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A posteriori error estimator for hierarchical
models for elastic bodies with thin domain
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Abstract. A concept of hierarchical modeling, the newest modeling technology, has been introduced
in early 1990's. This new technology has a great potential to advance the capabilities of current
computational mechanics. A first step to implement this concept is to construct hierarchical models, a
family of mathematical models sequentially connected by a key parameter of the problem under
consideration and have different levels in modeling accuracy, and to investigate characteristics in their
numerical simulation aspects. Among representative model problems to explore this concept are elastic
structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through
the thickness can be approximated with sequential accuracy by varying the order of thickness
polynomials in the displacement or stress fields. But, in the numerical. analysis of hierarchical models,
two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical
simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a
posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures
is derived using the element residuals and the flux balancing technique. This method guarantees upper
bounds for the global error, and also provides accurate local error indicators for two types of errors, in
the energy norm. Compared to the classical error estimators using the flux averaging technique, this
shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to
verify the validity of the proposed error estimator, representative numerical examples are provided.
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1. Introduction

In every numerical analysis of natural phenomena using hierarchical models, at least two types
of errors prevail; the error inherent in the hierarchical model itself due to assumptions made on it
which may make it insufficient to depict significantly complicated features of the behavior, and
the numerical error in the numerical approximation of the solution corresponding to a particular
hierarchical model.

To the best of my memory, the mathematical derivation of a priori modeling error estimate for
one-dimensional elliptic boundary value problems of scalar-valued functions was made by
Vogelius and Babuska (1981). And recently, its extension to two- and three-dimensional linear
elasticity problems with thin domain was done by the author and Oden (1996a). As for a priori
error estimation of finite element approximations for elastic bodies with thin domain, the author
and Oden (1996b) have presented the theoretical results reflecting the locking effect, and found
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that two error components are orthogonal in the energy norm.

Schwab (1996) developed one simple a posteriori modeling error estimator for hierarchical
models for plate-like structures using the decomposition of the modeling error and the use of
traction residuals on the top and bottom surfaces of such structures.

This paper is concerned with a development of a posteriori error estimator which can accurately
estimate the total error composed of the two error components, in other words, the error measured
with respect to the fully three-dimensional linear elasticity theory. A reliable and efficient error
estimator is an essential tool for selecting optimal hierarchical model and optimal finite element
mesh.

Here, we use the mathematical theory advanced by Ainsworth and Oden (1993), which involves
the use of localized element residuals and equilibrated flux-splitting to produce upper bounds for
the global error in the energy norm. The implementation of this error estimator is composed of
four steps: (1) We perform a finite element analysis with a setting of initial model (g,) level and
initial finite element mesh (h,, po); (2) We then calculate equilibrated flux on each interelement
boundary from the solutions obtained in step (1); (3) Next, we solve the local equilibrated
problem for each element with higher model level g and higher approximation order p than those
in the initial setting; (4) Finally we calculate local error indicators for each element using the two
solutions obtained steps (1) and (3).

Error indicators estimated with this error estimator enable one to assess the validity of a
specified hierarchical model as well as a specified finite element mesh for thin elastic bodies such
as plate- and shell-like structures.

2. Preliminaries

Let £2 be an open Lipschitzian domain R* in with piecewise smooth boundary 92 The spaces
H"(£2) (m > 0, integers) are Hilbert spaces defined as the completion of {u & C"(Q): ||u||,.o< >}
in the Sobolev norm defined as

it [l = { S [ D% |2cm} )

|af<m

where multi-index notation is used: a= (a4, @, o), & >0, |dJ= a1+ &, + . Weak or distributional
derivatives in the above equation are

||
D% = _ Jw @)
ox7' dx3® 0x5’

The inner product in the space H" (£2) is defined as

a3

@ Vna= Y, [P DPvdQ (3)

laf.| B|<m

Furthermore, Hy'(£2) is defined as the closure of C;(£2) in the space H"(£2). More mathematical
details on the definition may be referred to Adams (1978).

Next, we introduce some useful notations concerning with the finite element partition, and
which are used in the derivation of a posteriori error estimator. Let § be a partition of 2 into a
collection of N = N(§2) subdomains £J with boundaries d£% such that
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i) N(#2) < o0
ii) £ is Lipschitzian with piecewise smooth boundary 9.2
iii) Q2= IQJI(TK QN =0, K+ 1L
iv) M€, is either empty or common line or common smooth surface Iy,
Here, ny is an outward unit vector normal on the boundary d£Z%, then n(s) on I, has

n(s)= N ng(s)=Nyxn (s)

_ [ 1, i K>L
N == LK‘{—L if K<L )

and which implies n(s) = ni(s), s € 0% (K is a larger element number). In addition, we define the
jump [[V]] of functions v across the interelement boundary I, of two elements £ and (2 by

_Jvk—-v, f K>L
o= K ®

Futhermore, we denote k-th component of traction vector £ of Cauchy stress tensor o(u) using the
operator /{n) containing the components of outward unit normal vector

L, = Oyn; =(In) o(u))* (6)

3. Formulation of hierarchical models
3.1 Variational formulation

For a purpose of notations, let us consider a plate-like structure with uniform thickness d, as
shown in Fig. 1. Let @& R’ denote an open bounded region (mid-surface) of the body 2C R’
with piecewise smooth boundary dw. We split the boundary 0.2 into the lateral boundary and the
top and bottom surfaces d£2. of the body, respectively

00 ={x € R?|(x1,x,) € 0w, |x5| <d/2}
02, ={x € R3}|(x,x,) € 0w, |x;| =d/2}
02 =30 U o ™)

Here, x; is a coordinate normal to the reference surface @. Further, let I, and 7 be the portions
of the boundary 00 such that I,UI,=04, I,NIy=@, on which the displacements and the
applied tractions are specified (i.e., Dirichlet and Neumann boundary regions), respectively.
Usually, I, is restricted to the lateral boundary and I, to the top and bottom surfaces. For
convenience of notations, we define day, day, by

def
082 = Ip| = {x € I, |x;=0}
def
day =Ptroj(Iy) = {(x1, X2, 0) € @|(xy, %, d/2) € Iy} ©®)

Viewing the structures as a three-dimensional elastic body (as opposed to abstract plates or
shells), we have the following elliptic boundary value problems

-DTou)=f, in Q
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Fig. 1 A plate-like structure and its geometry notations

u=0, on I

Nn)o(m)=t, on I ©)
and the strain-displacement relations and the constitutive equations
&u)=Du
ou)=EDu (10)

Here, £ and o are vectors of Cauchy strains and stresses, £€={&, &, &, ¥%» ¥ E1i}, {01, O, O,
Ti»» T, T} and D’denotes divergence-like operator in the Cartesian coordinate system

d0/ox; 0 0 0/0x, 0 0/0x,4
D"=| 0 9d/0x, 0 09/0x,d/9x; O (11)
0 0 d/dx; 0 9/dx, d/0x,

Here, f€ [L()), t< [L($)] represent body force and applied traction vectors, respectively.
And E is a (6X6) matrix containing Lamé constants v, A for three-dimensional linear elastic
materials (Szabo and Babuska 1991).

We define the space V() by {ux)E [H'(D]’: v=0 on I}, then this space is admissible
displacement space for the elliptic boundary value problem (9) because every vector-valued
function ve& V(£2) satisfies homogeneous boundary conditions on I, and has finite strain energy
U(v). Now, let g be a set (g5, g, gs) With g, of positive integers, and define the scalar-valued
function space V(w) defined on the mid-surface by

V(o) ={vx, x;): ve H(w)|y, v=0} (12)

where, % : H'(w) — H”?(@w) is a trace operator. By introducing a set of Legendre polynomials
O(x;) and by specifying a set of their maximum orders (q;, ¢,, ¢;), we define the subspace V(£2)
C V(£ such that

Vi) = {vx) | v; =i@il(xl,x2)° ¥ (2x;/d), O'e V(w), i =1,2,3 (13)
1=0

Then, from the density argument (Adams 1978), as V,(£2) — V(£2) as g — o.
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The space V(42 is a restricted subspace of V({2) with finite dimension in the thickness
variation in displacement fields. In this subspace, Galerkin weighed residual method for the three-
dimensional linear elasticity leads to the weak statement :

Find us € V?(€Q) such that Vv/ € V/(Q)
a(ue, v)=1(v") (14)

Where, the bilinear functional a(-, -): V()X V(£ >R and the linear functional ( - ): V/(£2)—
Rare expressed by the following dimensionally-reduced form defined on the mid-surface,
respectively

a(s, V)= [ (DV'), (EDuv)),dx,

L) = [ (f V Yodta +t, Ve (@d/2)),+(t, V (0-d/2)), (15)

—d/2

where, (-, -) is an inner product defined on the mid-surface domain by
(w,vy=[ uTvdo (16)

Obviously, the variational problem (14) is two-dimensional because integrations through the
thickness are related solely to the thickness polynomials y(x;).

The solution u’ of (14) is defined as a projection of u in the bilinear functional, a(u-u’, v) =0,
Vve Vi(£2). We can construct a sequential set {u};., of solution along the set of (g, q,, g;). We
define the set of solutions as the hierarchical family F;, :

Fp={u1:9=1,2, -, } 17

Hereafter, we will denote a hierarchical model with the model level (g, ¢,, ¢;) as the (g,, ¢, qs) -
model. Their characteristics are well explained in the work of Babuska and Li (1992), Szabo and
Babuska (1991), Cho and Oden (1996a, 1996b), Oden and Cho (1996) and Schwab (1996). We
record here that the (g, ¢, ¢;)*-models indicates the hierarchical models constructed by replacing
E with E™ of the Reissner-Mindlin theory.

3.2 Finite element approximation

Let us define the local function space V¢ and the discontinuous global function space V¥(§),
respectively, by

VE={V: Vi e[H(Q2)P|VE=0 on 02N I}
N()

Vi(p)= TV (18)

then, V%« C V(). Hence, the global function V& V(4) is discontinuous at the
interelement boundaries I, of subdomains % and (2. Since the global finite element
approximation u*" should be continuous at the interelement boundaries in order for finite strain
energy, the global finite element approximation space V** C V? should contain vector-valued test
functions such that

N(p) _
ver = [ VEN[CQP (19)
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Then, the finite element approximation for the hierarchical model is as follows :

Find ue* € V7/(£) such that V vi* € Vak (Q)
auah, vity=[(vih) (20)

Since the assumed admissible displacement fields are in the form of Eq. (13), finite element
approximation is to find approximate solutions ©’(x;, x,) corresponding to each thickness-
polynomial using two-dimensional finite-element basis functions {@(x;, x,) such that

O (x,, x,) = Z@il,’: ° @ (x4, x2) (21)
k=1

Clearly, at each finite element node, (g,+g,+q3+3) degrees of freedom {OHY are assigned.

4. A posteriori error estimation
4.1. Upper bound and local error indicators

Let u and u be the exact solutions of the three-dimensional elasticity and the hierarchical model
with a model level g={q;, ¢, g.}, respectively. Then, the modeling error &< V() of the
hierarchical model is defined as e¢’=u—u’. And let u** be the solution of the finite element
approximation of the hierarchical model, then its finite element approximation error e* V() is
denoted by e*" = u?— u**. Combining these two errors, we define the finite element approximation
error measured with respect to the exact solution

€ e V(Q)a e=e9+edh =u —yat (22)
Here, we define the energy norm || - ||; in terms of the bilinear functional
Ivilz =Va(v, v) (23)

And let the linear functionals I7: V(&) — R, I7,: V"> R and J: V()R be defined as,
respectively

H(V):—;—a(v, V) —I(v)
)= 3 a (v, V')~ 1(¥)

J (V)= (V) - IT; (us*) 24)
Then, the difference between the two potential functionals 7Xu) and IT(u*") is expressed by

T(u)= % au,u)—1(u)- % a @k, ueh)+ 1 (uoh)
= % a(u—udh u—uth)y—l(u)+lwert)+a(u,u)—au,ust) (25)

where we use the fact that a(u®®, u®*") and l(u®") are restrictions from the space V into V7,
respectively. It is not difficult to prove

3 lle 1 =7 @)= ) - My o)
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= inf IIV)-II,(ueh) (26)

ve V()

We next define the local solution spaces Vi in a subdomain £, and the broken space V(§)

Vi ={ve [H(Q)P|v=0 on 0N I}, } (27)
N(®»)
V(@)=T]Vk V(£2)>V(Q) (28)

then, v& V(§) and V'($) are discontinuous across the interelement boundary I,. In the local
spaces Vi, Vi the bilinear and the linear functionals a(-, -) I(-) and I7 restricted to a finite
element are denoted by a.(-, -) L( - ) and T, respectively.

With the splitting function 0, : I (s) — R defined on the interelement boundary I;,(s) as

ok (s)+afk(s)=1, k=1,2,3 (29)
we define k-th component of the self-equilibrated traction acting on the element £ along I,(s) as
TTn)ow™ )y = ogx T )owg>* + gy Mol ™)) (30)
then, for every v& V()
N(P)
S aessa? ()o@ _ods =¥ [ [V IIKTTm)oe#), _, ds (31)
K=1 Ia

Next, we extend I7 to the spaces V(§) and V¥(4), respectively, and consider the difference
functional (potential functional) J,: V() — R expressed by

Jo (V) =IV) - IKut), ve V()

N(#)
- z_ {HK(V) =T (uer) - .[a.ox/a.o VI(I(n)o(ueh)), _, ds}
+ 3 [ V)o@ )y _ o ds (32)

We ensure that the interelement jumps [[V]] are constrained to be zero by using a Lagrange
multiplier £, and that leads to a introduction of the Lagrange functional A defined by

AV(P)XE—>R
A, ) =J o (v) = w([[V]]) (33)

where, the = denotes the space of Lagrange multipliers. From Egs. (32) and (33), we get

N(©)
A(V> ,U) = Z_ {HK(V) - HK(uq’h) - J-E).QK/B.Q VT(I_(" )G(Mq’h ))1—0: dS}
—u(vID+ Y [ [V 1 KT Yok )y, g ds (34)

This functional is composed of sum of local contributions from each element (2, and extra
coupled terms from each interelement boundary I%,. But, if we take u= i, then A becomes a
sum of purely uncoupled local contributions
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VD =Y [, [V K@) ueh)), , ds (35)

Using the relation (31), we note that, for any ve& V(£2), A(V, 1) =J(V) and from Eq. (26), we
have

-5 llelz=r@)= inf Aw.u (36)

Now, let us define the functional @: V($)— R as &(¥) = sup A(V, 1), then it shows
ue =

J(v), ve V()

M= 1o ve V() (37)
and inf (V)= 1nf <D(V) 2|lellz. Moreover, the next relation holds :
ve V(@)
inf J(v)= inf sup A(v,u)
ve V() ve V() ue =
=sup inf A(v, W)
ue E ve V(©) .
> inf A(v,[l), Vjie E (38)
ve V(P)

With the choice of a Lagrange multiplier £ in Eq. (35), an upper bound of the global error is
expressed by

N()

lell#<- 22 mf {HK(V) Tl (uat) - .[anx/agVT (I Youa)), ads} (39)

Smce the second term in RHS of Eq. (39) computed from the finite element approximate solution
u*" is invariant, we need only to solve the following local element-wise variational problems :
Find u, € Vy such that Vve Vi
@ (e, V) =l (V) + 1oV (T )04 )y ds (40)

Obviously, the equilibrated local problems are defined on three-dimensional broken spaces V.
With this @, Eq. (39) becomes
- 2Vi6n£ {HK (V)T (uar) - .[aQK/aQ VI[ng)owat)),_, ds}
= ag (g iy ) + 20T (uo*)
= aK(ﬁK —uak » ﬁK - uq’h) + Iagx/aguq’hT ([(nK)O'(uq,h ))1—05 ds (41)
and from the fact of [[u*"]] =0, Eq. (41) results in:

lle |12 < ax (g —uak, uK—uqh)+zJ ([ 97 1] {T g YO ), g ds

K>L
=aK(uK —uth, uy —udh) (42)

By denoting a(fi, — u®", iy — u*") as (7x)’, we finally have
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N(p)
lellf < () (43)
K=1

The quantity 77 is thus error indicator for element £ and contributes to the global error bound.

Next, consider the discretization of the local element -wise problem (40) by introducing the local
finite element approximation solution space Vi = V7% (£) as a restriction of the initial f1mte
element approximation space V*'(£2) in Eq. (19) to the element (2 with higher p; = =px+d, and p =
Px+0,. Then, the corresponding discrete local element-wise problem is:

Find u} € V} such that ¥V vk € V2
ax @, V)=l (V) + [ oo VT (T(ng)o@ak)), _, ds (44)
And then, (77¢)* = a(lig — u", fig — u*")= (M)

4.2. Calculation of self-equilibrating fluxes

Here, we introduce the local flux-splitting and equilibration method proposed by Ainsworth and
Oden (1993). Finite element approximations of hierarchical models are two-dimensional, but the
flux- splitting on the interelement boundaries is three-dimensional. Let F( ) denote the set of all
vertices in the partition, and consider any vertex A & F(§). Associated with each such vertex
node A is a piecewise tri-linear shape function ¢,(x), which vanishes at every other vertex node in
this partition and has a unit value at the node A. With this shape function, the flux splitting
function o (s) of Eq. (29) is expressed on the interelement face I, with four end nodes, A, B, C
and D, by

ok (s)= i o (S)pv(s), k=1,2,3 (45)

Now, return to the local weak formulation for a single element £ & N(§2) with a sufficiently
smooth vector-valued test function @(x). If we take ¢=(1, 1, 1)', then

ax (@, D=l + [, ., 17 In)ou) ds (46)

The above equation characterizes the equilibration of an element (2, and its solution u|g, is the
restriction of true solution u to the element (. If we replace u in Eq. (46) with the initial
finite element approximate solution #** and rewrite the above equatlon for each component of
the test function 1=1'+1°+1’={(1, 0, 0)+(0, 1, 0)+(0, 0, 1)}". Then Eq. (47) represents the
compatibility condition for the kth interelement traction component for < - >, the existence
of local solution :

ax (uq,h lk) = lK(lk) + JB_QK/BQ <1—(n )G(uq,h )>{cv(x ds (47)

Since u*” is glven from the initial finite approximation, compatibility condition implies to find
splitting factors ¢y for the self-equilibrated traction component which make the element £ be in
force equilibrium in the kth direction.

The difference, RHS-LHS in Eq. (47), means the lack in the force equilibrium in the kth
direction on (X%, here we denote it by A. Because the trilinear shape function @,(x) has the
following property,
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Y elx)=(1,0,0, Vx=Q (48)

AEF(P)

the lack A¢ of force equilibrium in the k-th direction is expressed by

Allé = AI’?,A
A€ F(®)
A4 =L (@) + [ 50 (91 (T )O(uar )t ds
—ax (e, of) (49)

The above equation has the significant importance that the coupled flux-splitting problem between
elements in the patch F(§2) of the node A becomes the uncoupled problem for each node A.
For convenience of computation, we introduce an anti-symmetric operator ki, : Iz — R

K=ot —12 = ki +x5=0 (50)

then, from Eqgs. (30) and (50), we have

(T yofus D= 5 (M )o(ug”) + T yofug

= (In)o(u ), + K [[Tm)otua#)] [ 1))
With two quantities defined by

bllé,A = lk((pff) + J‘aQK/aQ(¢:) <1—(n )o'(uq,h )>1];2 ds - aK(uq’h ’ ¢:)
Plx.a == |, @k [In)omsm)]}* ds (2)
Eq. (49) becomes

A a=bfa— Z Kk A Plx 4

L>0

:bllé,A - 2 ’AffK,A (53)

L>0

Then, &/x= — K¢ because K/ is anti-symmetric and p/ , is symmetric. We will use % for L >
K, then the vanishing of A, is equivalent to

Y fe- Y R =bh (54)

L>K>0 K>L >0
Now, consider a patch of elements sharing the common node A denoted by
S, ={U% c Q| supp (@u)} (55)

and, we construct a system of equations involving the elements in the patch of the node A. We
finally compute the flux-splitting functions K% on the interelement boundaries for each node by
solving the following linear equations

M,k =bf, k=1,2,3, VA e F(§) (56)

where
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blic = {bIIéI,A’ bIIéI,A ceny bIIEAd,A }T
K= {ite, ..}, L >K (57)

Here, M, is a (N X Ay underlying matrix for a patch consisting of N, elements and N,
interelement faces sharing common node A. -

After solving the linear system of equations, we compute the splitting factors g with the
relation (50), and calculate self-equilibrated tractions < - >,_, on interelement boundaries. With the
computed self-equilibrated tractions, we finally solve the local approximation problems (44) to get
better approximate solutions #, so that we estimate the error indicators.

5. Numerical experiments

Fig. 2 shows a clamped square plate-like body with uniform thickness. Uniformly distributed
traction ¢, is applied on the top surface. From the symmetry, only a quarter of the body is taken for
numerical analysis. Data used for the analysis are E=10"N/m’, v=0.3, a=1.0m and £,=5.0X
107 N/m*. We use the (1,1,0)*-hierarchical model and 9 uniform quadratic elements. The distri-
bution of vertical displacement component is shown in Fig. 3, where “DOM’ refers to the ratio
(or called the bending dominance) of bending strain energy to the total strain energy calculated
from the approximated solution. The finite element simulation was carried out with the Adaptive
hpq-Finite Element CODE* which is fully automatic program capable of systematic selection of
the optimal model and the optimal finite element mesh satisfying the predefined analysis tolerance.

In order to evaluate the quality of the proposed error estimator, the effectivity index @ is
computed. Since the analytic solution for this problem is not available, we use the approximated
solution u,. obtained with relatively higher model and higher approximation order but with the
same mesh partition (here, we use g=(8, 8, 8) and p=8). With this alternative choice, we compute
the local and global effectivity indices 6, 6 defined by

6, = NE/ Nk = ||121'% —uah ”E(.Qx)/”uref_uq’h ||E(QK) (58)
t' d !
| S N S R !
4 1 i
P
.- al

|
|

Z

Fig. 2 A square plate-like structure subject to uniform normal traction (a/d =20)

*This program was developed by the author during Ph.D. course at the Texas Institute for Computational
and Applied Mathematics (TICAM) at the University of Texas at Austin.
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Fig. 3 Spectral distribution of vertical displacement component (p=2, g=(1, 1, 0)*)

2

N©) A
0= i (O ) = || af —uok ”E(.Q)/“uref_uq’h ”E(.Q) (59

K=1

Table 1 contains the estimated results of the local and global error indicators and effectivity
indices, and it shows comparison with the conventional error estimator which simply splits the
interelement fluxes by half (o4 =1/2). Numerical results show that local error indices of the
proposed method are considerably improved and more evenly distributed.

Next, we consider a cylindrical roof supported by two diaphragms, a representative engineering
example, as shown in Fig. 4. By a diaphragm support is meant u, = u,=0, and loading is its own
weight ¥ The same material with the previous plate-like body is selected, and the other data are L
=5m, R=1m, and y=4.0 N/m’. Using the symmetry of the body, numerical analysis was done
by applying the (1, 1, 0)* -hierarchical model and 9 uniform quadratic elements to a quarter.

Fig. 5 depicts the distribution of radial displacement component, where we observe, from the
value 8.6% of "DOM’, that this problem is not bending-dominated. And since the radial
displacement component is opposite to the radial direction, its magnitude is negative in the figure.

Following the same procedure for the estimate error indicators and effectivity indices, we obtain

Table 1 Estimated error and effectivity indices for the plate-like structure (p =2, g=(1, 1, 0)*)

Elert N Error (E-7) Effectivity Index
em o Truc With Equil.  Without Equil.  With Equil.  Without Equil.
1 0.85307 0.87095 0.88607 1.02096 1.03868
2 0.53854 0.66702 0.81643 1.23855 1.51599
3 0.97427 0.99747 1.04193 1.02381 1.06944
4 0.53854 0.66702 0.81643 1.23855 1.51599
5 035162 0.54995 0.70580 1.56403 2.00726
6 0.66379 0.64317 0.75346 0.96894 1.13509
7 0.97427 0.99747 1.04193 1.02381 1.06944
8 0.66379 0.64317 0.75346 0.96894 1.13509
9 0.35837 0.31199 038437 0.87059 1.07255

Total 2.08314 2.20576 2.46389 1.05886 1.18278
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x 5 Diaphragm

Diaphragm

Fig. 4 A cylindrical roof supported by vertical diaphragms (R/d = 20)

Fig. 5 Spectral distribution of radial displacement component (p=2, g=(1, 1, 0)*)

the numerical results recorded in Table 2. We see the improvement in the shell-like problems, too.
In particular, big deviation in the conventional method is reported in the elements 5 and 8, while
acceptable values are obtained with the proposed method.

Fig. 6 shows a distribution of local relative errors obtained by the proposed method. Here, the

Table 2 Estimated error and effectivity index for shell-like structure (p =2, g=(1, 1, 0)*)

- N Error (E-3) Effectivity Index
em 0. True With Equil.  Without Equil.  With Equil.  Without Equil.

1 031097 0.32848 0.46491 1.05630 1.49503
2 0.29901 0.37936 052926 1.26875 1.77007
3 0.43736 0.48229 0.48249 1.10273 110318

v o4 0.66185 0.75400 1.09591 1.13924 1.65583
5 0.43974 0.61942 1.07351 1.40861 2.44123
6 0.76130 0.67162 070302 0.88220 0.92345
7 0.86592 0.91143 1.35222 1.05256 1.56160
8 053236 0.53972 1.19800 1.01044 225037
9 0.95932 0.76257 0.81017 0.79490 0.84452

Total 1.88199 1.89454 2.73803 1.00666 1.45486
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PROIBCT: Piase-Like Ral. Brror

Fig. 6 Distribution of local relative errors (p=2, g=(1, 1, 0)*)

relative error is defined by 7¢/U(u®"). From the figure, the global relative error is 57.2% of total
strain energy, and major contribution is come from the elements 1,3 and 7. It is interesting for the
element 1 to have big error, however this phenomenon disappears when the (1, 1, 2)-hierarchical
model, the next higher model by one level, is used, as shown in Fig. 7.

Figs. 8 and 9 represent distribution of local relative errors when the (1,1,0)*- and the (2,2,2)-
hierarchical models, respectively, are employed for the approximation. A decrease in the global
relative error from 54.5% to 44.5% indicates that the proposed error estimator successfully
measures the modeling error component.

Table 3 contains the estimated global effectivity indices for different models and approximation
orders for the plate-like problem. In particular, the plate-like problem is bending-dominated so
locking phenomenon prevails when the finite-element approximation space is poor (Cho and Oden
1997).

However, from the data given in table, a quality of the proposed estimator does not deteriorate
even at low approximation order, and this is because the reference solution #¢ is obtained using
higher approximation order px on each local element-wise problem. For the numerical experiments,
=1 (but, dp=3 for the initial p,=1 to ensure upper bound against locking) and dg=3 (to

PROIBCT: Plase-Liky Ral, Bevor:

[4 S27R-01 A05B+00 J5EB400 211M400 bt )\’

Fig. 7 Distribution of local relative errors (p=2, ¢=(1, 1, 2))
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Fig. 8 Distribution of local relative errors (p=2, g=(1, 1, 0)*)

PROJACT: Shal-Like Rai. Brvor

4728400 2308400

Fig. 9 Distribution of local relative errors (p=2, g=(2, 2, 2))

Table 3 A variation of global effectivity indices for the plate-like structure

Approximation Global effectivity indices
Order (1,1,0)* (1,1,2) (3,3,2) (3,3,4)
p=1 1.118 1.131 1.101 1.102
p=2 1.059 1.078 1.038 1.041
p=3 1.001 1.055 1.064 1.150
p=4 1.001 "1.034 1.014 1.051

sufficiently capture the boundary layer singularity near the boundary) are used. In addition, it is
observed that the estimated global effectivity indices are stable with respect to a change of model
levels, as listed in Table 3.

6. Conclusions and discussion

In this paper, with a brief introduction of the concept of hierarchical models, we derived an a
posteriori error estimator for the hierarchical models for elastic structures with thin domains such
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as plate- and shell-like structures, which can measure the total error with respect to the three-
dimensional linear elasticity theory. In order to derive the proposed error estimator, the flux-
splitting technique for element-wise force equilibrium and Lagrange multiplier method are
employed. In order to approximate the exact solution, we use the self-equilibrated interelement
tractions and solve the localized finite element problems with higher model levels and higher
approximation orders.

From the two representative model problems, theoretical arguments underlying the error estimator
have been verified. Compared to the conventional error estimator which splits interelement fluxes
by half, better effectivity indices uniformly distributed over the elements are posssible.

Furthermore, since we use higher order enrichment py to solve the localized problems for @, a
quality of this error estimator does not deteriorate when the finite element approximate solution u*
is suffered from locking phenomenon which may happen in standard finite element schemes with
relatively coarse mesh and low approximation order.

With this tool, the analyst can estimate his numerical quality, and further he can control model
levels, mesh sizes and approximation orders in order to enhance the accuracy together with the
quality assurance and time saving.

Here, a question is: “Can we apply the same theoretical results to other types of hierarchical
models with different key parameters being used to determine the model level?’. Among other
types of problems are two-phase composite bodies, general fluid flows, elasto-plastic behavior of
inelastic bodies, however there has not been considerable advances on these fields. In order to
extend the concept of hierarchical modeling, one should be able to construct the hierarchical
family with a suitable key parameter and to obtain the solution corresponding to the highest
model in such extended problems.
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