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The inelastic buckling of varying thickness circular
cylinders under external hydrostatic pressure
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Abstract. The paper presents theoretical and experimental investigations on three varying thickness
circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling
theories that were presented were based on inelastic shell instability. Three of these inelastic buckling
theories adopted the finite element method and the other two theories were based on a modified version
of the much simpler von Mises theory. Comparison between experiment and theory showed that one of
the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results
while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by
experimentally determined plastic knockdown factors gave poor results. The third finite element solution
which was based on material and geometrical non-linearity gave excellent results. Electrical resistance
strain gauges were used to monitor the collapse mechaisms and these revealed that collapse occurred in
the regions of the highest values of hoop stress, where considerable deformation took place.
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1. Introduction

Thin-walled circular cylinders with a stepped variation in wall thickness, appear in a number of
different branches of engineering, including ocean engineering, agricultural engineering and aerospace
engineering. In ocean engineering, such strucutures appear as the legs of off-shore structures and as
underwater storage containers. In agricultural engineering, such structures appear as the fuselages of
spacecraft.

Now under external hydrostatic pressure, such structures can fail through non-symmetric bifurcation
buckling or shell instability (Ross 1990), at a pressure which might only be a small fraction of that to
cause axisymmetric yield. The shell instability mode of failure is depicted in Fig. I, where it can be
seen that due to the compressive hoop stresses, the radial deformation pattern around the circumerence,
is of a sinusoidal wave form.

If the unsupported meridional length of the vessel is small, then the cylinder can fail through
axisymmetric collapse, as shown in Figs. 2 and 3.

In the case of axisymmetric deformation, the circumference at mid-bay becomes plastic and
deforms axisymmetrically inwards. The result of this is to make the effects of axial pressure
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Fig. 1 Shell instability

Fig. 3 Axisymmetric collapse (endview)
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increasingly important, so that the mid-bay deforms even more rapidly inwards. Further increase in
pressure causes the vessel to suffer from plastic axisymmetric collapse with two axisymmetric
hogging hinges at the ends of the vessel and an axisymmetric sagging hinge at mid-bay.

In the case of a varying thickness circular cylinder, the vessel can fail through either shell instability
or axisymmetric collapse or as will be shown later in the present text, by a combination of these two
modes of failure.

Earlier work by Esslinger and Geier (1974) and also by Malik er al. (1979) were only concerned
with the elastic instability of geometrically perfect vessels. From the theory of Esslinger and Geier and
according to Rajagopalan (1993), the former authors quoted the following semiempirical formula to
predict the elastic instability of varying thickness circular cylinders under hydrostatic pressure:

L VL,
P, ~P, S

i

L =the entire length of the vessel between supports

P, = theoretical elastic buckling pressure based on the von Mises theory

P; =theoretical buckling pressure of the ith bay of the vessel, assuming that it is of length L and of
thickness f;

L; =length of the element ‘i’

The material properties of the vessels were found by experiment to be as follows:

Yield stress =0, =263MPa
Young’s modulus = £ =190GPa
Nominal Peak stress = o ¢ = 379 MPa

Assumed Poisson’s ratio = v =0.3
The initial out-of-circularites ‘e’of the models were measured and found to be as follows:

VTI1 At the middle of vessel, e = 0.0181 mm

VT2 At the middle of the top section (where the vessel buckled), e = 0.0157 mm
At the middle of the bottom section (where the vessel started to buckle), e = 0.0152 mm
VT3 In the middle of the thin section (where the vessel buckled), ¢ = 0.0208 mm

These initial out-of-circularities were measured on the external surfaces of the vessels and it can be
seen that they were small. That is, their eccentricity to thickness ratios varied from about 1/100 to
1770.

The buckling pressures P; were calculated form the von Mises formula (1929) for uniform
thickness circular cylinders, assuming that they were simply supported at their ends and subjected to
uniform external pressure. This formula which is listed below, has also been published by Ross
(1990), together with a computer program to implement it.

P, = von Mises buckling pressue

) E(t/a) { 1 L [nz_ 1+(@)T}
[’ = 140.5(na/LY 1 n’L/(ma) +11° 124%(1 = %) L 2)

where
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Young’s modulus of elasticity

mean radius of cylinder

= wall thickness of cylinder

= number of circumferential waves the vessel buckles into

E
a
t

n

The main deficiency of the theory of Esslinger & Geier is that it does not take into account the
detrimental effects of initial out-of-circularity, nor that the vessels can fail through inelastic instability.
Both of these effects can cause the predicted buckling pressures to be considerably smaller than the
theories of von Mises, Esslinger and Geier. The paper by Malik er al. was also aimed at perfect vessels
that failed by elastic instability. Additionally, it was difficult to interpret the experimental results of
Malik er al; because the tops of their vessels were not secured firmly and this led to some difficulty
in determining the exact experimentally observed buckling pressures of some of their vessels.

Hence, because there appears to be a shortage of experimentally observed buckling pressures for varying
thickness circular cylinders under external hydrostatic pressure, especially for those that failed inelastically,
the present investigation was conducted.

In the present paper, a report will be made of a theoretical and an experimental investigation of three
varying thickness circular cylinders that were tested to destruction under external hydrostatic pressure.

2. Apparatus

Three models were accurately machined from a solid billet of EN1A mild steel. First of all, the
internal surface of each vessel was bored out and then each model was placed on a previously
machined, mandrel, where the outer surface was carefully machined. Thus, the step variation in wall
thickness was on the outer surface of each vessel.

2.1. The models VT1, VI2 & VT3

Details of the geometrical properties of each vessel are shown in Figs. 4 to 6, where the
dimensions are in mm. The models were named, VT1, VT2 and VT3 and a photograph of the three
models is shown in Fig. 7, where P; = the von Mises buckling pressure for the element of the
varying tickness cylinder which is of length ‘L; and thickness’t;.

Additionally, as the vessels were of varying thickness, it will be necessary to suggest a new
method of calculating the thinness ratio ‘A’ (Windenburg & Trilling 1934).

3

= ((L/2a)’/(t/2a))"" [(o,,/E) 3)

o ,,= yield stress

The symbol ‘A’ of Eq. (3) represents a thinness ratio for circular cylinders, when Windenburg and
Trilling obtained ‘A’ based on the ability of a thin-walled circular to resist both instability and
axisymmetric deformation. Thus ‘A’ is related to both the geometrical and material properties of the
vessel. ‘A’ can be regarded as being the cylindrical shells’ equivalent of the well-known slenderness
ratio for struts, except that ‘A’ is also related to both the yield stress of the material and Young’s
modulus.

It should be emphasised that because the vessels buckled under external hydrostatic pressure,
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many vessels will buckle at pressures that are considerably less than those predicted by elastic
theory for perfect vessels. It is because of this that Ross (1990) introduced a plastic knockdown
factor (PKD) based on thinness ratio of Windenburg & Trilling; this plastic knockdown factor is
used as shown in Eq. (4)

P(predicted) = P,,/(PKD) @)

where

P (predicted) = predicted buckling pressure

P. = theoretical elastic instability buckling pressure for perfect vessels

PKD = plastic knockdown factor for uniform thickness cylinders, obtained from the semiempirical
chart of Ross (1990)
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Fig. 7 Models VTI1, VT2, & VT3

The present authors suggest that for a varying thickness circular cylinder ‘A’ is calculated by
Eq. (5)
Lo )
X = ;le (L;/ 7%‘)

where 4; is calculated for a circular cylindrical shell element of length ‘L;" and of thickness ‘z;’. The
original formula for ‘A’ is given by Eq. (3)

2.2. The test tank

The test tank is shown schematically in Fig. 8, where it can be seen that the models were hung
vertically from their top to eliminate secondary bending stresses.

The external hydrostatic pressure was applied by a hand-operated hydraulic pump so that line
losses were negligible. Water was used as the pressure raising fluid and because of this, all the
electrical resistance strain gauges were attached to the internal surfaces of the models, so that the
water proofing of strain gauges was avoided.

3. Experimental procedure

Fifteen electrical resistance strain gauges were attached to VT1 and VT2 and nineteen strain
gauges were attached to model VT3, as shown schematically in Figs. 9 to 11.

It can be seen from Figs. 9 to 11 that ten circumferential strain gauges were attached to the midspans
of the thinner sections for VT1 & VT3 and 10 gauges to the mid-span of the thicker section for VT2,
It was expected that the vessels would buckle in these positions and these strain gauges were required
to observe the non-linear behaviour during buckling. In some cases, a teestacked pair of strain gauges
was used in certain areas, so that the two principal stresses at those points could be observed. Tt
was intended to compare these experimentally observed stresses with the theory of Ross (1970).
A computer program, based on this theory has been published by Ross (1990).
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3.1. The experimental tests

The external hydrostatic pressure for each of the three experimental tests was first increased to
34.47 bar and the strain gauges read. The process was repeated at pressures of 51.71 bar and 68.95
bar and then the hydrostatic pressure was decreased to zero. The strain gauges readings were then
read at zero pressure to test for any drifting, but all the strain gauges behaved quite satisfactorily.
The hydrostatic pressure for each of the three vessels was then increased gradually in increaments
of 34.47 bar and the strain gauges read. When the strain gauges started to behave non-linearly, the
increments of pressure were made smaller and smaller, until failure occurred.

The model VT1 collapsed as expected throgh inelastic shell instability at the mid-span of the
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Fig. 11 Strain gauge positions for VT3

vessel, in its thinner region. For this mode of failure, the hoop stresses at mid-bay reached yield,
causing some plastic axisymmetric deformation. The effect of this was to cause the circumferential
tangential modulus to become a small fraction of the Young’s modulus of elasticity, thereby
triggering of plastic shell instability. It was expected that model VT2 would also collapse at
midspan, because although the model was thicker here, the meridional length of the thicker section
was four times larger than the meridional lengths of the two thinner sections. However, the model
collapsed in the top thinner section by a mode of failure which was a combination of shell
instability and axisymmetric collapse. Later inspection of the collapsed vessel showed that the
bottom thinner section of model VT2 had started to collapse axisymmetrically, triggering off plastic
shell instability, as described above. The model VT3 collapsed as expected through inelastic shell
instability in the thinner section. A photograph of the collapsed models is shown in Fig. 12 and the
experimentally obtained buckling pressures are given in Table 1.

These experimentally obtained buckilng pressures where quite violent with a rapid fall in the value
of the applied pressure. This was quite unlike plastic axisymmetric collapse, which was much more
gentle and which required some time and effort to cause the three hinge mechanism described earlier.

3.2. Strain gauge recordings

The strain gauges recordings for each of the cicumferential sets of gauges for models VT1, VT2
and VT3 are shown in Figs. 13 to 15. These figures show how the magnitudes of circumferential
strain grow with increasing values of exteternal hydrostatic pressure and in all cases, the vessels
failed plastically.
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Table 1 Experimental collapse pressures (bar) of VT1, VT2 and VT3

Model Buckling pressure (Peyp) Region of failure
VTI 103.42 Mid-span
VT2 123.07 Top thinner section
VT3 99.97 Thinner section

Fig. 12 Collapsed models VT1, VT2 and VT3

4. Theoretical analyses

Three different types of theoretical analyses were carried out; onc was a linear elastic axisymmetric
deformation analysis while another was a non-linear non-symmetrical bifurcation buckling analysis, based
on plastic knockdown. A third analysis was based on a finite element analysis involving geometrical and
material non-linearity.

The purpose of the first of these analyses was to study the distribution of axisymmetric stress along a
meridian for varying thickness circular cylinders. The other analyses were to obtain a method of
calculating the inelastic buckling pressures for varying thickness circular cylinders under hydrostatic
pressure.

4.1. Linear axisymmetric deformation analysis

This theory was based on the axisymmetric slope deflection analysis for shells (Ross 1970). The theory
solved the shell differential equation of Wilson (1956) by the method of Salerno and Pulos (1951), but
allowed for non-symmetric deformation about mid-span due to the vessel being of varying thickness. The
method of anaysis will not be described here, as it is adequately described elsewhere (Ross 1990).

4.2. Inelastic buckling analyses

The problem with the theory of Esslinger & Geier was that when P; was calculated, the entire
length of the vessel was used for all elements. The present authors thought that this process seemed
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somewhat illogical, as the length of each section of the varying thickness cylinder
different. Because of this, the present authors suggested the following formula:

could be
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L i=N
5= Y, (L/P) (6)

i=1

For the sake of continuity, with the Esslinger & Geier method, an additional calculation for ‘A’ will be
made, where like Esslinger & Geier, ‘L, will be made to be the entire length of the vessel. Additionally
inelastic buckling solutions will be made using the plastic knockdown factor together with finite
element truncated conical shell element of Ross (1990).

5. Comparisons between experiment and theory

Two separate analyses will be made; one of these will involve a linear elastic axisymmetric
deformation analysis and the other will be in determining the inelastic buckling pressures of these
vessels by five different methods.

5.1. Linear axisymmetric stress distrbutions

The theoretical axisymmetric stress distributions along a longitudinal generator, under a uniform external
pressure of 34.47 bar, are shown in Figs. 16 to 18. In these cases, comparisons between experiment and
theory was not possible as no strain gauges were attached to the external surfaces of the models.
However, as it is possible that these stresses can be larger than their internal counterparts, they are
presented here.

x = distance measured from an end in mm

5.2. Inelastic buckling

In this case, five analyses will be carried out. One analysis will be based on the thecry of Esslinger
and Geier (1974) and two solutions will be based on the finite element solution of Ross (1990). One
of the finite element theories will calculate ‘A’ by the concept of Esslinger & Geier while the other
theory will calculate ‘A’ according to Eq. (4). A fourth inelastic theory will be based on the modified
version of Esslinger & Geier, as suggested by the present authors and by using Egs. (2) and (4). A
fifth analysis will be by using the finite element method, allowing for geometrical and material non-
linearity, as described in Secton 5.2.1. This theory is similar to that of Bushnell (1976).
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Fig. 16 Hoop and longitudinal stress distributions for VT (external surface)



62 C.T.F. Ross, A. Gill-Carson and A.P.F. Little

40.00 | 150.00 -
20.00 o
& 100.00
g o.ooc &
. -20.00 F 4 £0.00
¥ 4000 | g
@ a
£ .60.00 | X
S -80.00 | £
b~
:8:-100.00 i 2 -50.00
12000 ¢ & .100.00 |
-140.00
X, mm

-150.00 X, mm
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Table 2 shows the results for the two theories based on the Esslinger & Geier concept, where

P.. (1)= the theoretical elastic buckling pressure as predicted by Esslinger & Geier
P, (2)= the theoretical elastic buckling pressure as predicted by the finite element method
A (1) = the thinness ratio as calculated by the concept of Esslinger and Geier
PKD = plastic knockdown factor (Ross ef al. 1995)
P (1) = P,(1)/PKD = predicted inelastic buckling pressure by the concept of Esslinger & Geier
P (2) = P, (2)/PKD = predicted inelastic buckling pressure by FEM (method 1)
P., = experimentally obtained buckling pressures
Table 3 shows the buckling pressures for the two theories based on the approach suggested in the
present paper;

where

P.. (3)= the theoretical buckling pressure predicted by the finite element method.

P.. (4) = the theoretical buckling pressure based on the modified theory of Esslinger & Geier
A (2) = the thinness ratio as calculated by the present approach (see Eq. 5)

PKD = plastic knockdown factor (Ross et al. 1995)

P @3) =P, (3)YPKD predicted

P@&) =P, (4)/PKD  buckling pressures

Table 2 Buckling pressure (bar) by method (1)

Model P (1) P (2) A PKD P(1) P(2) Pexp
VTI 170.6 2113 0.835 2 85.31 105.7 103.42
VT2 170.0 383.7 0.836 2 85.01 191.9 123.07
VT3 170.0 280.3 0.836 2 85.01 140.2 99.97

Table 3 Buckling pressure (bar) by method (2)

Model P, (3) P (4) AQ) PKD P(3) P(4) Pexp
VTl 2113 556.0 0.482 50 423 111.2 103.42
VT2 383.7 521.9 0.544 4.0 959 130.5 123.07

VT3 280.3 388.3 0.618 34 82.4 114.2 99.97
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P., = experimental buckling pressure

From Tables 2 and 3, it can be seen that the inelastic theory, pased on the modified method of Esslinger
& Geier gives very good results; the errors being between + 6% to +12%. The inelastic theory based on
the original concept of Esslinger & Geier gives poor results, the errors by method (1) being between
+2.2% to +56% and the errors by method (2) being —18% to —59%. Even more encouraging about the
modified theory of Esslinger & Geier is that its errors had a small standard deviation.

5.2.1. Non-linear finite element solution

Unlike the previous two finite element solutions, which were based on dividing a theoretical
linear solution by previously obtained semi-empirical plastic knockdown factors, the finite element
solution described here allows for material and geometrical non-linearity. In this case, the axisymmetric
thin-walled conical shell element (Ross, 1990) was used. The method of analysis allows for both
geometrical and material non-linearity and is based on a step-by-step incremental procedure, which
is now described with the aid of Table 4.

The incremental non-linear method is to load each vessel in increments of pressure, namely
{8g"}, and to observe the theoretical behaviour of the vessel due to each increment of pressure. The
process therefore, is that at the end of the first stage, to calculate the displacements {u’;} and the
stresses, due to the first increment in pressure, and to update the geometry of the vessel due to this
load. Additionally, if any element in a vessel became plastic, according to the Hencky-von Mises
theory of yield, to change the value of the Young’s modulus for that element. It was assumed that if
the von Mises stress reached first yield for any element, its Young’s modulus became 1/5th of its
elastic Young’s modulus, and that when the von Mises stress reached 1.1 of the yield stress, the
Young’s modulus became 1/100th of its elastic Young’s modulus. The process was repeated for the
other stages, where the displacements and stresses were superimposed at the end of each stage.
Each vessel was assumed to be fixed at one end, and clamped at the other end.

Where

[K]= [Ko] + [Kc]
[K]= Stiffness matrix
[Kol= a stiffness matrix (If the material properties of the element are constant, then this matrix is the

Table 4 Incremental non-linear method

Step (8"} Stiffness matrix () Displacements
{60.") K (O)+KG©0)] {6’y @) =)
2 (602"} (Ko™ {uO)+ K ()] 16’y (") = {1+ 6
3 (603"} 1KoK )] (0u°) () = (1) +(8u”)
n 180,") 1K {u "V IHIK G (1] (6} () = (0 )+ 6w

Z { q;:o } { u,,()}
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Fig. 18 Hoop and longitudinal stress distributions for VT3 (external surface)

usual stiffness matrix)
[Kgl= the geometrical stiffness matrix which depends on the internal forces in the element. This is also
known as the initial stress-stiffness matrix.

This then leads on to the following, which shows the equation step by step.

(K] = [K(u)] + Ki(u)]
Where

[K] = The stiffness matrix

[K(u")] = The stiffness matrix at the ith step

[Ko(u)]= The geometrical stiffness matrix at the ith step
{&¢"} = Incremental load

From the theoretical results obtained from the non-linear finite element computer program, the external
pressures were plotted against the end axial deflection, for each of the three vessels. On each of the
three graphs the experimental buckling pressures were also plotted, as shown in Figs. 25 to 27.

Comparisons between theory and experiment are shown in Figs. 19 to 24 for the internal surfaces
of these vessels, under an external hydrostatic pressure of 34.47 bar.

x = distance measured from an end in mm

From Figs. 19 to 24, it can be seen that good agreement was found between experiment and theory
except at the ends. It appears that the main reason for the discrepancy between experiment and
theory of the ends was that the ends of the vessels were not 100% fixed, as assumed in the theory
of Ross. That is, there was some elastic relaxation at the ends of the vessels.

The theory has shown that in all cases, the vessels collapsed in the regions of highest hoop stress.
In fact it can be seen that despite the fact that the thinner sections had much shorter meridional
lengths than the thicker sections, the largest hoop stresses lay in these thinner sections. In fact, in all
three cases, the hoop stresses in the thinner sections were some 50% larger than the hoop stresses in
the thicker sections. Thus it can be concluded that for these vessels, a linear axisymmetric
deformation analysis can serve as a useful method of analysis in addition to an inelastic buckling
analysis.

The figures show that there was good agreement between the theoretically obtained buckling
pressures with the experimentally obtained buckling pressures; the numerical values are shown in
Table 5.
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6. Conclusions

The experimental results have shown that all three vessels collapsed by inelastic instability. Models
VT1 and VT3 collapsed by inelastic non-symmetric bifurcation buckling, while model VT2 collapsed
by a mixed mode of inelastic non-symmetric bifurcation buckling and plastic axisymmetric deformation.
This latter observation appears to indicate that there is a link between inelastic non-symmetric
bifurcation buckling and plastic axisymmetric deformation.
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Fig. 25 Experimental buckling pressure for V.T.1., as a comparison with the non-linear finite element solution

It appears that in all three cases, the maximum hoop stress reached yield and this caused the
circumferential tangent moduli to become much smaller than the Young’s modulus, thereby
triggering catastrophic collapse. The modified theory of Esslinger & Geier, which allowed for
inelastic buckling, gave very good results, while the two finite element solutions based on dividing
theoretically obtained linearly elastic buckling pressures by experimentally obtained plastic knockdown
factors gave poor results.

The non-linear finite element solution gave excellent results. The linear elastic theory for
axisymmetric stress predictions along the meridional length of each vessel gave good results and
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Fig. 27 Experimental buckling pressure for V.T.3., as a comparison with the non-linear finite element solution

Table 5 Comparison between the non-linear finite element solution and experiment

Non-linear finite element buckling pressure (bar) Experimental buckling pressure (bar)

V.T. 104 103.42
V.T2 115 123.07
V.T3 100 99.97

showed that collapse occurred in regions of high hoop stress.
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