Structural Engineering and Mechanics, Vol. 8, No. 3 (1999) 243-256 243

DOI: http://dx.doi.org/10.12989/sem.1999.8.3.243

Flexural free vibration of cantilevered structures
of variable stiffness and mass
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Abstract. Using appropriate transformations, the differential equation for flexural free vibration of a
cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an
ordinary differential equation with constant coefficients by selecting suitable expressions, such as power
functions and exponential functions, for the distributions of stiffness and mass. The general solutions
for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the
frequency equation of multi-step cantilever bars. The new exact approach is presented which combines
the transfer matrix method and closed form solutions of one step bars. Two numerical examples
demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a
television transmission tower are in good agreement with the corresponding experimental data. It is
also shown through the numerical examples that the selected expressions are suitable for describing the
distributions of stiffness and mass of typical tall buildings and high-rise structures.
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1. Introduction

A broad range of engineering problems involves vibration analysis of non-uniform bars and
beams. For example, when analysing free vibrations of tall buildings and high-rise structures, it is
possible to regard such structures as a cantilever bar with variable cross-section (e.g., Wang 1978,
Li et al. 1996, 1998). However, in general, it is not possible or, at least, very difficult to get the
exact analytical solutions of differential equations of free vibrations of bars with variably
distributed mass and stiffness. These exact bar solutions are available only for certain bar shapes
and boundary conditions. Wang (1978) derived the closed-form solutions for the free vibration of
a flexural bar with variably distributed stiffness, but uniform mass. Kumar et al. (1997) found the
exact solutions for the longitudinal vibration of non-uniform rods whose cross-section varies as A=
(a+bx)" and A=A, sin’ (ax+b). In this paper, the exact solutions of flexural free vibration of a bar
with variably distributed stiffness and mass are found by selecting suitable expressions, such as
power functions and exponential functions, for the distributions of flexural stiffness and mass of
the bar. The flexural free vibration of a multi-step bar is a complex problem, and the exact
solution of this problem has not previously been obtained. Use of the exact solution of a one-step
bar together with a transfer matrix method is presented in this paper in order to resolve this
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problem. It is shown through two numerical examples that the selected expressions are suitable for
describing the distributions of flexural stiffness and mass of typical tall structures and high-rise
structures, and that the total number of the segments required in the proposed transfer matrix
method could be significantly less than that normally used in conventional finite element methods.
Thus, the proposed method has practical significance for free vibration analysis of non-uniform
cantilevers.

In this paper, an attempt is made to present exact analytical solutions to flexural free vibration
of cantilever bars with variably distributed mass and stiffness. In the absence of exact solutions,
this problem can be solved using approximated methods (e.g., the Ritz method) or numerical
methods (e.g., the finite element method and the finite strip method). However, the present exact
solutions can provide adequate insight into the physics of the problem and can be easily
implemented even without the availability of a computer. The availability of the exact solutions
will help in examining the accuracy of the approximate or numerical solutions. Therefore, it is
always desirable to obtain exact solutions to such problems.

2. One-step bars

The governing differential equation for flexural vibration of a one-step cantilever bar with
variable cross-section considering damping effect under the action of transverse forces (Fig. 1)
and neglecting the effect of rotatory inertia and transverse shear deformation can be expressed as
follows:

e d _ J
'ax_z(EI" 83)+mx—a-?2—)+cx% =P(x,t) 1)
In which EI,, m,, C, and P(x?) are the flexural stiffness, the mass, the damping coefficient per
unit length and the transverse force at section x of the bar, respectively.

If P(x,#)=0, then, Eq. (1) becomes the equation of damped flexural free vibration. Setting C,=0
obtains the equation of undamped flexural free vibration.

All structures dissipate energy when they vibrate. Hence, damping is present to some degree in
all structural systems. However, in general, the effect of damping on structural natural frequency and
vibration mode shape is neglected in free vibration analysis. Although in the majority of engineering
systems this effect is small and may be disregarded, there are cases in which the effect reaches an
appreciable magnitude and must be included in the analysis, for example, it is possible that the
damping factor of a controlled structure is twenty times or more greater than that of corresponding
uncontrolled structures in some cases (Soong 1990). There is, therefore, a need to carry out further
research on the evaluation of free vibration of structural systems considering damping effect. In this
paper, the damping coefficient of a bar is assumed to be proportional to its mass.

Let

Cr = CO M (2)
Using the method of separation of variables gives
y(x, 1) =Y(x) exp(As) G

where Y(x) is the damped mode shape function, 4 is a complex value.
Substituting Eq. (2) and Eq. (3) into the equation of damped flexural free vibration gives the
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equation of Y(x) as follows:

If we set
y(x,t)=Y () sin(or + p) )

where Y(x) is the undamped vibration mode function, @ is the undamped circular natural
frequency and Y is the initial phase, then the equation of Y(x) becomes

d? dy _
W(EIX W) - (Dzmx Y= 0 (6)

If we set
@ =—(CoA+ A% 7)

then, the damped mode shape governed by Eq. (4) is the same as the undamped one governed by
Eq. (6). The relationship between the damped natural frequency, @, and the undamped natural
frequency, @, can be found by solving Eq. (7) as follows

l=—%iiw’\/1—(%)2 ®)
0 =k;0, k;= \j 1 —(%)2 )

It can be seen from Eq. (9) that the effect of damping on natural frequency can be neglected for
the case of light damping (Co/@ < 0.1). Even if the damping coefficient is very large, the effect of
damping can also be not considered in free vibration analysis. After the undamped natural
frequencies have been found, the damped natural frequencies can be determined from Eq. (9).
This suggests that if the distribution of the damping coefficient of a bar is assumed to be
proportional to that of the mass (C,=C,m,), the damped natural frequency is equal to the
corresponding undamped natural frequency multiplied by the coefficient, k,, and the damped mode
shape is the same as the corresponding undamped mode shape.

It is difficult to find the general solution of Eq. (6) since the structural parameters in the
equation vary with the co-ordinate x. However, the general solution of Eq. (6) may be obtained
by making appropriate selections for mass, stiffness and damping distribution functions. As
suggested by Wang (1978), Tuma and Cheng (1983) and Li et al. (1994, 1995), the functions that
can be used to approximate the variation of mass and stiffness are algebraic polynomials,
exponential functions, trigonometric series, or their combinations. Three cases are considered as
follows: ‘

Case I: Expressions for flexural stiffness and mass per unit length are power functions, which
are given as follows

ie.,

ElL. =EI(1 - By (10)
ix = mo(1 - fx)' (11)
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Fig. 1 A bar with variable cross-section

in which EI,, m, are the flexural stiffness and the mass per unit length, respectively, at section x=0;
P and n are parameters which can be determined by values of EI, and m, at x=L/2 and L (Fig. 1)

or at other control points.
Substituting Eqs. (10) and (11) into Eq. (6) leads to

(1-Aey 2L L - 2n 42 (1= oy L 4 B +2) (4 1) (1= o) L X
—(1=fBx) m0r EI; =0
If a differential operator is
1 n+l_Y d
By dx — Br)

Then, Eq. (12) can be written as
D + 2D -y =0

Eq. (14) can be divided into two differential equations as follows

(D +P)Y =0
(D - Py =0

Q=@ il
VEIO

Substituting Eq. (13) into Egs. (15) and (16) gives
d’Y PBn+1)dy day (04
&2 1-Bc dxr  1- ﬁx

in which

Y=0

and
d’¥ _Bn+1) dy &

Y=0
&2 1-pc dx  1-Pr

(12)

(13)

(14)

(15)
(16)

17)

(18)

(19)

The general solution of Eq. (12) consists of the solution of Eq. (18) and the solution of Eq. (19)

and can be expressed as
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Y(x)=g7"[C1Jn(g)+CrYu(g)+C3ln(g) + C,Kx(g)] (20)
(n = an integer)
or

Y()=g7[C1Jn(g) + CoJ_n(8) + C3lu(g) + Cul_, (8)] 21)
(n = a non-integer)

where J, (g), Y, (g), I, (g), K, (g) are the Bessel functions of the first, second, third and fourth
kinds, respectively; g = E\ll - pBx.

B
Case II: The distributions of flexural stiffness and mass per unit length are expressed as:
EL =EI(1 - By (22
e =my(1 - Pr)’ (23)

Substituting Eqgs. (22) and (23) into Eq. (6) gives
1- ﬁx)“% -2Bn +4)(1 - &)3% +Fm +4)(n +3)1 - &)2% -QY =0 (24)

Let
z=Ln(1-fx)
p (25)
E=%
dz
Eq. (24) then becomes
[E*+2(n +DE3+(n + ) (n +3)E2—%]Y=0 (26)
The eigenvalue equation of Eq. (26) is as follows
r+2(n+dr3i+(n +4)(n +3)r2—%=0 (27)

Solving Eq. (27) obtains four roots as follows

71,2,3,4=— \/(bl_ 2) f+ Nf?—4de) (28)

bl_ﬁ, b2=\/b —4s1+4f

where

p
a=—(n+4)(n +3), e=—% (29)
s1=—4n +4)(n +3)%—4(n +4)y(n +3)
p=b-%. g =s1—a—bi—a—3

3 3 27
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The general solution of Eq. (24) is
Y()=Ci(1 =By 1+ Co(1 - fry2+ Cy(1 - fry3+Cy(1 - fixy (30)
Case III: The distributions of flexural stiffness and mass per unit length are exponential
functions given as:
EL. =Elexp(— bx) (31)
My =mg eXp(-—bx ) (32)

Substituting Eqs. (31) and (32) into Eq. (6) leads to a differential equation with constant
coefficients as follows

d*y a3y d¥y
-2b + b2 - Y =0 33
dx* dx, dx? (33)

The eigenvalue equation of Eq. (31) is as follows
ré=2br3+bp¥r2- =0 34)
The roots of the above equation are found as

b

s\ 2o 35
’1,2,3,4—3— 57 (35)

The general solution of Eq. (33) can be expressed as

Y(x)=C exp(rix)+Crexp(r,x)+ Csexp(rsx)+ C,exp(r,x) (36)

3. Multi-step bars

Although the general solutions of the three cases discussed above can be used to determine
structural dynamic characteristics of certain structures, there are two problems to be solved. First,
some structures consist of several steps or segments (see Fig. 2). Second, the distributions of
flexural stiffness and mass per unit length of some structures may not obey the assumed
expressions given in the above three cases. Such structures can be divided into several segments
(or finite elements) for free vibration analysis. If the segments (finite elements) are divided
appropriately, the distributions of flexural stiffness and mass per unit length in each of the
segments may match accurately or approximately one of the expressions described in the above
three cases. The exact solution of a one-step bar with variable cross-section could be used to
derive the eigenvalue equation of a bar with multi-segments by using the transfer matrix method
to be described below. One of the advantages of the present method is that the total number of
segments required could be much less than that normally used in the conventional finite element
methods.

The general solution of mode shape of the i-th segment can be expressed as

Yi)=Cy Wi(x)+Cp Wy(x)+Cy Wy(x)+Cy Wyx);, (=1,2,-,q) (37

where i denotes the i-th segment and g is the number of segments of the bar divided (Fig. 2).
A transfer matrix method is introduced herein to solve the problem. The mode shape function
of displacement Y/(x), rotation dY;(x)/dx, bending moment M(x) and shear force Q(x) can be
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Fig. 2 A multi-step bar Fig. 3 Definition of the parameters at the two end
of the i-th segment
expressed as a matrix
dY;(x)
[Yi(x) dx M;(x) Q)" =[W,(x)][C,C,C5C I (38)
where
Wi (x) Wy(x) W3;(x) W,i(x)
dw;(x) dW (x) dw s (x) dW ,;(x)
dx dx dx dx
W, (x)] = EI d*Wy;(x) EL d’Wy(x) EL d*W3;(x) EL d°W 4 (x) 39)
dx? dx? dx? dx?
d d*W;(x) d d*Wy;(x) d d*Wy(x) . d d*W ,;(x) ]
- S [EL—2] = [EL—2 S e —2 S e —2
] B2 B ] (B — ]

The relationship between the parameters introduced above at the two ends of the i-th segment
(Fig. 3) can be expressed as

Y; [ Yo |

dy; dY;,

dx dx

M, =[T;] M, (40)
i O ] i Qio ]

in which
[T:]1=[W ;)] [W o)™ (41)
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dY;, _ dy;(x)

42
X=X;1 dx dx ( )

X=X;0

[T}] is called the transfer matrix because it transfers the parameters at the end 0 to those at the end
1 of a segment (i-th).

The co-ordinates of the i-th segment can be represented by the co-ordinates of the (i-1)th
segment, then, Eq. (38) can be rewritten as

Y, Y.
Y, dYi
dx |
Mi = [Tl] Ali—l (l = 1’ 23 ) ‘I) (43)
L Qi | B Qi—l i

The equation for the top segment (Fig. 2) can be established by using Eq. (43) repeatedly:

Y, Y,
& | |
dx dx
M, =[T] M, (44)
L Qq i L Qo ]
in which
(T]1=[T4} [Ty-a] - [T4] (45)

If there is a lumped mass, M,, attached to the i-th segment, then, the transfer matrix [T;] should
be replaced by [T,,]:

1 000
0 100
[Tmi]:= 0 010 [Ti] (46)

—&?M, 0 0 1

The frequency equation can be determined according to boundary conditions. For example, in
many cases a high-rise structure can be treated as a cantilever bar (Fig. 2); its boundary conditions
in flexural free vibration are

dy

Y(©)=0, 2= | =0, ML)=0, Q(L)=0 (47)

In order to determine the frequency equation, the matrix [7] is written as
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T\, Ty, T3 Ty
Ty Ty Ty Ty

T]=
1=\ 1, 7 T Ty )
Ty Ty Ty Ty
Using Eq. (47) gives the frequency equation as
T53T44— T3 T3=0 (49)

The natural frequencies @ (j=1, 2, ---) can be computed numerically from Eq. (49), then, the
mode shape function Y] (x), rotation %, bending moment M(x) and shear force Q; (x) for each

segment can be determined by use of Eq. (40) and the general solution, Eq. (37). For other kinds
of boundary conditions, the analysis procedure is the same as that for a cantilever bar.

4. Numerical example 1

A typical tall building with 27-storeys located in Guangzhou is used as a numerical example for
the present study. This building is a shear-wall structure with variable cross-section. Based on the
full-scale measurement of free vibration of this building (Li et al. 1994), the building can be
treated as a cantilever bar (Fig. 1) in free vibration analysis, and the effect of rotatory inertia and
transverse shear deformation can be neglected. The procedure for determining the dynamic
characteristics of this tall building is as follows:

n=306122
' 9
15536.1 : 69.87X109 [\
346633 | 74.42X10 \
9
%2653 || 2320\
9 |\
180171 { 91.20X10 .
! 99.71X109 \
9337.7
- : 3w |\
08776 : :
414388 { 123,68X10
/002 || 133.14X10°9 \
| 380142 —=]

Fig. 4 Mass distribution of the tall building Fig. 5 Stiffness distribution of the tall building
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4.1. Determination of the mass per unit length (Fig. 4)

The stiffness and mass per unit length (Fig. 4 and Fig. 5) of this building vary with height. For
simplicity, the building is treated as a variable cross-section cantilever bar as shown in Fig. 1. The
variation of the mass per unit length is comparatively small, thus, it is reasonable to assume that
the mass is uniformly distributed along the height of the building (Fig. 4). The lumped mass
attached at the top of the building that is considered in the computation is M=30612.2 kg. The
mass per unit length, m, is found as: m=38,014.2 kg/m.

4.2. Evaluation of the stiffness, K, (Fig. 5)
For this example, the distributions of flexural stiffness and mass per unit length along the
building height are described as power functions (Eqgs. (10) and (11)), which are given as
Elx = EI()(]. - ﬁx)n+2 (50)
mx =m(1 - fr)’ D

Because the mass is considered as uniformly distributed, it is suggested that n=0 in the above two
expressions. Then, the stiffness distribution can be expressed as follows

EL. =EI(1- fx)? (52)
According to the following information of this building given by Li et al. (1994):

at x =0, L =2156.50m*
at x =L, I =1,099.57m*

The constants EI, and 3 are determined as
El,=60.38 x 101 kN'-m's2, [B=3.796 x 1073

The evaluated distribution of stiffness by Eq. (52) is shown in Fig. 5 (dotted line and the values
in parentheses).

4.3. Evaluation of the fundamental natural frequency

According to Fig.1, the boundary conditions are

x=0, Y=Y'=0 (53)
x=L, Y’'=0, (EIY"Y=-M&Y (54)
Substituting Eq. (53) and Eq. (54) into Eq. (20) gives the frequency equation as follows:
V@EIL)Y, L)+ MY (L] =Y L)EIL)Y:"(L) + M PY5(L)] (55)
in which .
V= S5O~ YAV, + 2O o= YOV ) (56)
v ’ ’ 2 ’ ’
Vo= S5 (YO~ YO, - 1Y@~ Y/OV:]) (57)
=22 (58)

B
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Table 1 Fundamental mode shape of the building

Storey Level 1 2 5 8 11 14 17 20 24
x/H 0 0.0704  0.2007 0.3230 0.4454 0.5678 0.6976  0.8125 1
Y,(x/H) 0 0.005 0.070 0.160 0.290 0.390 0.540 0.730 1
measured
Y (x/H) 0 0.0068 0.0527 0.1414 0.2644 0.4049 0.5599 0.7336 1
calculated

Yi=gnJu(g), Yo=g7"Yu(g), Ys=g7"1(g), Yi=g"Ku(g) 59

For this tall building, n=0.

Solving the frequency equation, one obtains the natural frequencies. The calculated fundamental
natural frequency (when the damping term is omitted) is 6.858rad/sec and the fundamental period
T is 0.9162sec. The measured fundamental period T is 0.97 sec (Li et al. 1994). It is evident that
the computed result based on the procedures proposed in this paper approaches the measured
value, suggesting that the proposed methods are applicable to engineering application and practice.

4.4. Calculation of vibration mode shape

After the first natural frequency @, is calculated, the first mode shape, Y, (x), can be determined
from Eq. (20). The calculated results are listed in Table 1. The measured fundamental mode shape
is also presented in Table 1 for the purposes of comparison. It can be seen from Table 1 that the
calculated fundamental mode shapes show good agreement with the measured mode shape. Using
the aforementioned procedure, the higher natural frequencies and corresponding mode shapes can
also be determined.

221.20
210.67

183.00

150.207

121.323

111.273
101.173

11.80m

R —

Fig. 6 Sketch of Wuhan T.V. Tower
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Table 2 The Structural parameters of Wuhan T.V. Tower

No Height Diameter Mass m; Stiffness EI, B
m m Kg 10" KN-m-sec’ m’'

1 4.975 15 72,571 28,440 0.01305
2 17.412 12.5 66,739 26,320 0.01300
3 22.387 11.5 60,849 24,157 0.01297
4 27.377 10.875 54,192 17,064 0.00906
5 29.876 10.75 59,317 22,388 0.01144
6 32.375 7.0 41,658 9,582 0.00424
7 34.874 7.0 57,256 24,844 0.00115
8 34.843 7.6 37,208 8,622 0.00422
9 108.853 7.0 20,735 1,426 0.0

10 110.803 7.6 20,735 1,428 0.0

11 114.253 7.0 37,935 2,874 0.0

12 133.653 7.0 20,735 1,428 0.0

13 138.622 5.88 20,735 1,428 (0.00613
14 139.864 5.6 20,281 837 —0.03219
15 142.303 4.5 14,314 374 0.00666
16 154.203 45 14,314 374 0.0

17 156.685 39 9,759 196 0.00599
18 187 39 9,759 196 0.0

5. Numerical example 2

Wuhan T.V. Tower is a reinforced concrete tube structure, its geometric configuration is shown
in Fig. 6, and its geometric dimension, mass and stiffness distribution are listed in Table 2 which
were obtained by Li et al. (1995). The top of the tower is of 221 meters. The height of the main
tower body is 187 meters. The structural dynamic characteristics of the main tower body were
measured by Li et al. (1995). This provided an opportunity for comparing the results calculated
by the proposed method in this paper with the measured natural frequencies and mode shapes of
the main tower body.

The main tower body is treated as a cantilever bar multi-step with variable cross-section as
shown in Fig. 2 for free vibration analysis. This structure is divided into 18 segments for
computation. The mass and stiffness distribution of the i-th segment are assumed as

EL,(x)=EL[(1-B.x)* . i=1,2,..,18 (60)
ix =m,~(1—[3,~ x) (61)

where EI,, m;, B; are listed in Table 2.

The natural frequencies and the fundamental mode shape of the main tower body which are
obtained by use of the methods proposed in this paper are presented in Table 3 and shown in Fig.
7, respectively. In order to examine the accuracy of the methods proposed in this paper, the
lumped mass. (finite element) method is also employed to calculate the structural dynamic
characteristics of the main tower body. This high-rise structure was divided into 40 elements for
computation by using the finite element method (FEM) and the results calculated by FEM are also
presented in Table 3 and Fig. 7 for comparison purposes. The field measured fundamental natural
frequency and mode shape of the main tower body obtained by Li et al. (1995) are also shown in
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1
0 05 1.0 Y,
Fundamental Mode Shape
Fig. 7 Fundamental mode shape of the main tower body of Wuhan T.V. Tower

Table 3 The natural frequencies of the main tower body of Wuhan T.V. Tower

@; (rad/s) Proposed method Finite element method Measured value
ay 1.9899 2.0099 1.99
@, 6.4997 6.7797
[0 14.0093 14.9692

Table 3 and Fig. 7, respectively.

It can be seen from Table 3 and Fig. 7 that the calculated natural frequencies and the
fundamental mode shape by the use of the proposed methods are in good agreement with the
corresponding field measured data. The assumptions of the variations of flexural stiffness and
mass are thus justified. It should be noted that the fundamental mode shape computed by the
proposed methods is closer to the measured one than that obtained by the finite element (lumped
mass) method. This numerical example also shows that one of the advantages of the present
method is that the total number of the segments required in the proposed method could be much
less than that normally used in conventional finite element methods. Therefore, the proposed
method has practical significance for free vibration analysis.

5. Conclusions

In this paper, tall buildings and high-rise structures are treated as cantilever bars with variable



256 0.S. Li

cross-section in free vibration analysis. In general, it is not possible or, at least, very difficult to
get the exact solutions of differential equations for free vibration of bars with variably distributed
mass and stiffness. In this paper, the general solutions for free vibration of bars with variable
cross-section are obtained by selecting suitable expressions, such as power functions and
exponential functions, for the distribution of flexural stiffness and mass of the bars. It is found
that if the distribution of damping coefficient is assumed to be proportional to that of mass (C,=C,
m,), there is no effect of damping on the mode shapes and the damped natural frequency is equal
to the corresponding undamped natural frequency multiplied by the coefficient, k,. The numerical
examples show that the calculated natural frequencies and fundamental mode shapes of a 27-
storey building and a television transmission tower are close to the corresponding measured field
data, illustrating that the calculation methods proposed in this paper are applicable to engineering
application and practice. The assumptions of the variations of flexural stiffness and mass for
typical tall buildings and high-rise structures are justified through the two numerical examples.
Thus, the formulae proposed in this paper can be used to determine the natural frequencies and
the mode shapes of many tall buildings and high-rise structures. If the distributions of stiffness
and mass of some structures do not match any distribution of the three cases discussed, these
structures can be divided into several segments until the distributions in each segment accurately
or approximately obey one of the types of distribution as described in this paper. When the
distributions of flexural stiffness and mass of one-step and multi-step bars are very complex, the
accuracy of the method proposed in this paper will also be satisfied by increasing the number of
segments. The numerical example (Wuhan T.V. Tower) shows that one of the advantages of the
present method is that the total number of the segments required in the proposed method is much
less than that normally used in conventional finite element methods. Therefore, the proposed
method has practical significance for free vibration analysis of cantilevered structures.
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