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Abstract. Safety monitoring systems of structures generally resort to detecting possible changes of
dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement
these techniques. Conventional structural eigenvalue problems are discussed in the scope of those
systems with deterministic parameters. Large and flexible structures, such as suspension bridges,
actually possess stochastic material properties and these random properties unavoidably affect the
dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design
variables has been established in this paper. Moreover, second order statistics of natural frequencies
due to the randomness of material properties have been discussed. It is concluded from numerical
analysis of a modern suspension bridge that although the second order statistics of frequencies are
small relatively to the change of basic design variables, such as density of mass and modulus of
clasticity, the sensitivities of modal parameters to these variables at different locations change in
magnitude.
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1. Introduction

When structures have been in service for many years, the deterioration of structural members
under the action of wind load excitations and live loads becomes severe and corresponding
inspection of structural safety is necessary. Due to drawbacks of the traditional visual inspection
approach, it has become of great interest for civil engineers to perform nondestructive detection
on possible damage in large scale structures, such as dams and cable-suspended bridges, by
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system identification technique. In these methods, the structural inherent dynamic properties are
well-known parameters to be employed as a measure of monitoring structural changes (Alaylioglu
and Alaylioglu 1997, Satake and Yokota 1996). Recent research shows that the measured dynamic
properties can be achieved with satisfactory accuracy compared to the theoretical results (Gentile
and Cabrera 1997). These dynamic properties can be regarded as a set of “fingerprints’ and the
original ones can be measured and recorded when the structures are newly built. One approach of
detecting damage is to measure the existing structural natural frequencies and modes, i.c., a set of
existing “fingerprints”, and perform comparison between these results and original “fingerprints”.
Based on the results of comparisons, possible structural damages will be further located and extent
of damage will further be estimated.

This detection approach critically requires the sensitivity analysis of structural dynamic
properties, such as natural frequencies and modes, to various design variables (Alampalli et al.
1997). Discussions of structural eigenvalue problem are generally performed in the field of
structures with deterministic system parameters (Clough and Penzien 1975). These structural
parameters are actually indeterministic or stochastic because there are unavoidable errors when
fabricating and installing structural members. Therefore, it is necessary to address randomly
excited vibration and random eigenvalue problems of structures with stochastic parameters. A
detailed discussion of random eigenvalue problems has been made by Scheidt and Purkert (1983)
and Kleiber and Hier (1992). As to the random eigenvalue problems of complex structures like
suspension bridges, the well known Monte Carlo technique is highly time-consuming. An
alternative method is the stochastic finite element method (SFEM), which has been recently
developed and applied in the field of structural reliability analysis (Benaroya and Rehak 1988,
Der Kiureghian and Liu 1986, Liu and Qin 1996, Shinozuka and Deodatis 1988). This method
has been employed as a way to calibrate current probability-based structural design codes, such as
Load Resistance Factor Design (LRFD) (Mahadevan and Haldar 1991). Another application of
this method is that it can be utilized to perform mechanic analysis of imperfect structures (Bulleit
and Yates 1991, Wedel-Heinen 1991). One important and challenging basis of SFEM is random
field theory (Vanmarcke 1983). According to this theory, the randomness of structural material
properties and external loads can be described by dividing random field meshes. Each mesh
represents a random field element or variable. The correlation matrix of these elements or
variables can be obtained by means of this kind of numerical algorithm (Ghanem and Spanos
1991).

The objective of this study is to analyze the sensitivities of inherent dynamic properties to
systemic parameters on the basis of SFEM for suspension bridges. The statistics of structural
natural frequencies are also computed with the assumption of several known random parameters,
such as modulus of elasticity and density of mass. A modern suspension bridge is demonstrated as
an example and the sensitivities of its structural dynamic properties to variables at different
locations have been compared and commented.

2. Discretization of random field

There are several approaches to represent the discretization of random fields, such as local
averaging method, midpoint method, interpolation method, and series expansion method. Of these
approaches, the local averaging of random field is insensitive to the various correlated types of
initial random field. On the basis of this correlation function, SFEM algorithm has fast
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Fig. 1 One-dimensional elements of local averaging random field

convergence and high accuracy.
Fig. 1 shows one-dimensional local averaging random field ofx) with the mean zero and
variance ¢°. The local averaging of o(x) in the length T and T are, respectively, defined as:

1 472
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From Egs. (1), the covariance of a; and ¢ can be derived in the following form:

Covlay, o) =5 g 2= 52 ; 7 {%J ' [1 - %j (o) 5} )

where (XT)=the variance function of o(f), and it is a dimensionless function connected with the
standard correlation function of off); p(€)=correlation function, depending on the distance & of
two correlated points.

Consider the case of one-dimensional spatial random field ofS) and assume that it is distributed
along the curve z=z(x, y), and S is the length of curve, the local averaging of o(S) at the length
AS is defined as

a5 = s [ ats)ds ©)

where S,, S,=the two end points of curve element AS.
The covariance between arbitrary two elements AS and AS' can be determined by using

o2 S2¢57 ,
Cov (05, 05) =~ jhjsfp(s S’y dS’ dS @
in which p(&)=correlation function of ag and ay; E=distance of two correlated points S and S'. In
general, the correlation function p(&) is approximately expressed in the form of triangular or
exponential type.

Eq. -(4) can be solved by using Gaussian numerical integral algorithm. However, it should be
mentioned that the local averaging method to represent random field is strictly valid only in the
case of stationary random field. In the non-stationary case, alternative discretization method can
be chosen to analyze, such as the midpoint method.
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3. Perturbation SFEM method for random eigenvalue analysis

Generally, the fundamental equation that describes eigenvalue problems for structures can be

expressed as following:
Ku = Mu ®)

where K=structural stiffness matrix; M=structural mass matrix; A=eigenvalue, A=af (w=circular
frequency); u=modal vector.

As to a given engineering system, the randomness of structural stiffness K and structural mass
M comes from uncertain structural parameters ; (j=1, ..., m, m is the total number of random
variables). For the convenience of computation, the randomness of K and M can be expressed as
a function of . The first-order expansion of random design variables @; can be written as
following:

o =0y + 0 6)

where subscript d denotes deterministic part of ¢ and r denotes random part of 0y; mean value of
0,; is zero; € is a very small parameter.

Correspondingly, structural stiffness matrix, mass matrix, eigenvalue, and modal vector can also
be expanded in the first order form as follows:

K =K, + &K, (7a)

M =M, + eM, (7b)

AD =29 + A (7c)

u®=uf)+ eu,® (7d)

where superscript i of A and u denotes the corresponding ith mode, i=1, ..., n (n is the total

number of natural modes).
Substituting Eqgs. (7a)~(7d) into Eq. (5), one obtains:

Kd u}i) = lél)Md ua(l) (83.)
K u® — APM 0 = — K uf) + APM, uf) + A5OMyu f) (8b)
From Eq. (8a), one can solve for the mean value of eigenvalue A§) and eigenvector uf) and

from Eq. (8b), one can obtain the random parts A and w,® of A9 and u®. When A{) is not
repeated, A7 and u,) can be written in the following form:

A =ufl (K. — APM,) uf) (%)
b= ¢, j)ufo (9b)
i=1
in which ¢,(i, j) is a random variable in the following form:
iy )= —— ufT (K — AOM ) uf) i+ (10a)
AP — A4

crli, )= u My (105)
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For the convenience of solution, expand the random parts K, and M, of structural stiffness
matrix K and structural mass matrix M at the point of design variables o, (j=1, ..., m) as follows:

j=1
M =¥ Ma, (11b)
=1

Substituting Egs. (11a) and (11b) into Eqgs. (92) and (9b), the random parts of A% and w,® for
the ith mode are obtained as follows:

=% 19a, (122)
=1

u,) = i uda, (12b)
=1

in which A{) and u® are the sensitivities of eigenvalue A and eigenvector u® for the ith mode
to design variables o, respectively.

A9 = ufl (K; - ;L,y‘)Mj) ufd (13a)
u®=-— (ua( M u ) uf> +2 ———— [uf (K - APMu )] uf (13b)
s=1 JL,S)—M)
The covariance matrix of A®) (i=1, ..., n) based on the first order expansions can be written as
follows:
. nom ® ©
Var (A®) = 2 Z J a)' Cov(o;, 0y) (14a)
ka1l 005 004
. momo SAE) )
Cov (0, X0 =% % g % Cov(a;, o) (14b)

=1 k=1

where the sepsitivity A{)=0A9/de; can be obtained by Eq. (13a) and the covariance matrix
Cov(a;, 04)(j,k =1,..,m) can be computed by the local averaging of random field described
previously from Eq. (1) to Eq. (4). In the case of solving covariance of af*), partial derivatives
0A9/da; in Eqs. (14) can be replaced by dwf/de;, and daf)/dc; = 1/2a-0A9/dc;. A Fortran
program has been written to accomplish the numerical computation of aforementioned sensitivities
and statistics of modal parameters described in Egs. (13) and (14).

4. Numerical examples
4.1. A simply-supported beam

It is assumed that the mass density p and the diameter of cross section d of a simply-supported
beam are independent Gaussian variables with standard deviations o;,=156kg/m3 and 0,=0.004m, i.
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Table 1 Deterministic structural parameters

Mass Density p Span Length L Modulus of Elasticity E Diameter d
(kg/m’) (m) (N/m®) (m)
7.8%x10° 10.0 2.0x 10" 0.2

e., coefficient of variation (COV), which is defined as standard deviation divided by mean value,
is taken as 0.02. The other structural parameters are deterministic. These deterministic structural
parameters are shown in Table 1.

Based on Eq. (14a), the theoretical solution for standard deviation of @® can be obtained in the
following:

(09 = Cov(af, o)
(0w (90 o)\ ( daf
(5 )5 oo 57 ) (5 Jome.s

Then the standard deviations for the first four natural frequencies w® (i=1, 2, 3, 4) take the
following forms:

2 2
412 4
o= n'd’Ec, | | mdEo (162)
¢ 32afp2L 4 8afVpL ¢
2 2
442 4
N *[225’1‘?
[0
o _ 81n*d’E o, 8174dE o, (160)
%"= 32apL* 8afdpL* ¢
4. 42 4
5@ = 8nd Ecp 4 32n%dE o, (16d)
© SIPLY 9pL*

The comparison between the calculated standard deviation and COV and the theoretical
standard deviation and COV is shown in Table 2. In Table 2, it can be seen that the maximum
error of standard deviation and COV among the first four natural modes is less than 5%.

In the theoretical solution shown in Eq. (16), only the variance of p and d is considered but
neglecting the correlation among discretized variable meshes in the random fields p and d. It is
another important factor that may influence the calculated results. To measure the correlation
between arbitrary two variables needs a lot of available data and regression analysis as discussed
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Table 2 Comparison of theoretical results and numerical results

Mode (i) . Mean Vzilﬂle of The-or(.etical %tandard Nur'ne'rical S(gandard Errors
requency (rad/s) Deviation ©,” (rad/s) Deviation o©,” (rad/s)

1t 24.995 (0%(')(4)131)“ (01.60400) 2.91%

2nd 99.978 ((iblfz) ((ibgfm -3.86%

3rd 224.951 (3'02!1) (33)410) -2.80%

4th 399.913 ((1)_66:% ((1)%22) 2.55%

Note: a. Numbers in the parentheses denote coefficient of variation.

by Ang and Tang (1975). Generally, there are several types of correlation expressions widely
accepted in the study of random field, for example, the well known exponential and triangle.
Although these expressions have different forms, their variance functions in Eq. (2) turn out to be
very close. Therefore, the selection of correlation expressions between variables has little influence
on the characteristics of local averaging random field. Spatial correlation function between
variables within one random field is hereby adopted in the following triangle form:

1-[&[76, [&]<8

0, |&>6 1

RO
in which E=distance of two related points; O=correlation length, which should be in the same unit
of & Egq. (17) indicates that a larger correlation length leads to a better correlation coefficient.
Fig. 2 demonstrates the variation of calculated standard deviation o, with correlation length 6.
From Fig. 2, it can be seen that a better correlation among random variables causes a larger
standard deviation o,. In the analysis, random field meshes are taken the same as those of finite
element.
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Table 3 Deterministic material properties of Tsing Ma Bridge

Items E 2 Az 114 Iy4 IZ4 P 3
(kN/m”) (m°) (m’) (m’) (m’) (kg/m’)
Cable (each) 1.9%10° 0.726 0 0 0 8250.00
Hanger(each) 1.3x10° 0.01 0 0 0 o
Main beam 2.05% 10° 1.41 9.7 145.0 13.2 1.83%x10*
Tower column’ . 2.74% 107 59.16 582.71 934.79 194.76 2500.0
Lateral beam of tower 3.5%x107 10.28 42.57 27.33 32.79 2500.00

Note: a. The mass of hangers is merged into that of the main beam and two cables;
b. In fact, section of tower varies with its height, and mean values of section properties are
adopted herein.

4.2. Tsing Ma bridge

Tsing Ma bridge, which has been built in Hong Kong, is a modern suspension bridge with a
main span of 1377m and it meets the need of both railway and roadway transportation.
Deterministic structural parameters of this bridge are shown in Table 3. Its detailed finite element
model exactly including every actual hanger is shown in Fig. 3.

The following structural material properties are assumed to be independent Gaussian variables
with the other structural parameters remaining deterministic:

1) elasticity modulus E,, E,, and E, of cable, beam, and tower, in which footnotes ¢, b, and ¢

denote cable, beam, and tower respectively; and

2) mass density p,, p,, and p, of cable, beam, and tower.

The coefficients of variation of these variables are shown in Table 4. To save computation time,
number of finite elements is reduced so that about every three hangers in Fig. 3 are merged as
one in the present analysis. Random field mesh is taken the same size as that of finite elements.

Fig. 3 Finite element model of Tsing Ma Bridge
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Table 4 Coefficient of variation
Items Cable Beam Tower
- o 0.12* 0.12 0.10
Coefficient of variation 007 0.07 007
Note: a. Upper number denotes modulus of elasticity.
b. Lower number denotes mass density.
Table 5 Frequency and standard deviation
Circular Standard Standard Standard Standard
Vibration Mode Frequency  Deviation® Deviation" Deviation® Deviation*
(rad/s) (rad/s) (rad/s) (rad/s) (rad/s)
Mode 1 0.42386 0.00590 0.00464 0.00675 0.01324
(Lateral Bending 1) ' (0.01394)° (0.01095) (0.01593) (0.03123)
Mode 2 0.74889 0.00553 0.00335 0.00441 0.00843
(Vertical Bending 1) : (0.00738) (0.00447) (0.00589) (0.01126)
Mode 3 0.84540 0.00858 0.00555 0.00827 0.01787
(Vertical Bending 2) ‘ (0.01015) (0.00656) (0.00978) (0.02114)
Mode 4 0.98143 0.0199%4 0.015235 0.02322 0.04797
(Lateral Bending 2) ' (0.02032) (0.015523) (0.02366) (0.04888)
Mode 5 1.10600 0.00188 0.00145 0.00231 0.00198
(Vertical Bending 3) : (0.00170) (0.00131) (0.00210) (0.00179)
Mode 6 1.15340 0.00920 0.00575 0.00903 0.02076
(Local Vibration of Cables) ’ (0.00798) (0.00499) (0.00783) (0.01800)

Note: a. The correlation length of all random fields is 200m.

b. The correlation lengths of random fields and E,, and p,, E,, and E, and p, are 100m, 100m, and

50m respectively.

c. The correlation lengths of random fields E, and p,, E, and p,, E, and p, are 300m, 300m, and

20m respectively.
d. The correlation length of all random fields is 3000m.
e. Numbers in the parentheses denote coefficient of variation.

P

|
o]

Note: 1. Points 1, 2, 3, and 4 are located on the main beam.

2. Points 5 and 6 are located on one cable.

3. Point 7 is located at tower foot of one tower column.
Fig. 4 Indication of different design variables

1797
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Table 6 Sensitivity of frequencies to different design variables

Vibration Mode Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

Mode 1 0.1850x 10™ 0.3965x 10™ 0.1668 x 10" 0.1602 % 10 0.5061 x 10™® 0.2506 x 107 0.2183 x 10
(Lateral Bending 1) 0.4383x107 0.3963x107 -0.725x 10™ 0.1905% 10® 0.1600x 10" -0.5942x 10° 0.8226 x 10™
Mode 2 0.7329% 10°° 0.8085 x 10™ 0.2738 % 107 0.1363 x 107 0.2242% 10™ 0.2511x 10" 0.4734x 10
(Vertical Bending 1) 0.2007x 107 -0.3347Xx 107 0.1694 x 10™° -0.7846 x 10° 0.2027x 10”7 -0.246 x 10™° -0.1750% 10
Mode 3 0.8449x 10™ 0.3457x 10™ 0.4242x 107 0.5215%x 10™0.1118 x 10™ 0.3154 x 10™ 0.2070x 10
(Vertical Bending 2) 0.9719% 107 -0.1063x 107 0.1327X 10™ -0.1433%x 107 0.4960x 107 0.9405 x 10 -0.3982x 10°
Mode 4 0.5834x 10 0.9121 x 10™ 0.5930% 107 0.4428 x 10" 0.8146 x 10™ 0.2640x 10™ 0.5841 x 10
(Lateral Bending 2) -0.9257x 10°® 0.1529X 10° -0.5172X 10” 0.1048 X 107 0.6429x 10® -0.3281x 10* 0.4415x 10™"
Mode 5 0.3356x 10™ 0.1217x 10™ 0.1084 x 10 0.2147x 10 0.1428 x 107 0.4749% 10™° 0.7259x 10
(Vertical Bending 3) 0.2569x 107 0.1886x10° 0.2190x 10" 0.5130x 10® 0.1328x 10”7 -0.2164 x 10”° 0.12045 x 10
Mode 6 0.1961x 16" 0.1418x 10™ 0.2281x 107 0.1502x 10 0.5996 x 10™ 0.1977x 10™ 0.4693x 10™
(Local Vibration -0.4603x 107 -0.8788x 10° 0.2188x 10 -0.4244x 107-0.2083x 107 0.1096% 10® -0.1028 x 10
of Cables)

Note: Upper data is sensitivity to elasticity modulus (unit: rad-m-s/kg) and below data is sensitivity to
mass density (unit: rad-m*/s-kg).

Table 7 Sensitivity of components of vibration mode to different design variables

Vﬁfgf” Point 1 Point 2 Point 3~ Point 4 Point 5 Point 6 Point 7
1st 0.228x 107 -0.178x10% 0.459x107 0.145x 107 -0.126x10% -0.623x10% 0.250x 107
0.2773x10° 0.1444x10° 0.3084x10™ 0.2836x10™ 0.1323x 10" 0.9588x 10™ 0.1147x 10™
3rd 0.581x 10" 0.218x 10" -0.131x 10" -0.266X 10" -0.599%x 107 -0.122x 10" -0.119%x 10™®

-0.2942x10° -0.1145% 10° 0.244x 10" -0.519%x10™ -0.987x 10™ -0.1497x 10® -0.142x 10"

Note: Upper data is sensitivity to elasticity modulus and below data is sensitivity to mass density.

The calculated first six natural frequencies and their statistics are shown in Table 5. Herein the
variation of axial force in cable due to the COV of mass density (less than 0.3) in beam is
neglected since this kind of variation in axial force is small and thus causes little change in the
whole structural stiffness. From Table 5, the following conclusions can be drawn:

1. With fixed coefficient of variation of basic variables, the larger the correlation length 6, the
more significantly the natural frequencies vary. The tendency is in accordance with the case of
simply-supported beam as shown in Fig. 2.

2. The coefficient of variation of the first six natural frequencies is smaller than 5%. This result
shows that the first several natural frequencies are insensitive to the selected basic variables
compared with the given coefficient of variation listed in Table 4.

Table 6 shows the sensitivity of natural frequencies to various structural damage locations.
These locations are shown in Fig. 4 and are denoted by points 1, 2, .., and 7, which are
simulated by finite elements connected to these points. It can be seen from Table 6 that
sensitivities of natural frequencies to each variables are all positive. These results indicate that the
first six natural frequencies vary proportionally with E,, E,, and E. In the cases of p,, p,, and p,
some sensitivities are positive but some other ones are negative. Sensitivities of natural
frequencies to variables at different locations vary in magnitude, for the first mode (lateral
bending motion), in the case of modulus of elasticity, the natural frequency is more sensitive to
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the change of variable at points 1 and 3; and in the case of mass density, the frequency turns out
to be more sensitive to the changes of variable at points 1, 2 and 5.
Table 7 only shows the sensitivities of several components of structural normal modes to

various structural damage locations due to the huge amount of available elements in matrix u® (i=
1, ..., n, j=1, ..., m). It should be noted that every component in the ith mode uf) of Table 7 has

been calculated in SI units and divided by #/)"Mu/®. In the observation of sensitivities of mode

components to variables at different locations, it is also found that these sensitivities to variables
at different locations vary in magnitude.

5. Conclusions

This paper utilizes a stochastic finite-clement-based sensitivity analysis to study the influence of
randomness of structural parameters to its natural frequencies and modes based on the variables'
locations in the structural configuration. The statistics of natural frequencies of a suspension
bridge illustrate that the variation of first several frequencies is very small in comparison with the
change of structural parameters. Therefore, it is reasonable nowadays in structural dynamic
reliability analysis, e.g., structural aseismic reliability, to consider only variations of external
acting loads without including the variations of structural parameters. Since the sensitivities of
systematic dynamic parameters (natural frequencies and modes) to variables at different damage
locations may vary in magnitude, these results are beneficial for the structural nondestructive
damage identification. The present approach is also suitable for other types of bridge and building
structures, such as cable-stayed bridges.
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