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A boundary element approach for quasibrittle
fracture propagation analysis
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Abstract. A simple numerical scheme suitable for tracing the fracture propagation path for structures
idealized by means of Hillerborg's classical cohesive crack model is presented. A direct collocation,
multidomain boundary element method is adopted for the required space discretization. The algorithm
proposed is necessarily iterative in nature since the crack itinerary is a priori unknown. The fracture
process is assumed to be governed by a path-dependent generally nonlinear softening law. The
potentialities of the method are illustrated through two examples.
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1. Introduction

This paper addresses the important and difficult problem of tracing the statical fracture
propagation path for quasibrittle structures. In particular, we outline a simple numerical scheme
suitable for carrying out this analysis for plane stress quasibrittle fracture processes where mode I
is dominant. Under the usual assumptions of small deformations and linear elasticity outside the
process zone (or craze), we describe the path-dependent softening law, characterizing the fracture
processes, by means of a fairly general nonlinear softening function which admits, as special cases,
the well-known single or bilinear branch representations. The path-dependent assumption is
analogous to the flow theory of plasticity and hence enables elastic unloading from a softened
state to be identified.

As can be construed from our introductory remarks, the model we use is the discrete crack
idealization proposed by various researchers, in primis by Dugdale (1960), Barenblatt (1962) and,
Hillerborg et al. (1976); the latter work specifically deals with concrete-like materials. In order to
take advantage of the fact that such a model relegates all nonlinearity to a discontinuity locus, the
space discretization is carried out within a multizone boundary element (BE) framework, with the
interface zone representing the crack propagation itinerary. Following previous related work
(Harder 1990, Liang and Li 1991a, 1991b, Cen and Maier 1992, Tin-Loi and Ferris 1997), we use
the direct collocation method in view of its simplicity, although we must admit that the symmetric
Galerkin BE approach may be more accurate and is physically more meaningful (Maier and
Frangi 1998).
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The organization of this paper is as follows. In Section 2, we review the cohesive crack model
with the specific aim of describing a general class of nonlinear path-dependent fracture laws in a
form suitable for our solution algorithm. The multizone BE formulation is presented next in
Section 3. A key idea of the general scheme is to express the tractions at the crack interface as the
sum of the tractions due to displacement discontinuities only and of tractions caused by the purely
elastic response of an assumed uncracked structure under the ngen loads. The total tractions must
then of course obey the appropriate constitutive law. We propose in Section 4 a simple numerical
algorithm capable of solving the fracture problem in point. In particular, we describe schemes
required for the necessary marching solution (for an assumed crack itinerary) and for adjusting the
crack interface. The marching solution uses a classical Newton's method to solve a set of
equations selected on the basis of an assumed crack pattern for the particular load level considered.
The interface adjustment is based on a principal stress criterion. We illustrate application of the
method in Section 5 by means of two examples before concluding with some remarks.

2. Cohesive crack law

As is well-known, the cohesive crack model (Hillerborg 1976) is a popular idealization of
fracture processes regarding quasibrittle or concrete-like materials. The inelastic deformations and
mlcrocrackmg are deemed to be concentrated in a narrow zone called the “process zone” or

‘craze”, ahead of the real crack. Qutside the process zone, the material is considered to be linear-
elastic and isotropic whilst the locus of a potential crack is conceived to be made up of the union
of crack, process zone and undamaged material.

A critical ingredient of the cohesive crack model is the description of the behavior of a generic
potential crack. For a mode I crack model, as assumed herein, the following hypotheses are made.
When the material is still undamaged, the normal tractions p across the potential crack locus have
not yet reached some limiting tensile value p,. In the process zone, however, a normal
discontinuity of displacements w occurs when the traction attains p,. This traction decreases with
w along the process zone and becomes zero at some critical crack width w,. An actual crack is
deemed to have formed at zero traction when w>w,. It is further assumed, as is commonly the
case for concrete materials where aggregate interlocking is present, that the tangential
displacement discontinuity is zero and that the corresponding tangential (shear) traction is
unrestricted.

Within the above broad description of the cohesive crack model, two further idealizations of the
constitutive behavior are poss1ble analogous to the deformation and flow theories of plasticity.

In the first instance, it is often assumed that the softening law is path-independent so that any
stress point can only move on the softening locus f(w)=0. This is not strictly correct since, even
under proportionally applied loads, local elastic unloading (that is a decrease in traction at
constant displacement discontinuity) can still occur, as clearly illustrated by the behavior of the
ubiquitous two-notch tensile test (Bolzon et al. 1995). In our work, we adopt the following more
realistic constitutive behavior, albeit in an approximate form for computational efficiency.

The mathematically correct description of the softening law pertaining to the process zone must
necessarily be expressed in rate form (time being an ordering variable). This type of history-
dependent behavior is schematically illustrated in Fig. 1. It is clearly shown, through the direction
of the arrows, that unloading within the process zone is correctly accounted for. For general
nonlinear softening functions, it is usually difficult to solve the rate equations exactly; recourse is
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Fig. 1 Path-dependent mode I cohesive crack model

often made, as in our work, to an incremental finite step analysis consisting of a series of path-
independent analyses with appropriate updating carried out at the start of each step.

Analytically, the path-dependent cohesive crack law illustrated in Fig. 1 can be written in rate
form, similar to that in Bolzon et al. (1997), as

w=0, p2 0, if 0Sw<w,, y=ps—p >0
y20, yw=0, if O<w <wo, y=Ff(w)=0 @
w20, p=0, if wo<w

to describe an incremental process starting from a known situation; p, is the maximum tensile
stress for the particular elastic branch on which the current stress point lies, and the notation x20
is used to denote the fact that variable x is “free” or unconstrained. The first relation in (1) refers
to a stress point in an “elastic’ condition. That is, it describes the movement of a point either on
the initial elastic branch (w=0, p,'=p,) or one which has elastically unloaded from the softening
curve (O<w<w,, p,'<p,). The second condition assumes that the current stress point is “active’
(i.e., is on the softening branch). The evolution of that point can follow either of two paths, as
shown in Fig. 1. It can elastically unload (w=0, y>0) or can contmue yielding down the
softenlng curve (w>0, y=0). In both cases, the orthogonality condition (or “complementarity”, as
it is known in the mathematical programming literature) yw=0 is thus satisfied. The third
condition in (1) refers to the fully cracked case and is self-evident.

Two interesting points deserve mention:

Firstly, whilst it seems reasonable, as indicated in Fig. 1, that during unloading the process
zone opening w cannot decrease while the normal stress p remains tensile (assuming, in the spirit
of the cohesive crack model, that the craze essentlally consists of microcracks or a region of

“damage”, rather than an actual single crack) it is not clear whether this should also hold when p
becomes compressive. Of course, if it is assumed that the process zone represents some “damage”
in tension only, then unlimited compresswe strength appears logical.

Secondly, the horizontal branch in Fig. 1 for w>w, shows that unloading can occur but it is
unclear as to whether crack closure can be less than w,. Our view, and one that we have
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implemented in the algorithm described in a later section, is that a fully developed crack can
indeed fully close. In practice, these two situations are unlikely to occur for proportionally applied
loading. In fact, in all numerical examples we have run to-date, neither phenomenon has been
detected.

3. Boundary element formulation

Consider the 2-dimensional body shown in Fig. 2(a) which provides a generic definition of our
fracture problem. The domain £ is subdivided into two homogeneous regions Q' and €2° by an a
priori assumed locus I', along which the crack will propagate. The boundary zones (r=1, 2) of
the structure consist of a constrained part I and of an unconstrained part I, for which
displacements and tractions are prescribed, respectively. Fig. 2(b) defines the local axis
conventions for tangential (f) and normal (r) components of tractions and displacements for the
adjacent interfaces of the two zones.

Following the elegant approach used for instance in Cen and Maier (1992), Tin-Loi and Ferris
(1997) and Maier and Frangi (1998), we can describe the nonlinear response of the structure as
being governed by the following integral equation:

p(x)=jr Z(x,s)w(s)YI+upex), x,s € I: 2)

where the normal tractions p on the interface I', are given by the superposition of two effects: the
first due to the actual normal displacement discontinuities w in the absence of any applied loads,
and the second due to the external actions on an intact fully elastic structure in the absence of
kinematic discontinuities. The first effect, represented by the integral term in (2), can be described
through the Green's functions or influence coefficients Z(x, s), x, s€ I, (x = field point, s =
source point) which can be calculated from a linear elastic analysis as the normal tractions p
caused by unit normal displacement discontinuities w across I in the unloaded (i.e., without any
external actions) structure. The second right hand side term of (2) is simply the elastic response of
the uncracked structure under the given external actions where p is a load factor and p° are
normal elastic tractions on I, for u=1.

Conceptually, the analysis is easy. If the crack path is known, we need simply combine and

i’ e
l_.2
¢ (a) ! (b)
Fig. 2 Problem definition: (a) structure; (b) local axis systems at interface
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solve (1) and (2) to obtain the relevant quantities of interest. Formally, however, as shown in
several papers (e.g., Cen and Maier 1992, Maier and Frangi 1998), the fracture analysis is not
straightforward. We are faced with two major difficulties. Firstly, even if the crack path were
known in advance, solving (1) and (2) is not a simple task. Secondly, except for simple situations,
the crack itinerary is unknown in advance and requires some iterative scheme to update the
assumed crack interface. Before describing how we overcome both of these difficulties, we outline
the calculation of the Green's functions in (2) using a standard two-zone boundary element model.
Extension to more than two zones is straightforward.

Analytical expressions for Z(x, s) are rarely possible so that these influence coefficients need to
be calculated from a suitably space-discretized structure. Moreover, as (2) involves variables on
the boundary and at the assumed interface only, a BE approach is more suitable than a FE method
which would involve domain variables as well. Motivated primarily by simplicity of
implementation, we adopt the direct collocation BE approach (Banerjee 1993) with isoparametric
quadratic three-node boundary elements.

Starting from the well-known matrix formulation of a two-zone collocation BE method for the
situation shown in Fig. 2, we can write for both domains 2", r =1, 2 the linear relation

Hur=Lpr 3)

where vectors u” and p” collect, respectively, the nodal displacements and tractions on boundaries
I), I/ and I of the model; H and L’ are conventional nonsymmetric influence matrices
obtained from appropriate integrations of the classical boundary integral equations. Bold-face
symbols refer to vectors and matrices.

The boundary unknowns on I} and I} can now be eliminated from (3) to give the following
system in variables pertaining only to the interface I':

pr=Gur+gr @

where quantities G and ¢ are obvious by-products of the condensation.
Eq. (4) can be partitioned as

Uin
pi=[Gi G] [ué} +q’ ©)

before we impose to it the static-kinematic conditions which hold at the interface I, namely,

pl=p2 ul=—u? ul+ul+w=0 (6)

in accordance with the sign convention shown in Fig. 2(b). Simple algebraic manipulations lead to

pl=—-G'G "'Gw +G'G (g2—q?) +q! (7
where the superscript — 1 denotes an inverse and
G =[(G++Gd (G'+GH) ©®)

Finally, we simply extract from Eq. (7), the normal component of p.' to give an expression for
the normal traction p at the interface, or

P =Zw +pe ©)
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which clearly is the discrete version of the integral Eq. (2). Note that we have not only obtained
the influence matrix Z but also the elastic response due to the applied external actions in the
absence of any displacement discontinuity.

4. Algorithm for crack propagation

In this section, we address the two major difficulties to be overcome in the crack propagation
analysis, namely, solution of the path-dependent relations, Eq. (1) (appropriately collected for all
nodal points) and Eq. (9) for an assumed crack locus, and the interface adjustment strategy. We
focus on key ideas rather than on details of the numerical implementation.

4.1. Finite incremental solution for known crack path

This stage of the analysis is conceptually straightforward, requiring the solution of relations (1)
and (9). However, the actual exact numerical solution of the rate equations is not a trivial task. In
practice, we need resort to an approximate, albeit acceptable, finite step marching scheme. Within
each step, path independence is assumed and any updating due to elastic local unloading is
accounted for between two consecutive steps. Moreover, the solution of the appropriate finite
incremental relations pertaining to the evolution for any step is still not simple. For instance, the
elegant complementarity approaches (e.g., as in Bolzon ez al. 1995, 1997, Tin-Loi and Ferris 1997,
and surveyed in Maier and Frangi 1998) meet with the prime difficulty that the systems in the
affine case, where the softening is linear or piecewise linear, belong to the class of problems for
which no polynomial time algorithm is known to exist since a key matrix is nonsymmetric (even
for a symmetric BE approach) and indefinite. This implies that it can take exponential time to
determine a solution or the fact that no solution exists.

Motivated by the success of our previous work (Bolzon et al. 1995, 1997, Tin-Loi and Ferris
1997) in which it was observed that the starting vectors for the adopted mathematical
programming (more precisely, complementarity) approach could be judiciously chosen on
assumed knowledge of the crack activation sequence, we have developed a simple numerical
algorithm, briefly described in the following.

In the first instance, some time discretization of the governing system (1) and (9) needs to be
carried out. As in plasticity (e.g., Bird and Martin 1990, Corigliano and Perego 1993), we adopt
the popular backward time integration scheme in view of its good convergence and stability
properties. The entire structural evolution is then analyzed as a sequence of path-independent

finite incremental problems each concerning a finite configuration change AX from a known state

2 to the required (unknown) state 2.

A crucial element of our proposed algorithm is to consider only those relations for which the
final unknown states belong to stress points which will become active for the applied load step
Au, which incidentally can be positive or negative. If we indicate this active set by {o}, then we
need simply solve the set of equations y,=0 for Aw,. We need to emphasize that the active set {a}
simply contains the indices of the nodes (node numbers) which either belong to the craze or crack
with no distinction made between the two.

The difficulty of course is to have a reasonable prediction of the set {o} so that we can
efficiently converge towards it. Fortunately, at variance with spreading plasticity cases, the nature



A boundary element approach for quasibrittle fracture propagation analysis 445

of our fracture problem is such that the active set is small for conventional load steps and is also,
in view of the localized cracking, often reasonably easily predictable, at least as to its pattern and
approximate elements.

To be specific in our further elaboration, let us focus on the simplest case where f{iw) for each
node is a single linear branch with negative slope h. Then, for a generic step of our finite
incremental problem, we need to calculate Aw, so that the final stress state y,=y,+Ay,=0. Without
going into the simple algebraic manipulations required, this consists in solving

Va—Ape +hog—Z oMWy, if w,Sw,, i E o

Ya=0= Y a—AUpS, — Z oo Aw fwo>w, i €« (10)

iteratively for a sequence of assumed {a}. We use o subscripts on various quantities to denote
appropriate subvectors or submatrices. For instance, Z,, is the submatrix extracted from Z using
the indices contained in the active set {o}. More precisely, if, say, {a}={2, 7, 9}, then Z,, is
obtained by retaining the 2-nd, 7-th and 9-th rows and columns of Z; similarly, y, would consist
of the 2-nd, 7-th and 9-th rows of y; etc.

We adopt the classical Newton's algorithm for solving the set of nonlinear Eqgs. (10). The main
steps of this algorithm are then as follows:

* Step 1: Guess {a} for the assumed load parameter increment Ay
+ Step 2: Solve (10) using Newton's method, or

v + Vyk(Aw ,— Awk)=0 (11)

where £ is an iteration number and Ay,, the Jacobian matrix of y,, is given by

hyy—2., fwsw, icaqa
Vya= ~Z e s fw>w, i€ «a 12)

* Step 3: If convergence then stop, else go to Step 1.

A few remarks are appropriate at this stage.

1. In our computational testing, we found this simple algorithm remarkably efficient and
reasonably robust, even for the nonlinear softening case. There was no need to improve the
global convergence of Newton's scheme through some line search type technique.

2. Of course, there is still the difficulty of finding the multiplicity of solutions which may exist
even for arsingle crack. This is a far more difficult problem than determining the most likely
crack activation amongst the identified ones. The latter task can be carried out using stability
arguments founded on second-order work considerations, as discussed by Bazant and Cedolin
(1992) and also by Maier and Frangi (1998). We must admit that, for finding multiple
solutions, the currently proposed active set method is less robust than algorithms (Bolzon et al.
1995, 1997, Tin-Loi and Ferris 1997) based on solving the complete complementarity system.
For small size problems (up to about 200 unknown crack displacements) and linear softening,
the enumerative branch-and-bound scheme implemented by Bolzon et al. (1995) can capture all
solutions which exist.

3. Updating of the set {o} after failure to converge can be judiciously carried out, as we have
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done in our implementation, through knowledge of the previous iteration history. In practice,
the steps can be chosen so that either no or only one additional node is activated. In fact, this
will help in the crack path interface adjustment described in the following subsection. We need
to stress that whilst the constitutive law (as a simple, invariably tenable, assumption when the
discretization is fine enough) is satisfied pointwise (at the BE nodes), this in no way
necessarily implies a constant crack extension for each load step. As indicated, it is
computational advantageous to choose small enough load steps so that either no or only one
node is activated. But even if only one node were activated say in a particular step, the
appropriate craze size is automatically achieved as the algorithm will calculate where exactly
the new activated node is on the constitutive law (i.., the appropriate crack width at that node),
and also, of course, which, if any, of the other nodes in the craze region has become fully
cracked. In this manner, the change in both crack extension and craze length are captured
automatically for each anphed load step. Finally, it is possible through interpolation schemes,
such as the one described in Bolzon et al. (1995, 1997), to satisfy more precisely the cohesive
crack law between nodes, but in practice, with a fine enough BE (or FE) mesh, the
computationally simpler pointwise constitutive enforcement scheme (Tin-Loi and Ferris 1997)
is invariably as accurate.

4. Other variants of the above scheme, such as those involving a prediction of the load level Ay
and using some specified crack width as driving variable, are possible but our computational
tests, albeit limited, have not shown any advantage. We found that use of the load increment as
the driving variable did not incur great problems in spite of the fact that at some stage it
requires a change in sign.

5. We finally note that updating of the active set automatically accounts for any elastic unloading
at the beginning of the step.

4.2. Crack path realignment strategy

The general strategy we use is to realign the crack in a direction normal to the principal stress
calculated at the elastic node immediately in front of the craze. In accordance with the fixed crack
concept, the previous crack path is kept fixed; that is, realignment is only performed ahead of the
damaged material. With reference to Fig. 3, where n nodes are assumed on the interface, the i-th
node is the last one activated with the (i+1)-th node still intact (solid circles refer to nodes
belonging to the crack-craze locus, open ones to the elastic locus). For the next realignment, the
path 1 to i is kept fixed and the path (i+1) to n adjusted. We keep the end node » fixed as long as
possible to save on the discretization costs for the external boundary. Obviously, the assumed
crack path far ahead of the current crack tip should not affect the accuracy of the scheme since
that region is still in an elastic state; of crucial concern is the proper evaluation of the (elastic)
stress state at the still elastic node immediately ahead of the craze tip.

At the start of the analysis, the interface is located using such information as location of
notches and other defects, symmetry, structure geometry and loading, elastic stresses, etc. We
assume that the crack itinerary starts from a free boundary with no traction, usually at a notch in a
direction normal to the notch boundary.

For a generic realignment phase, such as from (i+1) to n, we carry out a series of finite
incremental steps and at the same time continuously monitor the stress state at node (i+1). As
soon as we detect that node (i+1) is about to become active and enter the {a} set, we realign
based on its (elastic) stress state.
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Fig. 3 Interface adjustment

An advantage of using boundary elements is that any realignment does not lead to distortion as
it would for finite elements.

5. llustrative examples

Two examples are given in this section to illustrate application of the algorithm developed.
The first example is that of a tensile specimen with two semi-circular notches and for which
the quasibrittle fracture law is nonlinear. The second example concerns a single edge-
notched beam under four-point shear loading — an experimental set up used by Carpinteri et al
(1993).

5.1. Example 1

This hypothetical example involves the two-notch tensile specimen shown in Fig. 4. Overall
plate dimensions are: 50 mm long, 30 mm wide and 1 mm thick. The unsymmetrically located
semi-circular notches are each of 10 mm diameter. The BE model is also shown in Fig. 4
and consists of 10 matching pairs of elements on the assumed crack interface and 40 elements
around the perimeter; all elements are three-noded and quadratic (midside nodes are not shown in
Fig. 4).

Material data assumed are: a nonlinear cubic softening law fiw)=p(1-w/w,)’ with p,=3 MPa
and w,=0.06 mm, Young's modulus £=32400 MPa and Poisson's ratio v=0.

The load P was applied as indicated and the propagation of the crack tracked. The crack
interface, as depicted, was assumed to be initially straight. The deflections u, conjugate to P,
were also calculated. The final crack itinerary obtained is shown in Fig. 5. The corresponding



448 F. Tin-Loi

N [
(5] o
P
&
[
®
®
®
9'
Py
4 *®

¢ —>
5¢ ¢
0 i»—o—l &—o—o—o—o—o—o

0 10 20 30 40 50

Fig. 4 Example 1: geometry and loading
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Fig. 5 Example 1: crack path evolution
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Fig. 6 Example 1: load-displacement curve

load-deflection curve is displayed in Fig. 6 which, as expected, exhibits a typical softening
behavior.
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5.2. Example 2

This second example is a far better test of the procedure developed as it compares the BE
solutions with results experimentally obtained by Carpinteri et al. (1993) for the single edge-
notched specimen loaded under four point shear shown in Fig. 7. The particular details shown
correspond to Specimen 2C, chosen in view of the fact that mode I fracture governs the crack
propagation for that specimen.

The beam is 1200 mm long, 300 mm deep and 100 mm wide, with a 60 mm deep notch. It
was loaded and supported as shown in Fig. 7 with the loads applied through a rigid beam so that
P,=10P,. Details can be found in Carpinteri et al. (1993).

In our numerical simulation, we again modelled the beam with quadratic 3-noded elements, the
number of which were: 40 at the top and bottom edges of the beam, 10 on the left and right
vertical sides of the beam, 2 pairs of elements for the notch and 10 pairs of elements on the
assumed crack interface. Except for the crack interface elements, all elements were 30 mm long.

Assumed material data are: E=40000 MPa, v=0.1 and a single branch linear softening law f{w)=
p(1-ww,) with p,=2 MPa and w,=0.125 mm. The same data were adopted by Carpinteri et al.
(1993) in their finite element simulations of the fracture process.

The final crack interface we obtained is shown in Fig. 8 together with the average path of
experimentally recorded cracks. In Fig. 9, we compare our load-deflection predictions with the
average of experimentally obtained ones. In both cases, reasonable agreement can be observed.
The validity of the BE analyses is further confirmed by the fact that the numerical results they
provide coincide almost exactly with those given by the sophisticated, but computationally
demanding, finite element approach of Carpinteri et al. (1993). Of particular note is the good
prediction related to maximum load levels. The deviation of calculated from experimental results,
as noted by Carpinteri et al. (1993), appear to be of the same order of magnitude as the aggregate
size, except near the support. The obvious discrepancy near the support may be due to differences
between the modeled simulated support conditions and the actual ones used in the experiments. It
may also be possible that, in view of the complex stress state near the support, the assumed mode I
law may not be fully appropriate.

6. Conclusions

A simple BE approach has been presented for carrying out the path-dependent analysis of
quasibrittle fracture based on the cohesive crack model. Under the assumptions of a mode I
process and unknown crack itinerary, features of the scheme involve: (a) approximation of the
governing rate equations, through a backward difference scheme, as a finite incremental system;
(b) solution of the system as a set of nonlinear equations characterizing the set of predicted active
modes; and (c) appropriate interfacing of the marching solution with a crack alignment strategy
based on the principal stresses for an intact node immediately in front of the craze.

The scheme has been found to work well on the examples ran to date, two of which are
presented in this paper. The incorporation of general nonlinear softening laws does not present
any difficulty and hence not only overcomes the burden of piecewise linearization but also
enables extension of the method to cater for more complex mixed-mode fracture processes. The
robustness of the method, however, can be improved, in particular in relation to the iterative
updating of the trial active sets. This is particularly important for situations where numerous



A boundary element approach for quasibrittle fracture propagation analysis 451

multiple equilibrium solutions are present, as is often the case with softening induced instability.
We note again that choosing the energetically critical crack among identified solutions is not
difficult; the problem is to first capture the multiple solutions that may exist.

Finally, the present paper has not directly addressed the subject of interacting crack
development in which multiple cracks may develop, progress simultaneously, possibly at different
rates. This worthwhile extension is still possible within a multizone (with several interfaces)
boundary element framework using the strategies described herein. We expect that this task will
primarily involve formal rather than conceptual complications.
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