,sin (9 D)zT (1) — D"

X 9, e Y g2 /D)
(33)

—for an open gap:

p,) 2D ,12 sin(9,.D)
— T, , #0
E (75”) mzo " 0) —( /D) "
fon= (34)
P(t(;) éz ())Sm(kg D) ;. n=0

where the terms T, ,(t) are the time functions in the Fourier series (see Eq. 18) of the “previous
state at t=fy (T, ,(0) =0 for any m). Hence, the functions 7,(r) are obtained from the following

equation and initial conditions:
1.(1) + LT ()= 0,(1) (35)
Tn(O)szn; T"(O)zfln (36)
where A.=-A, (see Eq. 22).
The solution, Eqgs. (35) and (36), yields:
fln 1 i . 7
(t)—f()ncos(X t)+;\,— sm(k,,t)+}1— _fq)n(r) sin[A,(t—T)]dt (37)
n n 0
and the solution to the model that describes the motion of the soil column is given by
(38)

vt x)== gég(D _x)2+,§)Tn(t)COS(k9na x)

Expressions (11) and (38) are an analytical, closed form solution of the model, for both open and
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closed gap conditions. This solution does not require any numerical integration of the differential
equations, but only the calculation of the Fourier series, Eq. (38). The number of the eigenfunctions
adopted in the calculation is determined numerically by a convergence criterion of the Fourier
series. In all the following examples fifteen or less eigenfunctions were sufficient.

2.2. Application of the model

The above model may be applied to various roof shapes if r,, substitutes r in Eq. (3). The term r,,
is an equivalent radius that depends on the roof shape. Because the model is one-dimensional, r,
ensures only that dynamic equilibrium is satisfied according to Eq. (3). For example, r,, of a
circular roof is its radius r, and for a BxL rectangular roof,

.o LXB
“"(L+B)

(39)

and the SDOF transformation factors of the roof stiffness and mass are obtained according to the
roof thickness, elastic properties, and boundary conditions.

Possible ways to set the arching coefficient k, Eq. (1), are described by Dancygier and Karinski
(1999), where it is shown that £ would vary, depending on the soil properties, from zero (no arching
effect) to approximately E/3r (0.3431E/r, maximal arching effect). When static data are available,
such as measurements from static tests of the external pressure, p,,, and of the interface pressure, k
may be obtained by applying the current model under static loading conditions (Fig. 1b and ¢ with
the inertia terms, U, and W, set to zero). For example, measurements of the external and of the
contact pressures were taken in a static test of a one way, 24x24 inches (609.6x609.6 mm), fixed,
concrete roof slab (Kiger ef al. 1984, Kiger 1988). From these measurements it can be shown that
the arching coefficient, k, of the ‘Reid-Bedford model sand’ that was used in this test, was equal to
0.2104 N/m?, which is also 0.62(E/3r.,) (Dancygier and Karinski 1999).

3. Comparison with experimental results

The proposed model was applied to small scale tests of buried, circular, micro-concrete roof slabs
(Keer et al. 1991), and to medium scale tests of buried, one way, fully fixed, reinforced concrete
roof slabs (Kiger et al. 1984). In the simulation of the small scale tests one test was modeled with
an assumed value of the arching coefficient, k, (between O and E/3r), and another test was simulated
with the same coefficient. In the medium scale tests (Kiger ef al. 1984) k was evaluated from the
reported interface pressure that was measured under an external, static pressure, as explained above.

3.1. Small scale experiments

Small-scale experiments were conducted with circular roof slabs that were made of micro-concrete
(a gypsum-sand-water mixture, Cunningham et al. 1986), and were buried in 20-30 Ottawa sand (Keer
et al. 1991). A mechanical impact of a dropped steel bal. on a circular aluminum target plate that
rested on the soil surface produced the external load. Two tests were simulated by the current model: a
simply supported roof slab under 2.5 inches (63.5 mm) of soil backfill, and a clamped (not fully fixed,
but with a certain curvature restraint at the perimeter) roof slab under 3 inches (76.2 mm) of soil



A model to analyze a buried structure response to surface dynamic loading 77

backfill. The small-scale test parameters are given in Table 1, and the external pressure in the tests that
were simulated is shown in Fig. 2. The simulation was done in two stages: first, the model was
applied to a test of a simply supported roof slab, with properties that were selected in order to obtain a
good agreement of the model with the test. These parameters were as follows: an arching coefficient,
k, equal to 0.4(E/3r), a micro-concrete Poisson’s ratio of 0.3 and Young's modulus of 1.0+ 10'° Pa. This
modulus of elasticity is low, relative to the reported 5000-psi (34.5 MPa) micro-concrete compressive
strength (e.g., according to the ACI code, ACI 1988). However, a relatively low modulus of elasticity
of the micro-concrete was indeed reported (Keer et al. 1991).

In the second stage a clamped roof slab was simulated by the model with the same values of &, of
the micro-concrete Poisson’s ratio, and a similar Young's modulus corrected according to the micro-
concrete higher compressive strength in this test. The micro-concrete compressive strength was
5000 psi (34.5 MPa) and 6000 psi (41.4 MPa) in the tests with the simply supported and the
clamped roof slabs, respectively, therefore the 1.0x10" Pa modulus of elasticity was increased by a
ratio of +/6000/5000. The clamping device in this test supplied only partial clamping to the slab,
hence, its response was of a partially clamped circular roof. Therefore, in order to examine the
upper and lower bounds of the structure response, the model was applied with the fixed and the
simply supported boundary conditions for the circular roof (i.e., different SDOF transformation
factors for each boundary condition, see K, and K,, values in Table 1 and Figs. 5, 6).

Table 1 Input data of the simulations

. " Medium Numerical
Small scale tests ) )
scale test example
Simply sup- Clamped roof Fixed roof  Fixed roof
ported roof lab Jab Jab
slab slal slal slal
circular circular circular  rectangular circular

simply sup- simply sup- fixed roof fixed roof fixed roof

Variable Description ported ported model model model
model model

S r mass density (Kg/m) 1711 1711 1636 1760

O ¢ longitudinal wave speed (m/sec) 353 293 435 250

I D depth of burial (mm) 63.5 76.2 304.8 varies

L kIE,/3r) normalized arching coefficient 0.4% 0.5796* 0.62 varies

S K; SDOF stiffness transformation factor 0.4591 0.4591 3333 5333 3333

T K SDOF mass transformation factor 0.2945 0.2945 2000 4063 2000

R E, Young’s modulus (Pa) 1.0X10" 1.1X10" 3.1X10" 3.0X10"

U v Poisson’s ratio 0.3 0.3 0.1 0.15

C h roof thickness (mm) 10.9 11.2 73.7 200, 250, 400

T r roof radius {mm) 63.5 63.5 304.8%* 4000
1.705X10°,

U u equivalent stiffness (N/m’) 0.526X10°  0.627X10° 1.857X10° 1.553X10°  3.33X10°,
13.64%10°

R Ps mass density (Kg/m®) 2085 2085 2400 2400

E M equivalent mass (Kg/mz) 6.69 6.88 4.67 71.84 96, 120, 192

#In the simulations of both small scale tests the arching coefficient, k, was equal to 0.4471X10° N/m*
** Bquivalent radius of a rectangular, one way roof (L=B=609.6 mm)
Notes: 1. The soil Young’s modulus, E,,;, is equal to Pc.
2. Poisson ratios were assumed for concrete and for micro-concrete.
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tastof &
ciamped roof slab

External Pressure (MPa)

testofa
simply supported roof slab

2.2 T T T T

0.1 0 01 02 03 04 05
Time (msec)

Fig. 2 External (surface) pressure in the small scale tests

The interface pressure and the mid-roof displacement that were measured in the tests and that are
predicted by the model, are shown in Figs. 3-6. These figures show that the model's simulations are
in fairly good agreement with the experimental measurements. The model captures the initial peak
of the interface pressure, its duration, and the development of a gap between the soil and the
structure. The simply supported model was calibrated in order to give a good agreement with the
experimental results. It is interesting to observe that even in this case, in addition to the initial peak
of the interface pressure, the models prediction of the gap opening time and duration agrees well
with the experimental result (Fig. 3).

The model differs from the experimental results when the gap closes and at a relatively later time
of the response. The gap closure in the model is characterized by an abrupt increase of the interface
pressure, which is typical of an impact between two colliding bodies. In the experiments, however,
the gap closure is more gradual, because of the damping (which is not modeled) and due to the
frequency of the data acquisition in the experiments. In fact, when the response was calculated in
the model at larger time steps, the pressure increase at the gap closure became more moderate. Later
in the response, a pressure wave is expected to be reflected from the soil surface at 0.54 msec and
at 0.78 msec in the tests with the 2.5 inches (simply supported) and 3 inches (clamped) depth of
burial, Figs. 3 and 5, respectively. This reflection is modeled in the current simulation, which does
not include damping. However, a reflection from the soil surface did not show in the experimental
measurements, where damping is expected to be very effective at this relatively late time of the
response. This un-damped reflected wave causes the numerically simulated structure to oscillate. It
is interesting to note though, that in spite of the difference between the theoretical and the
experimental response after the reflected wave arrival time, the structure displacement oscillates
close to, or around the experimentally measured displacement (Figs. 4 and 6).

3.2. A medium scale experiment
The medium scale experiment was of a fully fixed, one-way, rectangular, reinforced concrete roof

slab, which was subjected to surface explosive loading (Kiger e al. 1984). The systems properties are
given in Table 1, and the external pressure is shown in Fig. 7 (copied from Kiger ef al. 1984). The
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arching coefficient was obtained from static loading measurements, as cited above (section 2.2.). Fig. 8
shows the result of the simulation, together with the interface pressure that was measured 7 inches
from the roof center (the mid-roof pressure gage was reported to be broken, and furthermore, this
measurement better represents an average interface pressure acting over the roof). Since the roof slab
in this test failed, it was clear that the structure displacement exceeded its elastic range. Nevertheless,
this test was modeled, because the static tests showed that at a displacement of about 3-4 mm the roof
slab yielded (see insert in Fig. 8), hence the model may be compared to the experimental result up to
the point when the mid-roof slab reached this displacement. Fig. 8 shows that the current model
captures well the initial peak interface pressure and duration. It ceases to maich the experiment when
the structure response exceeds the elastic range, while the model remains linear-elastic.
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Fig. 3 Interface pressure at the plate center in a test of a simply supporte roof slab; 4 = 10.9 mm,
D =63.5 mm, k= 0.4(E/3R) = 0.447x10° N/m*
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Fig. 4 Vertical displacement in a test of a simply supported roof slab; 4 = 10.9 mm, D = 63.5 mm,
k=0.4(E/3R) = 0.447x10° N/m*
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Fig. 5 Interface pressure at the plate center in a test of a clamped roof slab; A=11.2 mm, D=76.2 mm,
k =0.58(E/3R) = 0.447x10° N/m’
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Fig. 6 Vertical displacement in a test of a clamped roof slab; £ =11.2 mm, D =76.2 mm, k = 0.58(£/3R)
= 0.447x10° N/m*

4. A numerical example

The effects of a problem's typical parameters on the loading and response of a buried structure are
demonstrated in the following numerical example, by application of the model to a study case.
Consider a circular, buried concrete structure, with a fixed, 4-m radius roof, subjected to a
uniformly distributed external impact. The other properties of the soil backfill, and of the structure
are given in Table 1. A Hanning’s function for a monopeak, smooth-shaped curve was chosen for
the loading time function of the external load, p(¢), in this example, thus:
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Fig. 7 External pressure in the medium scale test (Kiger et al. 1984)
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where the impact amplitude, pg, is 1 MPa, and its duration, T}, is 15 msec.
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Fig. 9 Response of a circular buried structure; D=2 m, R=4 m, h =250 mm

The solution of this example was obtained at x=D (D is the depth of burial), with the above
parameters (see also Table 1), with different values of the soil arching coefficient, &, and for different
depths of burial. Figs. 9-11 show, respectively, the interface pressure and displacement history for
depths of burial, D=R/2, R, and 2R. Note that the analysis is considered within a time interval of three
arrival times (3xD/c, where c¢ is the pressure wave propagation speed in the soil), when a pressure
wave is expected to be reflected from the soil surface. It can be scen in the figures that when the
arching coefficient is equal to E/3R there is a reduction of the displacement and of the peak interface
pressure as compared to a system without soil arching. The reductions are 6% and 4%, 10% and 5%,
18% and 8%, at D =2, 4, and 8 m, in the peak displacement and interface pressure, respectively (Figs.
9, 10, and 11). These results show that when soil arching develops (with k= E/3R), the interface
pressure reduces and so does the structure displacement, although the relative reduction of the interface
pressure is smaller than that of the displacement. They also show that the decper the soil backfill the
stronger the influence of soil arching. An important part of this result is the longer gap duration, fgap
which is caused when soil arching is developed (compare the duration of the zero interfaces pressures
at the top of Figs. 9-11). A longer gap not only prolongs the time during which the mid-structure is
relieved of external load, but it also causes a reduction of the initial interface impulse. Note that if
there is no soil arching (k = 0) different soil depths do not yield different interface pressure peaks nor
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different response, because the model does not include dissipation of the external load.

The importance of the gap influence on the response is further demonstrated by comparing the
response of a 250 mm and a 400 mm thick roof slabs, at a depth of 4 m, without soil arching
(k= 0), under the external loading of the above example. The SDOF parameters of the 250-mm and
400-mm roof slabs are, respectively: ©=0.333 - 10’ and 1.364 - 107 N/m>, M=120 and 192 Kg/mz,
I,=37.7 and 23.6 msec (7, is the natural period of the structure’s SDOF model). The dynamic
amplification factors (DAF) for a sinusoidal impulse of 15 msec are 1.4 and 1.7 (Clough and
Penzien 1975). Fig. 12 shows the response of these slabs, according to the current model. It shows
that the initial peak interface pressure at the thicker roof slab is about twice as much as the peak
interface pressure over the 250-mm roof slab (0.231 and 0.122 MPa, Fig 12). Therefore, the
reduction in the peak roof displacement is obtained as follows:
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Fig. 10 Response of a circular buried structure; D=4 m, R =4 m, h =250 mm
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where pmax is the peak interface pressure (top of Fig. 12). However, although according to this
result it is expected that compared to the 250-mm roof slab, the peak displacement of the thicker
roof slab would be reduced by 43%, it is reduced only by 14% (Fig. 12). This result
demonstrates the effect of the gap opening (and of the gap opening duration) on the total
response. It can be seen in Fig. 12 that the interface pressure over the 250-mm roof slab has not
only a smaller peak, but it also has a shorter duration. That initial interface impulse is followed
by the formation of a gap (zero interface pressure), which does not open over the thicker and
stiffer roof slab.

The combined effect of the soil arching coefficient, k, and of the soil backfill depth, D, is
shown in Fig. 13. It can be seen in the figure that the deeper the depth of burial the longer the
gap duration (Fig. 13a), and the shorter the duration of the initial interface impact (Fig. 13b). It
also shows the effect of soil arching on attenuating the loading on the structure: the higher the
arching effect (the higher k) the higher the gap duration (Fig. 13a) and the shorter the initial
interfaces impact duration (Fig. 13b). Furthermore, Fig. 13b also indicates the relative effects of
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wave propagation phenomenon and of soil arching on the interface loading: Without soil arching
(k = 0) the interface loading is affected by phenomena that are related to wave propagation (e.g.,
the relative velocity of the soil-structure particles at the soil-structure interface). As the soil shear
resistance (that affects the soil capability to develop arching) increases, the interface loading
further decreases, as it is indicated here by a longer gap duration, and a shorter duration of the
initial interface impact.

The gap closure is characterized by an abrupt increase of the interface pressure, which is typical
of an impact between two colliding bodies (Figs. 10 and 11), as also observed in the small-scale
simulations (see section 3.1).

5. Conclusions

A relatively simple model of a buried structure response to a surface loading that can also
simulate a possible opening and closure of a gap between the soil and the structure, is presented.
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Analysis of the response of small and medium scale buried roof slabs under surface impulsive
loading shows that the model's predictions are in fairly good agreement with the experimental
results. The relative importance of including a gap opening and closure in the analysis is demonstrated
by application of the model to a study case of a buried structure under external transient dynamic
loading. The results show the relative influence of the depth of burial and arching coefficient, and
of the roof thickness, on the interface pressure and on the roof displacement. The deeper the depth
of burial the longer the gap duration, and the shorter the duration of the initial interface impact. In
addition to the influence on the response of wave propagation phenomena, the current analysis
shows that the higher the soil’s shear resistance (the higher the ‘static’ arching effect) the higher the
gap duration, and the shorter the initial interface impact duration. When there are conditions that
cause a development of a gap between the soil and the structure, the structure is relieved of the
interface pressure and its displacement is reduced.

Considering the simplicity of the model, it simulates well the overall trends and characteristics of a
buried structure behavior under dynamic surface impact. Nonlinearities of the soil and of the structure
and damping effects, as well as gravitational influence, may be included in a further development of
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the model for problems of very deep structures or a surface loading that acts over a relatively small
area.
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Notations
B = width of a rectangular roof
c = pressure wave propagation speed in the soil
cl = non-dimensional pressure wave propagation speed in the soil (¢t = EIM)
D = depth of burial
E =soil Young’s modulus
k = soil arching coefticient
k =non-dimensional arching coefficient (/~< =2klpr)
L =length of a rectangular roof
M = SDOF (structure) mass per unit arca
Po = external impact amplitude
Dmax = peak interface pressure
p) = external (surface) load
rn R =radius of the structure roof in the current model
Teg = equivalent structure radius
t = instant time
fo = last gap open/closure time (“previous state”)
tG = gap opening time
T.(t) = function of time, only in the Fourier series
T = external load impulse duration
U, x) = vertical soil displacement
U(t,x) =transformed vertical soil displacement
U, = soil displacement of the “previous state™ (at the time prior to the gap closure of opening)
(] » = soil velocity of the “previous state”
»(tg, x) = Fourier transformation of the solution of the “previous state” at 1=ty
W() = SDOF (structure) mass deflection
w, = mass (structure) displacement
w, = mass (structure) velocity
X = depth corrdinate
X (x) = solution’s eigenfunction
X = eigenfunction’s norm

,, = solution’s eigenvalue
An = normalized system’s frequency [A, = —(k + czgi) 1
u = SDOF (structure) spring stiffness per unit area
u = non-dimensional spring stiffness (fi= /M)
= soil mass density
o(t, D) = contact (interface) stress between the soil and the structure
¢, x) =friciton traction on the perimeter of the soil column in the current model





