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Optimum design of parabolic and circular arches
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Abstract. A structural optimization process is presented for arches with varying cross-section. The
optimality criteria method is used to develop a recursive relationship for the design variables
considering displacement, stresses and minimum depth constraints. The depth at the crown and at the
support are taken as design variables first. Then the approach is extended by taking the depth values of
each joint as design variable. The curved beam element of constant cross section is used to model the
parabolic and circular arches with varying cross section. A number of design examples are presented to
demonstrate the application of the method.
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1. Introduction

Arches are one of the earliest structures used by man in the history. They are curved structures
that provide economical solutions for crossing large spans. Compared with beams smaller cross
sections can be used in arches as the axial forces are dominant. Further economy can be achieved
in the design of these structures by using structural optimization. Large number of optimum
design algorithms exist in the literature which minimize the weight or the cost of the structure
while satisfying the strength and serviceability limitations Haftka, Gurdal and Kamat (1990).
Some of these algorithms obtain the optimum topology of a structure in addition to finding the
optimal cross sectional properties, Ding (1986). Tadjbakhsh (1981) developed an algorithm which
determines the optimum profile of an arch considering the stability constraints. Bensalem, Sibbald
and Fairfield (1998) presented an optimum design approach for arch bridges based on their modal
characteristics. They found that ultimate capacities of arches are related to their resonant
frequencies.

The purpose of this paper is to develop an algorithm for the optimum design of arch structures
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with uniform and/or varying cross section subjected to displacement, stress and side constraints. In
the formulation of the design problem the depths at the supports and at the crown are treated as
design variables while the width of the cross section is taken constant. The arch is divided into
number of elements and average depth of each element is also treated as additional design
variable. With the inclusion of displacement and stress constraints the design problem turns out to
be nonlinear programming. The optimality criteria method is employed to obtain its solution
which was reported to be quite effective in solving nonlinear optimum design problems by No
and Aguinalde (1987), Saka and Hayalioglu (1991) and Saka and Hayalioglu (1991) and Saka and
Ulker (1992).

The optimum design algorithm presented computes three different values for each design
variable in every design cycle depending on the dominance of the type of the constraints. The
first one is computed from the recursive relationship which is obtained by employing the
optimality criteria that is constructed for the case of dominant displacement constraints. The
second one is calculated from the stress constraints. The third value for the depth variable is
specified by the minimum size constraints. The largest of these three values defines the new
values of the design variables for the next step. This procedure is continued until convergence is
achieved.

The design procedure presented here is straightforward which provides very easy programming
and locates the optimum design of the arches with uniform and varying cross-section under the
displacement, stress and minimum depth constraints.

2. Analysis of arches

An arch element under end forces is shown in Fig 1a and 1b. The relationship between the end
forces and the displacements for such an element may be written as

{P}=[K){u} @
Where,
{P}={P1 QM P, 0, M;}Y 2
and
{uy={u;vip v, ¢}’ 3)

[K] is the stiffness matrix, given in Marquis and Wang (1989) for a parabolic arch element with

Ele/2; 3 1e/2 :
(@) (b)
Fig. 1 a) Arch, b) Finite segment with end forces
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constant cross section using the force method. The circular arch element of constant cross section
is used for the optimum design of circular arches. Readers can refer to Arbabi (1991) and Cook,
Malkus and Plesha (1989) for more details. Both stiffness matrices are not presented here since
the expressions are too lengthy to repeat.

After evaluating the axial force, shear force and bending moment values at each point, normal
and shear stresses at any section can be calculated as:

N . 6M
=2+ 22 < 4
b o % @
3T
=2 2 < 5
T 2 bt Tal ()

since t<R, where R is the radius of curvature. o, and 7, show the allowable normal and shear
stresses.

3. Objective function and constraints

The objective is to minimize the weight of the arch by reducing the depth of the cross section.
However, there may be some limitations on the displacements and rotations to consider while the
optimum depth of the cross section is searched. Hence, there is an objective such as the
minimization of the weight of the arch to find the optimum values of the depths, and there are
some restrictions like the upper bounds of the displacements and the stresses, and also the lower
bound of the depths.

The depths at the nodes are determined by solving the optimization problem. Several cases are
considered in this study. The variation of the depth along the arch can be expressed as a function
of x

t=t(x) (6)
in terms of some other parameters such as d,, i=1, ..., nd (Figs. 2a, b, ¢, d). The average depth of
each element can also be calculated by inserting the x value of the middle section of the related
segment into Eq. (6).

X; +X;
X; ave — ITH-I’ ti ave — t(xi ,ave) (7)

The cases considered in the study are as follows:
a) The depth is assumed to be constant along the arch (Fig. 2a),

tx)=d, ®
which means there is only one design variable d;, mainly nd=1, and ¢,.=d;, in each segment
which is obtained by Eq. (7).
b) The variation of the depth is assumed to be linear along the arch (Fig. 2b),
t(x)=A +Bx )
where,
_r

A=
L+,

(d+1:dy)
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(b)
Fig. 2 Variation of depth along arch

1
B = -d;+d
I+, (—d,+d))

The number of the design variables nd is equal to two: d;, d, and nd=2 which are the depths of
the left and right supports of the arch.

c) The depth is assumed to be a parabolic function of x along the arch (Fig. 2c),

t(x)=A +Bx + Cx? (10)
where,
A=d2
l
<L |1 L, I,
L+ | 1 L L i,

The number of design variables nd is equal to three, d;, d,, d; which are the depths at the left
support, at the crown and at the right support of the arch. After the design variables are obtained,
the value of the depth at each node is calculated by inserting the x value of the related node into
the expressions (8), (9) or (10) for cases (a), (b), and (c).

d) The variation of the depth for each finite segment is assumed to be linear and depths at the
joints are calculated independent of each other (Fig. 2d). Hence, the number of design variables is
equal to the number of joints, nd=nj=nm+1.
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d =t, i=1,..,nd
t(x)=d, +d’+1

i+1 T

(x -%) X S<x <X, i=12,...,nm

The design variables are determined by solving the optimization problem. The average depth of a
related element is then determined by linear interpolation or by Eq. (7) as follows:

_ Lty

e = i=1,.., 11
i,ave ) l nm ( )

4. Optimality criteria approach

As mentioned before, the problem to be solved is to minimize the total weight of an arch with
displacement, stress and minimum depth constraints. It is assumed that the arch is divided into nm
elements.

The weight of such an arch can be defined as

W= zpbtave i (12)

where, p is the density of the material, nm is the number of elements, ¢, is the average thickness,
W is the total weight of the structure, /, and b are the length and the width of the element,
respectively.

The displacements, stresses and limit values of the depth are the constraints in the optimization
process. These constraints can be formulated as:

g]. =Aj _Aju <0 ] = 1, s P (13)
ti - til > O i = 1, veey nj (14)
o< Oy =1 .

< T, 1=1,..,nj (15)

where 4, is the displacement of joint j and 4, is its upper bound, p is the number of restricted
dlsplacements O., T, are allowed equivalent normal and shear stresses at the ith element, ¢ ve 7
are the actual equivalent stresses at the same element, and ¢; is the lower bound on the design
variable ¢, The associated Lagrangian function of this problem is expressed as

L(des 2;)=Y.b plit; e +i)‘jgj (16)
i=1 j=t
and the optimality conditions become
S pblicy + 17
=3 c’ki’adk a7
where,
_ ati,ave

k=1,..nd (18)
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The values of c; will be different for each case mentioned in section 3. That is,
Case a) for constant variation of the depth, single design variable, d;, using Eqgs. (7), (8) and
(18), one can obtain

c1=1, i=1,.., nm (19a)

Case b) for the linear variation of the depth, two design variables of d, and d,, using Egs. (7),
(9) and (18), one can obtain

1
Ci1 l]+12 (2 xz,ave)
i=1,.,nm (19b)
1

1 12

Cin= l (ll+xi,ave)

Case c) for parabolic variation of the depth, three design variables d,, d, and d;, using ), (10)
and (18), one can obtain

1

=——— (=lx  +Xx2
Ci1 (11 +12) ll ( sz,ave xl,ave)
1 .
a= e (+lx,, —x2 -1,.., 19
Cl3 (ll + 12) 12 ( lxz,ave xl,ave) 1 hm ( C)

cn=1-¢1—¢

Case d) Finally, for any variation of the depth, nj design variables #, using Egs. (11) and (18),
one can obtain

172 k=i  or k=i+1
cw:{ i=1,...,nm
k#i and k+i+l (19d)
Inserting Eq. (13) into the second term of Eq. (17) yields:
dg; _ 04,
od, dd, (20)
Then, by using the virtual work method, the jth displacement can be expressed as
4 =3 WL ), =3 L 1)
i=1 i=1 e

where f; is called the flexibility coefficient which is given as

£y =the XML XY, 22)

nm is the total number of members. {X"}; are the end joint displacements of member i due to
external loads, [k]; is the stiffness matrix of the ith member, {X'}, is the end joint displacements
of the member due to unit loading applied in the direction of restricted displacement j, and ¢, is
the average thickness of the member i. The bending effect in thin members is dominant compared
to those of the normal and shear forces. This effect is inversely proportional with #3,, because the
bending rigidity, EI, is in the denominator. Noticing this, the displacement expression is described
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by dividing f; by 3, instead of ¢,,,.. Hence, f; must be multiplied by #3,,.

Substituting Eq (21) into the constraint equality of Eq. (13) and taking the derivative with
respect to d, yields

Hence, the optimality criteria are obtained by substituting Eq. (23) into Eq. (17),
32 2 f” Cit
bave  — 1 k=1,..,nd (24)
2 pbl;c;

i=1

This expression is transformed into an iterative one so that it can be used to obtain the new values
of variables at every design cycle. This is achieved by multiplying both sides by d,” and then
taking the rth root

1/r
WY f” Ca
dyi=dy |2 "= k=1,..,nd (25)
zpblicik
i=1

where v is the current and v+1 is the next optimum design cycle.  is known as the step size and
its value is preselected before starting the design process. The value of 1/ is selected as 0.5 in the
design example. Refer to Hayalioglu and Saka (1992) for more information.

It can be noticed from Eq. (25) that the use of above equation requires the values of Lagrange
multipliers to be known. One of the methods to select it is to take the constraint equality in Eq.
(13) and to multiply both sides by A° and to take the cth root. This leads to the following
recursive relationship:

MA=R4/8)E i =Lip "

where ¢ is called the step size. In this study 1/c is selected as 0.75. Refer to Saka and Ulker
(1992), Saka and Hayalioglu (1991), No and Aguinagalde (1987) for more explanation. The initial
values of the Lagrange multipliers must be selected in order to use this equation.

5. Design examples

As mentioned before, parabolic and circular arches are considered, and there are few cases for
the variation of the depths along the arches. The concentrated moments and forces are applied at
the nodes.

Before presenting results for a problem, a convergence study is thought to be of use to the
reader. The convergence study is done for both fixed and hinged supported arches as illustrated in
Fig. 3. Different numbers of elements are used for the analysis, and the weight of the arch is
plotted with respect to the number of elements. It is observed that 16 finite elements are
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Fig. 3 Convergence study for parabolic and Fig. 4 Parabolic arch, /=10 m, k=1, 2.5, Sm
circular arches (nm is the number of elements)

reasonable for the examples considered here. The weight of the arch and the depth of the elements
have not been changed considerably when more than 16 elements are used.

The following examples are chosen to investigate all these situations and to show how the
optimization process works. The modulus of elasticity of the material and the allowable stress are
taken as 20700 kN/cm® and 25.20 kN/cm’, respectively, for all the design examples. The width of
the cross section is constant at b=10 cm. Only the depth varies along the arch, and this is not
allowed to be less than a lower bound, #,=2.5 cm. The supports are fixed (Fig. 4a) or hinged (Fig.
4b). As a last example, a parabolic arch shown in Fig. 10 is considered under two displacement
constraints. The initial value of the Lagrange multipliers is taken as 5 in the design examples. The
number of elements is chosen as 16 for all the examples.

5.1. Parabolic arch under loads at half span

The depths along the arch are computed for three different values of the arch height and
different variations of the depths as shown in Fig. 2. The vertical displacement of the node at //4

Q) @

); ®) 7: ®)

© ©

@ @

Fig. 5 Variation of the depth along a clamped Fig. 6 Variation of the depth along a hinged
parabolic arch parabolic arch
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Table 1 Results for clamped parabolic arch
. Design variables
Case h(m) ite.no W (kN) d, (cm), i=1, ..., nd
1 12 321752 20.7
a 25 11 322323 201
5 11 36.7296  20.8
11 30.0709 295 9.2
b 25 10 30.9628 27.7 10.8
5 10 355013 282 118
1 13 25.6581 575 6.9 13.3
c 25 13 273226 563 75 13.7
5 13 32.8498 528 10.0 138
18 19.9070 50.7 59.6 329 435 69 85 25 25 25
25 2.5 25 25 25 25 25 4.7
d 2.5 22 214818 523 605 340 445 69 88 25 25 25
2.5 25 2.6 26 25 25 25 4.7
5 27 279459 590 619 383 474 69 116 28 25 2.5
25 27 32 35 25 25 43 51
Table 2 Results for hinged parabolic arch
. Design variables
Case h (m) ite no. W (kN) 4, (em), i=1, ..., nd
1 12 43.0591 277
a 25 11 433323 270
5 11 489682 277
1 11 424597 339 208
b 25 11 429327 325 211
5 10 485845 329 220
1 12 422220 291 293 170
c 25 11 42,6171 265 292 16.6
5 11 479854 252 308 164
1 12 37.7047 113 218 294 351 383 371 291 284 13.
113 215 226 254 243 227 179 103
d 25 10 378863 103 204 289 332 383 348 291 280 103
108 224 225 256 241 229 172 95
5 9 43.0559 102 203 29.6 340 404 337 311 223 101
149 233 259 274 261 243 178 938

in Fig. 4a under the load, is limited to 0.5 cm. The computed depth values for A=2.5 m are
illustrated in Fig. Sa, b, ¢, d in detail for a clamped arch. The same process is repeated for a
hinged parabolic arch, and plots are given in Fig. 6a, b, ¢, d. The other values of k are not
demonstrated in the figures since they are similar, but compared in Tables 1 and 2.

5.2. Circular arch

The variation of the depth along the arch is computed for four different values of the height
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P=50/mm kN
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Fig. 7 Circular arch, I=10m, h=1, 2.5, 5, 7.5m (nm is the number of elements)

Table 3 Variation of the depth along a clamped circular arch

Case (m) ite.no W (kN) Df:isiig(gmv)::\ri;bll,es“fsillr:lr/rg;iC)
1 9 15.43 163 54 46 104 62 6.6 86 198 193
25 12 14.45 11.7 40 33 93 29 57 129 178 222
d 5 213 7.92 119 25 2.8 25 25 25 27 98 88
7.5 31 2291 336 9.1 43 144 25 5.6 25 164 156

Table 4 Variation of the depth along a hinged circular arch

Case h (m) ite.no W (kN) Design variables (symmetric)
1 10 17.36 38 84 97 111 S50 63 153 198
2.5 11 14.80 60 25 56 33 30 113 142 199
d 5 24 13.71 40 118 80 114 2.5 25 25 142
7.5 281 34.02 206 197 310 171 261 58 115 131

(Fig. 7) and the depth variation of case 2 as seen in Fig. 2. The results are given in Table 3 and 4
for clamped and hinged supports. The results for one half span are given because of symmetry.
The vertical displacement at the crown is limited to 0.5 cm. The computed depth values for A=2.5m
are illustrated in Fig. 8a, b, ¢ and Fig. 9a, b, ¢ for clamped and hinged arches, respectively. All
the cases of the depth variation as mentioned in section 3 are considered. Cases a and b give the
same result (Fig. 8a, 9a), since the geometry and the loading are symmetric.

5.3. Arch with a concentrated load at mid-span

Another design example is an arch with a concentrated load of 50 kN at mid span. Both
parabolic and circular arches are considered with clamped and hinged supports. The geometry and
the material properties are the same as the previous examples. The depth of the arch is taken as
5 m.-Only a displacement constraint, the vertical displacement at the crown, is limited to 0.5 cm.
The depth variation using case 2 is computed iteratively and given in Table 5. The depths of half
the arch are given since the system is symmetrical. Type 1 and type 2 represent clamped and
hinged circular arches, respectively in Table 5, and type 3 shows the clamped parabolic arch.
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mm
mm
. Y . Y

Fig. 8 Variation of the depth along a clamped Fig. 9 Variation of the depth along a hinged
circular arch circular arch

Table 5 Results for a concentrated load at mid span

arch h(m)  iteno W (kN) Dijlg(ncn:’)aflli'iles(S?;%iTC)
type 1 5 10 212 422 138 102 259 81 146 311 424 507
type 2 5 10 5015 144 256 276 282 136 149 403 432 605
type 3 5 11 3601 307 114 86 217 78 136 265 404 453

@

®)

Fig. 10 A parabolic arch Fig. 11 Variation of the depth along the arch of
Fig. 10

Table 6 Variation of the depth along arch

ite.no w Average depths ¢, (cm), i=1, ... , nm
ge dep i
A=5 c¢m 18 71676 250 4.03 559 6.58 847 10.37 10.26 10.32
¢=0.1 rad ’ 738 355 469 575 6.03 451 383 7.60
A=0.5 cm 1091 11.10 495 732 9.24 14.97 18.66 15.73
: 540 14.5888
¢=0.1 rad ’ 10.16 12.62 13.15 13.63 13.18 6.33 1344 22.13

5.4. Parabolic arch

As a last example a parabolic arch with supports at different level is solved for two
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displacement constraints. The geometric properties are shown in Fig. 10. The loads are F;=50 kN,
F,=10 kN, M=20 kN.m. The material properties are the same as the previous examples. The
vertical displacement at the crown, and the rotation of the node where M acts are desired not to
exceed 5 cm, and 0.1 rad., respectively. The same calculation is repeated for the displacement
constraint of 0.5 cm instead of 5 cm. The depths for this problem are computed using Eq. (11) for
Case d of section 3, and the results are given in Table 6. The lower bound of the design variables
is taken as 2.5 cm. The variation of the depth along the arch is plotted and illustrated in Fig. 11.a
and b for each displacement constraint.

6. Conclusions

The optimality criteria approach is applied to the optimum design of the arches. Three types of
constraints such as displacement, stress and minimum depth of the cross section are considered.
One of these constraints has become active to evaluate the arch for minimum weight. The
variation of the depth of each element becomes proportional to the bending moments if the stress
constraints are active. It is observed that the weight of the arch becomes minimum when the depth
of each finite segment is calculated independent of the other elements. The variation of the cross
section along the arch will be different for different loading for the same arch. It is practically
very important to consider every kind of loading and to find only one common optimum variation
of cross section that responds to all kinds of loading and to be used during construction. The
method presented in this study can be improved for this purpose.
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Evaluation of structural dynamic responses
by stochastic finite element method
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Abstract. The uncertainties associated with structural parameters and dynamic loading are identified
and discussed. Structural parametric uncertainties are treated as random variables and dynamic wind
load is simulated as a random process. Dynamic wind-induced responses of structures with parametric
uncertainties are investigated by using stochastic finite element method. The formulas for structural
dynamic reliability analysis considering the randomness of structural resistance and loading are
proposed. Two numerical examples of high-rise structures are presented to illustrate the proposed
methodology. The calculated results demonstrate that the variation in structural parameters indeed
influences the dynamic response and the first passage probability evaluation of structures.

Key words: dynamic response; finite element method; uncertainty; dynamic reliability.

1. Introduction

Most structures have complex geometrical and material properties and are subjected to complex
stochastic environment conditions. The uncertainties in the properties of material, structural
damping, geometric parameters and boundary conditions etc. may induce statistical variation in
the eigenvalues and eigenvectors and consequently the dynamic response may be affected.
Therefore, a realistic analysis and design of structural systems with parametric uncertainties and
subjected to stochastic dynamic excitations should take into account for the uncertainties arising
from both structural properties and dynamic excitation simultaneously in a consistent and rational
manner. However, the uncertainties associated with structural parameters are not usually
considered in evaluation of random dynamic response of structures. More work is thus required to
study dynamic response of structures with uncertain parameters.

As the name suggests, the stochastic finite element method (SFEM) combines the best features
of the finite element methods and the stochastic analysis. Stochastic finite element method has
recently become an active area of research. However, it is worth noting that the stochastic finite
element method has been mainly applied in structural static analysis and eigenproblems over the
last decade (e.g., Spanos and Ghanem 1989, Vanmarcke and Grigoriu 1983). The evaluation of
dynamic reliability of structures with parametric uncertainties subjected stochastic dynamic loads
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by SFEM has received relatively little, if any, attention in the literature in the past.

As discussed above, reliable structural design requires correct modelling of the structural
parametric uncertainties and considering these uncertainties in the structural analysis. In this paper,
the stochastic finite element method is applied for response analysis of structures under stochastic
dynamic load actions.

The objective of this paper is to investigate wind-induced vibrations of structures with
parametric uncertainties. A probability description of structural response is presented utilising the
stochastic finite element method. A reliability analysis procedure is proposed in terms of
upcrossing probabilities of wind-induced response. The structural lifetime reliability can be
obtained from the conditional reliability through convolution with the probability density function
of lifetime extreme wind speed. The probability that a particular response component of a
structure will be exceeded in a specified time period can be predicted. In this manner the inherent
random nature of the load, structural resistance, and the uncertainties in the description of the
wind speed are accounted for. Two numerical examples are presented to illustrate the proposed
methodology and the effect of the uncertainties on structural response and dynamic reliability.

2. Dynamic response of structures with parametric uncertainties

In this paper, the uncertainties associated with structural parameters are treated as random
variables and dynamic wind load is simulated as a random process, and wind-induced vibrations
of structures are evaluated by the stochastic finite element method. According to the probability
theory, a stochastic vector {Y} can be expressed as

W =T +{x &)

in which {Y}=E[{Y}] is the mean of the random vector {Y}, {0} is a random vector with zero
mean.

The stochastic finite element method based on the second order perturbation method has shown
its accuracy and efficiency (Kareem and Sun 1990, Kleiber and Hien 1992, Li et al. 1993a).
According to this method, a random variable or process, a random vector or field, Z, can be
expressed by the second order Taylor's series expansion at mean value of « as follows:

Z=Z +ZZ(1)a,+—ZZZ(2 )

i=1 j=1

Uy

where Z represents the mean value of Z, the superscripts (1) and (2) denote the first and second
derivatives of Z with respect to @, respectively, and N is the total number of the random variables
considered.

The vibration equation of a multi-degree of freedom system is

[MIX } +[CHX } +[KHX} ={F (1)} ©)

where [M], [C] and [K] are the mass, damping and stiffness matrix, respectively. {F(¢¥)} is the
vector of random dynamic excitations.

In the following analysis, the structural stiffness matrix [K] and random displacement vector {X}
are represented by Eq. (2). If these expressions are introduced into the equation of motion (Eq. 3),
we obtain the following zeroth-, first- and second-order equations for the dynamic response of the
structural system.
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Zeroth-order
[MI{X}+[CHX}+[K X} = {F ()} )
First-order
[MEKX O} + [CHX O} + [K {X, O} = [KOHX } )
Second-order
[MUX @} +[CHX P} + [K (X P} = - [KPUX } - [KOUX O} - [KOHX D}
@ j=12,..,N) 6)

Because the dynamic load vector {F(¥)} is a random process vector, the response vectors, {X},
{X"} and {X,?} are random process vectors, too. In this paper, the stochastic behaviours of
structural stiffness matrix is propagated by means of the stochastic finite element method to
demonstrate the methodology, which can be further refined to consider the randomness of
structural damping and mass etc., if so desired.

Egs. (4), (5) and (6) may be solved by the mode superposition method. Let

X}=[¢1{r} ™

where [¢] is the mode shape matrix, {y} is the generalised co-ordinate vector which is a process
vector and can be also represented by Eq. (2).
Thus, we have

Xy=I¢l{7} ©@)
{X:V} = [o1{y:®} ©)
(X7} = [91yi?} (10)
It is assumed that [C] is a uncoupled damping matrix, then,
(o1 IM]1I¢]=11] (11)
[¢] [C ][9] = [diag(2¢; @;)] = [C*] (12)
(41 [K ][] = [K*] = [diag(w})] (13)

in which [/] is a identity matrix.
Then substituting Egs. (8)-(10) into Eqgs. (4)-(6) and using left-handed multiplication by [¢] yield

GH+IC* 1} +K* Wy} ={f (@)} (14)
OO+ [C* Ny O+ [K* 1y = {fv} (15)
) P+ [C* I ) + [K* P} = {f2} (16)
in which
{f@)} =[oI"{F @)} 17)

{fu}=—[o [KOIX] (18)
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{f2;} == [T (KPUX } - [KOUX O} - [KPHXD) (19)

The covariance matrix of displacement response (only considering the first two orders) can be
expressed as

Re=he +3 3 E@aR KO X) + 5 53 B @a)IR, o X+ Reo 6201 @0)
in which
R =E[{X}X)] )
R, (X0, Xf) = EQXOHXY] @
R, .. 0 XP)=EE}EPT) @)
R, . &P, X)=E[XPHEY] )

If spectral analysis in the frequency domain is applied, Eq. (20) can be rewritten as

[S@]=[5: @1+ 3 E@a)IS. &, X, 0]+ 1 3 3 E(@a)(is, & X, o)

i=1 j=1 i=1 j=1
+ 8,0 X, X, 0)]} (25)
Using the matrix form, the spectral density of y can be expressed as

S5 ()] = [H* (0)][S; ()][H ()] (26)

in which H{®) is the mechanical admittance function, it can be determined by use of Eq. (14),
[H (@) = diag{H;(®)}] 27)

Similarly, it can be derived from Eq. (17) that '

' [Si(@)] = [¢]" [Sr ()][4] (28)

From Eq. (8), we can obtain
[Sx ()] = [911S; (][] = [GI[EH* (@)][9) [Sr(D][IIIH (@)][¢]" (29)

The second term, S, (X, XY, @) in Eq. (25) can be similarly derived from Eq. (18) as

? P xo
[Sx XD, X0, @)] = [9IIS,, 0V, y/©, @)l¢]" = [Q)IH* ()[S; (1> f1;> @H (@][9]
= [@[H* (D][¢]" [K)[Sz (DK VT [GILH ()] 6] (30)

Similarly, S_ . .(X, X, ) can be also derived as ~

[S¢ 3o X > X2, O] =[BIIS; o7,y DN = [BIH* (@[S (f f2j> DUH (@] (31)
Using Eqs. (17) and (19) leads to,
[S5.0(f> faj> @] =—[S;.x @UKPV[9] - [S, of(f> X (DIKPT[9]
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~ IS, yulf- X9, DNKOT 9] | (32)
in which
7,2 (@]=1[S;,5 (DS =[S (DIH (@] = [$]" [Sr(D][SIH ()][$] (33)
IS, 3ulF- X0, @) =[S, (X, O =[S;1.(F> fu, DIH(@)[PF
~ Sy, 2 (DNKOT [Q)H (9] = [¢]" [Sr (D SIH (][O] [KOT [G]H (@))[)  (34)
The characteristic equation is given by

(K1-AM]){¢} =0 35)

Solving the characteristic equation yields the natural frequencies and the corresponding mode
shapes. As discussed above, the stiffness of structures is represented by a random variable field in
this paper, the natural frequencies and mode shapes of the structures are also random variables.
Let

2T oS aa 15 S @
and
1 N N
{9} = {¢}+2{¢}ﬂ>a,+322{¢}@> 37)

Substituting Eq. (36) and Eq. (37) into Eq. (35) leads to,

+2[K<1>]a,+—22[ Plao, -1 M]- z[Mla,w—

1 ii M129 0) (61 + 3 (0 &+ 5 35 (99) )= (0} (9
The above equation can be rewritten as
(K1-2 [MD{$}=0 (39)
(K1-2 MD{¢®} =~ (KO- 4D [M]{$} (40)
([RT= 2 MDP) =- (KP1- A2 IMDEP } - (K1 - A0 1N4f)
- (K1 - APIMD{e} 1)

Because Eq. (39) is a deterministic equation, the eigenvalue A ; and the corresponding eigenvector
{¢ }; can be determined directly by using conventional eigensolution procedure (e.g., Wang 1978,
Li et al. 1994, 1996). The solutions of Eq. (40) and Eq. (41) can be found in the Appendix of
this paper.

Inptlrl)e following analysis, for the sake of illustration, the formulation is restricted to dynamic
wind loading.

If the dynamic load is wind action, and the fluctuating drag is

{F@O)}=[BHp®)} “42)
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where [B]=[diag(C, A))] is the product of the drag coefficient of the structure, C,, and windward
area of the structure A,. {p(¢)} can be expressed as follows

P} =plVI{v®)} (43)
where [V]=[diag(V ;)], V; and v(f) are the mean wind velocity and the fluctuating components

of wind velocity, respectively, at the lumped mass point i. p is density of air.
The following equation can be derived from Eqs. (42) and (43)

[Sr(@]=PBUVIS (IV][BY (44)
It is assumed that each term of the matrix, [S, (@)], can be expressed as
S (@) =P (2> 2), ©) S(@) (45)

where s() is the gust spectrum, and p(z, z, @) is the coherence of gust, as suggested by
Davenport (1962); it can be taken as,

2, @)= ——_ Tl 46
In this paper, the Davenport spectrum of wind speed is adopted,

4KV x2
(W) = 47
(@) o (1+x)% “7)

in which
x = 8000 48)
v oy

where K is the coefficient of ground roughness, V ,, is the mean wind speed at 10m height.

The variances of displacement and velocity responses can be determined by the following
equations

o= : Sy(@)do (49)

ot = : @Sy (0)d o (50)

3. Dynamic reliability analysis of structures

The structural dynamic reliability is the probability that the structure under the action of random
dynamic loads will fulfil its design purpose during a specified period.

If it is assumed that the lifetime of a structure is n years, in general, n is taken as 50, and the
probability density function of maximum wind velocity in the n years is fiv) which can be
derived from a statistical analysis of successive years of climatological data, then, the reliability of
the structure in its lifetime can be expressed as

Ps=j:1>(s <R|V =v) f@)dv (51)
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in which S is the structural response quality of interest, R is the corresponding structural resistance.
P(S <R |V =v) is called the conditional reliability of the structure given V =v .
Eq. (51) can be written in a discrete form so that it is convenient to be calculated.

Ps=Y PSSR|V=V)IF(F,)-F{F ;)] (52)
P

where F (v) is probability distribution function of the maximum wind speed in the n years.

Analysis of data at various locations with well-behaved wind climates has suggested that the
extreme value Type I distribution in general provides a good fit to the extreme yearly wind speed
(Simiu 1976, Li 1986, 1988, 1990). A maximum probability plot correlation coefficient criterion
has been employed in a study (Kareem and Hseih 1986) for modelling annual extreme winds and
also confirm Simiu's conclusion.

Assuming that yearly maximum wind speeds over a period of n years are independent, the PDF
of the n years extreme wind speed can be expressed as

f(@)=na exp{—(V —a)b —n exp[-(V —a)b]} (53)

in which parameters a and b can be determined from a large sample of annual extreme mean
wind speed data by the method of moments.

A typical upcrossing problem for dynamic reliability is illustrated in Fig. 1. If the deterioration
of structural resistance with time is considered, then, the reliability bound is a function of time ¢
The upcrossing rate per unit time, v(z) can be expressed as

vO)=[" v @) falr) dr (54)
where (Rice 1944)
v,(t)=j:° G —7)fy (r,8)ds (55)

in which v,(¢) is the upcrossing rate per unit time for the barrier R=r with slope r, fz(r) is the

‘S

realization

-
t

Fig. 1 Typical upcrossing problem for dynamic reliability analysis
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probability density function of structural resistance. § is a state variable of S(#) which is the
derivative process of S(¢) with respect to ¢.

If it is assumed that S(¢) is a Normal stationary process with zero mean, then, S(¢) and S(¢) are
independent Normal stationary process and can be estimated by the procedure presented in the
preceding section, the joint probability density function of S(¢) and S(z) is

Substituting Eq. (56) into Eq. (55) gives
v,(t)=% Z exp[— 2’;2] (57)
in which
A =exp[‘2;22]-«/ﬁ ; ¢[‘G’ ] (58)

and ¢(.)=the standardised Normal distribution function.
If structural resistance obeys the Normal distribution, that is

__1 _eTy 59
ety -2Y -
then
_ . F2
P <R|V =v )=exp ——Aws—exp - (60)
2m\ o2 + o2 2(0? + of)

in which 7 is the duration of dynamic response considered; in general, for wind loading, 7=10 min.
If the upper and lower bounds of structures for dynamic reliability analysis are considered, then,

o A 10; 72 Ao, 72
P(S<R|V=v)=exp {~ ————exp|- 21 2y | ——— exp| - 22 > (61)
21\ o? + 0f, 205+ 0k) | 2m\o?+ 0}, 2(0?+ 03,)

where 7,,7, and Og,, Oz, are the mean values and standard deviations of R, (the upper bound)

and R, (the lower bound), respectively.
If-R=R,=R (symmetric bound), Eq. (61) becomes

_ . 72
PS SR|V =v )=exp —-—A&-exp[—r—} (62)

m™No? + o} 2(0? + o)
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If the deterioration of structural resistance is not considered, that is =0, it can be obtained
from Eq. (58) that A=1.

4. Numerical Example 1

Wauhan T.V. Tower located in Wuhan City, P.R. China is analysed here as a numerical example
for the present study. As shown in Fig. 2, this tower consists of tower base, tower body, tower
building and a wireless mast. The main structure of the T.V. Tower is a reinforced concrete cone
shell with the diameter of the cone varying linearly along the height. Its external base section
diameter section is 16m and that of the top section is 3.9m. In the analysis of wind-induced
vibration of the tower, the structure is treated as an 18 lumped mass system. Li (1995)
investigated free vibration of the tower. The geometric dimension, mass and stiffness distributions
of the Wuhan T.V. tower are listed in Table 1.

Li et al. (1993b) conducted a detailed statistical analysis of successive years of climatological
data for the region of Wuhan, P.R. China. They obtained the probability distribution function

150.207

121.323

111273
Ty 101.173

11.80m

e

Fig. 2 Wuahn T.V. Tower
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(PFD) of the maximum local wind speed (the averaging time is ten minutes) in the n years [F(¥)],
which can be adopted for the present dynamic reliability analysis for this T.V. tower. They also
found that strong wind in Wuhan City usually occurs in NNE-NE direction, and the
corresponding F(v) in NNE-NE direction was obtained by Li ez al. (1993b).

As suggested by Li et al. (1993b), the wind velocity at the location of the tower is taken as

V@)=V (10)(%) | 63)

in which V (z) is the mean wind speed at height z.

In the dynamic reliability analysis for the T.V. tower, the top displacement response of this
tower is taken as the critical index; Davenport's wind speed spectrum is adopted and the
coefficient of ground roughness, K, is taken as 0.003. The calculated results of the dynamic
reliability analysis are shown in Fig. 3, in which curve 1 represents the results computed by the
Monte Carlo simulation; curve 2 and curve 3 correspond to the dynamic reliability results
calculated based on the PDF of the maximum local wind speed for all the wind directions and for
NNE-NE direction only, respectively. It can be seen that the calculated results by the proposed
procedure are in good agreement with the simulated data by the Monte Carlo method. In
particular, when n<10 years, the three sets of data are almost identical, when n=100 years, the
difference between them is less than 10 per cent, demonstrating the good applicability of the
proposed procedure for the evaluation of structural dynamic reliability.

Table 1. The geometric dimension, mass and stiffness distributions of the T.V. Tower

Lumped Mass Height Diameter Mass Stiffness
No. m m Kg EJ; X 10" KN.m*

0 0 16

1 4.975 15 72,571 28,440
2 17.412 12.5 66,739 26,320
3 22.387 11.5 60,849 24,157
4 27.377 10.875 54,192 17,064
5 29.876 10.75 59,317 22,388
6 32.375 10.625 41,658 9,582
7. 34.874 10.5 57,256 24,844
8 104.853 7.0 37,208 8,622
9 108.853 7.0 20,735 1,426
10 110.803 7.6 20,735 1,428
11 114.253 7.0 37,935 2,847
12 133.653 7.0 20,735 : 1,428
13 138.622 5.88 20,735 1,428
14 139.864 5.6 20,281 837
15 142.303 45 14,314 374
16 164.203 4.5 14,324 374
17 156.685 39 9,759 196

j—
oo

187 3.9 9,759 196
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Iy

IS

2

_ 1—Monte Carlo Simulation
97 2—By Proposed Method (For All Wind Directions)
3—By Proposed Method (For NNE-NE Wind Direction)

Dynamic Reliability

06

m 00 N
Years
Fig. 3 Dynamic reliability of Wuhan T.V. Tower

5. Numerical Example 2

In the last numerical example, an overall good agreement between the results calculated by the
proposed procedure and those simulated by the Monte Carlo method has provided confidence on
the proposed computational method and computer programme. Another numerical example
utilising a chimney 60m high modelled as a lumped-mass system is analysed here to study the
effect of the variation in structural parameters on the structural dynamic reliability. This stack is
divided into 8 sections for computation purpose. The Young's modulus of the chimney is 3000
MPa (the coefficient of variation,V=0.01). The structural parameters are listed in Table 2. The top
displacement response of this chimney is taken as the critical index in dynamic reliability analysis.
The dynamic response of this chimney, considering the randomness of structural stiffness and
wind loading, is evaluated according to the procedures proposed in the preceding sections. The
results of dynamic reliability analysis of this high-rise structure under wind action computed by
the present method are given in Table 3. The effects of structural critical damping ratio & and
resistance represepted by the permissible displacement which is a random variable on dynamic
reliability of this structure can be clearly seen through the calculated results presented in Table 3.
It is clear that the dynamic reliability of this structure becomes larger as the structural damping
and resistance increase.

Table 4 presents the effect of the variation of the structural resistance on the dynamic reliability
of this stack. It is clear that the larger the structural resistance variation is, the lower its dynamic
reliability is. In particular, this effect becomes more pronounced at large value of V. It should be
noted that the variation of structural resistance is inevitable during a long period (e.g., 50 or 100
years) and it is random in nature. The calculated results of this chimney show that the variation in

Table 2 Structural parameters

Section length (meter) 5.0 8.0 7.0 75 7.5 75 75 10.0
Outside diameter (meter) 5.03 4.61 431 4.02 3.72 3.42 3.12 277
Section weight (KN) 1112 1307 944 899 815 623 577 520
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Table 3 The effects of damping ratio £ and structural resistance (coefficient of variation V=0) on
structural dynamic reliability

7 £ 10 (year) 20 (year) 30 (year) 40 (year) 50 (year)
H/100 0.02 0.9976 0.9967 0.9954 0.9937 0.9926
H/100 0.03 0.9984 0.9978 0.9971 0.9968 0.9963
H/200 0.02 0.8872 0.7880 0.7700 0.6216 0.5522
H/200 0.03 0.9443 0.8928 0.8442 0.7981 0.7543

Note: H is the chimney height (60m).

Table 4 The effects of structural resistance variation on the structural dynamic reliability

7 4 P (50 Years)
H/100, V=0 0.02 0.9926
H/100, V=0.11 0.02 0.9912
H/100, V=0.25 0.02 0.9322

structural parameters indeed influence the first passage probability of this structure. These
parameters such as the structural resistance should be treated as random variables in the evaluation
of structural dynamic reliability. '

6. Conclusions

In this paper, structural parametric uncertainties and structural resistance were treated as random
variables, and dynamic wind load was considered as a random process. Structural dynamic
responses under the action of stochastic wind loads are evaluated by the stochastic finite element
method. The formulas for structural dynamic reliability analysis considering the randomness of
structural resistance and external dynamic loading are proposed. Two numerical examples of high-
rise structures are presented to illustrate the proposed methodology. The calculated results
demonstrate the good applicability of the proposed procedure and that the variation in structural
parameters indeed influences the structural responses and dynamic reliability.

oy
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Appendix

When a structural stiffness matrix is a stochastic matrix, the natural frequency and mode shape of the
structure are thus random variables. In this case, the characteristic equations can be expressed as

(K]1-A[M]D{s}=0 (A1)
(K1-AMD{s®} =- (K} - DM {9} (A2)
(K1-ZMD{8D} =~ (KP1 - APIMD{9} - (K D] - AMD{o"} — (K V] - APM {6V} (A3)

Because Eq. (A.1) is a deterministic equation, the eigenvalues A; and the corresponding eigenvectors
{¢};>» (=1, 2, ..) can be determined by conventional eigensolution procedures. According to the
orthogonality properties of mode shapes we assume

5 {0y IM)¢}=1 (A4)
Using the symmetry behaviour of matrix yields the transposition of Eq. (A.1) as follows
{6} (K1-A[MD={0} (A5)
Letting the left-hand of Eq. (A.2) multiplication by {¢} and according to Eq. (A.5) lead to
{0} =— {8} (K1 - AOM {6} (A.6)
then
A0={¢} [KDVHo} (A7)

Because the coefficient determinant of {¢{V} is equal to zero, we can not directly find {¢V} in Eq.
(A.2). Thus, it is necessary to make the following assumption.

{#} M{pM}=0 (A-8)
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Then, Eq. (A.2) and Eq. (A.8) can be unified as

[K]-2[M] kO -2AOM]
{&}T[M] i(l)} == 0 {¢} (A9)

or
[C1{6} =[D,){6} (A.10)
in which
(K]~ ZM) (K]~ H0M ]
Ca=l Gy | PI="] o

The matrix ([C,]'[C.]) is a non-singular matrix. Letting the left-hand of Eq. (A.10) multiplication by
[CI]T, we can obtain

{6M}y =(C I [C.DC D1 ){¢} (A1)

The procedure of solving the eigenvalues A,” and eigenvectors ¢, of Eq. (A.3) is similar to that of
Eq. (A.2). Letting left-hand multiplication by {¢}? for Eq. (A.3) yields,

(Y IKPHPY - AP + {8} (KPP} + [KPN9PH =0 (A12)

The assumption given in Eq. (A.8) is adopted in the derivation for the above equation. From the
above equation, we obtain

AP = {8V (KPHBY + [KOHOP} + K OHMY) (A13)
Similar to Eq. (A.8), the following assumption is made, that is
{8} MK} + {oM} M)V} =0 (A.14)
Eq. (A.14) and Eq. (A.3) can be unified as
[C1 8P} =~ [D1{9} + [E o} + [E; oD} (A.15)
where
{[K,-?)]—&s?)w]} (K] - HOM]
Dy]=- 0 = 3 (k=i or j) (A.16)
S 19

From Eq. (A.15) we can obtain the following equation
{67} = (CJICDCI -ID I} + [E; Ko} + [E; {6} (A.17)





