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Abstract. Superior performance of field consistent eight-node hexahedron clement in static bending
problems has already been demonstrated in literature. In this paper, its performance in free vibration is
investigated. Frce vibration frequencies of typical test problems have been computed using this element.
The results establish its superior performance in free vibration, particularly in thin plate application and
near incompressibility rcgimes, demonstrating that shear locking, Poisson's stiffening and volumetric
locking have been eliminated.
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1. Introduction

The eight-node hexahedron element is perhaps the most widely used element in 3D problems.
The classical version of this element which employs trilinear shape funtions (e.g., see Zienkiewicz
1977) exhibits poor performance due to locking in bending situation. When a pure bending
moment is applied to the element, the element does not reproduce zero shear state, a difficulty
which is classically referred to as shear locking or parasitic shear. Typically, in a thin cantilever
beam with a bending moment at the free end, the parasitic shear causes the element to lock to
zero displacement as the thickness tends to zero irrespective of the magnitude of applied moment
(e.g., see Chandra and Prathap 1989). When a cantilever is modelled using one element across the
thickness, it cannot represent the variation of lateral strain through the depth (caused by Poisson's
effect) corresponding to linear variation of bending stresses through the depth of the element. The
element has also difficulty in representing the near-incompressible state (u— 0.5). As u— 0.5,
the element develops spurious stiffening which adversely affects the accuracy of the element.
Reduced integration of shear energy terms (e.g., see Zienkiewicz 1977), addition of bubble
functions (Bathe and Wilson 1976), and assumed strain hybrid formulation (Loikkanen and Irons
1979) are a few typical methods suggested in literature to overcome these difficulties. The field
consistent formulation (Chandra and Prathap 1989) provides an elegant approach to identify and
alleviate these problems. This formulation does not call for reduced integration, but it rather
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rationalises why such ‘tricks’ work. Superior performance of field consistent eight-node
hexahedron element in static bending problems has already been demonstrated in literature
(Chandra and Prathap 1989). In this paper, its performance in free vibration problems is
investigated. In section 2, the classical formulation of the element and typical mechanisms of
locking are discussed. Formulation of field consistent elements is reviewed in section 3. In section
4, the performance of field consistent and classical elements in free vibration problems are
compared for typical demonstrative problems.

2. Classical formulation

Typical classical formulation of eight-node hexahedron element employs trilinear shape
functions (e.g., Zienkiewicz 1977) of the form

Ni(r,s,t)=%(1+rri)(1+ssl-)(1+tti), i=1,8 (N

where r, s, and ¢ are the natural coordinates of a typical point in the element, and i refers to a
typical node number. Using these shape functions, the displacement field is written as

u(r,s,t) ¢ u
v(r,s,t)p =Y Ni(r,s, 1)y, @
w(r,s,t) =l w;

where u;, v; and w; refer to the nodal displacement components. The classical formulation uses a
numerically exact 2X2X2 Gaussian integration for computing the stiffness matrix. The
performance of this element is poor in bending situation. The reason for poor performance is
attributed to additional stiffening of the element. Three important stiffening mechanisms are
discussed in the following.

2.1. Shear locking

For a rectangular (geometrically undistorted) element, the shape functions given by Eq. (1) lead
to a trilinear polynomial displacement field as

U=a,+a,X +a3y +042 +as5Xy +a4yZ + 0,26 + agxyz 3
v=b,+byx +byy +b,z+bsxy +bsyz +b,zx +bgxyz 4)
W=C +CrX +C3Y +C42 +Cs5Xy +Ceyz +Cr2x +CgXyz )

For the case of pure bending in xy-plane, the shear strain y,=u +v,=0. Using Egs. (3)-(5), it can
be shown (Chandra and Prathap 1989) that this is possible only when

a;+b,=0 (6)
ag+b,=0 )
cs=0 ®)
bs=0 )

ag=0 (10)
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by=0 (11)

Egs. (6) and (7) contain coefficients from both u and v displacement fields and hence can
represent true constraint conditions. However, Egs. (8)-(11) involve isolated coefficients and hence
lead to spurious constraints responsible for locking.

2.2. Poisson's stiffening

This problem manifests itself in the case of flexure of beams, plates and shells when only one
element is used across the depth. Consider, for example, pure bending of one element cantilever
beam in xy-plane. For this problem o,=0,=¢,=¢,=¢,=0 and g=e=-uge, and hence the strain
energy can be expressed purely in terms of o, or €. Bending in the xy-plane induces a linear
variation of g, through the depth and hence g must also vary linearly through the depth. However,
it is easy to check that this requirement is not satisfied by the displacement field given by Egs. (3)-
(5). As a result oy #0 in the finite element model. This leads to a modifed expression (Chandra
and Prathap 1989) for the strain energy involving an additional stiffening parameter 1/(1-u%)
where u is the Poisson's ratio.

Considering both Poisson's stiffening and shear locking, Prathap (1985) has derived an
expression for the stiffening parameter for static flexural problems. For free vibration, it may be

interpreted as
f (1 cL?\"
L= + (12)

f 1-u*> Ef?
where f and f are natural frequencies computed by theory and finite element, respectively, L and ¢
are the length and depth of the beam, and G is the rigidity modulus of the material.
2.3. Volumetric locking

In the incompressible regime (u— (.5), the displacement field must be able to ensure that the
volumetric strain is zero, i.e., &=u,+v,+w,=0. The displacement field given by Egs. (3)-(5)
satisfies this condition only when

a,+bs+c,=0 (13)
bs+c,=0 (14)
as+cg=0 (15)
a,+bs=0 (16)

ag=10 17
bg=0 (18)
cg=0 (19)

Here Egs. (17)-(19) represent spurious constraints which cause locking.
The element based on classical formulation will hereinafter be referred to as FI (Field
Inconsistent) element.
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3. Field consistent elememt

Several methods to overcome the locking problem have been reported in literature (e.g.,
Zienkiewicz 1977, Bathe and Wilson 1976, Loikkanen and Irons 1979). A well known approach
to overcome the problem of locking is to add bubble functions associated with nodeless variables.
This removes shear locking, Poisson's stiffening and volumetric locking, in general situations. In
this paper, we look at this problem from the field consistency (Prathap 1993) view point.

With the addition of bubble funtions, the displacement field (Egs. (3) to (5)) becomes

U=a,+ax+ayy +a,z+asxy +ayz +azx +agyz +aol—x)+a,(1-y?)+a;,(1-22) (20)
v=b,+bx +by+bz+bxy +byz+bzx +bgyz +by(1-x)+b,(1-y)+b,(1-2%) (21)
W=Ci4+Cx +Cy +CaZ +Csxy +cyz +czx +cgyz +co(1 —x2) + (1 —y)+c;(1-22) (22)

For the case of pure bending in xy-, yz- and zx-planes, the conditions 7%,=0, %,=0 and ¥,=0,
respectively, need to be satisfied. Using Eqgs. (20)-(22), it can be shown that these conditions lead
to three spurious constraints as in Egs. (17)-(19). Numerical experiments show that these spurious
constraints do not lead to any measurable degree of locking in general 3D problems. However, in
thin beam/plate application, these terms introduce additional stiffening which does not lead to
locking, but affects the accuracy of the results considerably. Further, it is easy to show that with
the addition of bubble functions, the Poisson's stiffening is removed automatically as strains such
as & can now represent variation through the depth. It can be shown that the condition for
incompressibility, i.c., £=0 again leads to the same three spurious constraints given by Eqgs. (17)-
(19). The element formulated using a displacement model as in Eqs. (20)-(22) will hereinafter be
referred to as FIB (classical Field Inconsistent element with the addition of Bubble function).

An improvement over FIB element is to smoothen the strain expressions so that the stiffening
due to the trilinear terms vanishes. This is achieved by removing the trilinear term selectively
from the dilatational and shear terms in the expressions for strain. An approach to selective
removal of the trilinear terms briefly described below.

The stress-strain relations for an isotropic material is written in the form,

o 100] (g 111] g
0, =2G |01 0|sgr+4A|111|<sg (23)
Ox 001]||& 111}|&
and
Ty 100] 5
Tox 001 Y

where A=K-2G/3=uE/(1-2u)(1+u), u is the Poisson's ratio, and E, G and K are the Young's, shear
and bulk moduli, respectively.

The second term on the right hand side of Eq. (23) corresponds to volumetric strain. Setting the
coefficients as=bs=cy=0 in the expressions for €, €, and €, appearing in the term removes the
spurious constraints in the incompressibility regime. A similar operation in the expressions for v,
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%. and 7, on the right hand side of Eq. (24) removes the spurious constraints associated with
shear stain. The element formulated as above will be referred to as an FCB (Field Consistent
element with Bubble functions). Removal of the trillinear term from Eqs. (20) to (22) altogether is
equivalent to removing it from the strain expressions in the first term on the right hand side of Eq.
(23) as well. This will introduce zero energy modes leading to spurious vibration modes which
would be demonstrated numerically in section 4. The element based on such a wrong formulation
is designated as an FCB* element. The reason for discussing this element is that the element in
general performs well in many problems and it requires subtlety to identify its poorer performance.

4. Demonstrative problems

As a first demonstrative problem, the free vibration of a 10x0.1x0.1 cantilever beam is
considered. The cantilever beam has been modelled with ten elements along the length and one
across the cross section. All the degrees of freedom at the fixed end are restrained. Consistent
mass matrix is employed for all the computations. The Young's modulus, density and Poisson's
ratio are taken as 2.1x10", 7860 and 0.3, respectively. The natural frequencies have been
computed with FI, FIB, FCB and FCB* elements. The frequencies have also been computed using
the 8-node CHEXA element of MSC/NASTRAN, and theory. MSC/NASTRAN uses bubble
functions, and reduced integration for shear terms (MSC/NASTRAN user's Manual 1994). For
computing the theoretical predictions, the effect of shear deformations and rotary inertia have been
taken into account as discussed by Timoshenko et al. (1974).

The first few flexural, axial and torsional frequencies are listed in Table 1. The theoretical
values shown in Table 1 and 3 have been computed using classical formulae available in literature
(e.g., Timoshenko et al. 1974), which do not take into account the kinetic energy due to lateral
motion induced by Poisson's ratio, and hence are meant for reference purposes only. It is seen
from this Table 1 that FI element predicts too high flexural frequencies indicating the presence of
stiffening effect. Table 2 shows the values of additional stiffening parameter computed and
predicted theoretically using Eq. (12) for the first flexural frequency. It is seen that the predicted
and computed values are in close agreement. Referring back to Table 1, it is seen that the
prediction of flexural frequencies by FIB, FCB, FCB*, and MSC/NASTRAN are comparable to
each other, and closer to theoretical values. Although, the FIB element has the spurious
constraints, az=bs=cy=0, the results show that the performance of FIB element is not affected by
these constraints, indicating that the stiffening effect of these constraints is negligible for this

Table 1 Natural frequencies (Hz) of cantilever beam for pu=0.3

Theory F1 FIB FCB FCB* MSC/NASTRAN
Flexural 0.835 5.251 0.841 0.839 0.836 0.840
5.231 33.27 5.395 5.383 5.358 5.388
14.64 95.53 15.84 15.79 15.71 15.81
28.66 194.7 33.49 33.36 33.12 33.41
Axial 129.2 130.5 130.3 130.3 130.3 130.4
387.7 395.8 395.0 395.0 395.0 395.2
Torsional ~ 80.14 80.27 80.19 80.19 80.19 80.22

240.4 242.6 242.6 242.6 242.6 2427
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Table 2 The stiffening parameter for FI element-first
flexural frequency

Thickness f/f computed f/f predicted

1 1.246 1.218
0.1 6.286 6.290
0.01 61.95 62.03
0.001 619.5 620.2

Table 3 Natural frequencies (Hz) of cantilever beam for u=0.4999

Theory FI FIB FCB FCB* MSC/NASTRAN
Flexural 0.835 7.239 0.956 0.845 0.851 0.848
5.231 50.07 6.086 5.424 5.360 5.440
14.64 157.2 18.00 15.94 15.71 16.00
28.66 325.7 38.05 33.75 33.11 33.93
Axial 129.2 383.0 133.3 133.3 1333 133.3
387.7 - 406.9 406.9 406.9 407.0
Torsional ~ 74.61 74.66 74.66 74.66 74.66 74.71
223.8 225.8 2258 225.8 225.8 226.0

problem.

The natural frequencies computed for u=0.4999 are shown in Table 3. Comparing Tables 1 and
3, it is seen that the flexural frequencies computed with FCB, FCB*, and MSC/NASTRAN
elements are practiclly unaffected by the increase in the value of u from 0.3 to 0.4999. However,
the frequencies computed with FI and FIB elements show considerable increase. The error in the
prediction of FI element is mainly due to Poisson's stiffening whereas that of FIB element is due
to additional stiffening caused by the spurious constraints ag=bs=c,=0 as u-— 0.5. The FCB and
FCB* elements do not have this problem as the spurious constraints have been smoothened.

A scan through the axial and torsional frequencies listed in Table 1 shows that the frequency
predictions of all the elements are comparable. This suggests that shear locking and Poisson's
stiffening, and the remedies we have used to remove them do not affect the axial and torsional
modes. It is seen that the torsional frequenies listed in Table 3 also show a similar trend. However,
the case with the axial frequencies is different. The prediction of FI element is rather too high
which indicates that there is a tendency to lock as g — 0.5. The predictions of other elements are
comparable with each other.

In Table 3, the difference between the axial frequencies predicted by theory, and those
computed with FCB, FCB* and NASTRAN elements is rather large, whereas in Table 1, there is
very little difference. This seems to suggest that the error in the theoretical frequencies caused by
not accounting the kinetic energy due to the lateral motion is considerable only when y— 0.5.

The second demonstrative problem considered is a square plate (of size 4 X4 X ¢, with ¢ being a
variable) with clamped edges. The plate is modelled with 2X 2, 4x4 and 8 X8 meshes with one
element through the depth. All the three degrees of freedom of the nodes on the clamped edges
are restrained. Here again consistent mass matrix is used. The Young's modulus, density and
Poisson's ratio are taken as 2.0x10", 7860 and 0.3, respectively. The natural frequency
corresponding to the first double symmetric mode has been computed for various elements and
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Table 4 First natural frequency (Hz) of thin clamped plate

tla 0.1 0.01 0.001

Mesh 2X2  4x4 8x8  2x2 4x4 8x8 2x2 4x4 8x8
FI 361.8 2625 2337 307.5 1498 77.10 3068 147.8 73.11
FIB 2512 2138 2071 9155 30.18 23.07 8779 19.28 5.139
FCB 237.1 2122 2069 2633 2322 2257 2636 2325 2262
FCB* 233.6 2115 2067 2583 2311 2255 2585 2315 2259
MSC/NASTRAN 2382 2125 207.0 2648 2326 2259 2652 2328 2261
Theory” 223.95 22.40 2.240

* shear deformation and rotory inertia not accounted
t/a is non-dimensional thickness normalized with respect to side length

Table 5 Spurious frequencies of FCB* element

FCB 8.335 8.335 51.33 5133 80.19 1303 1412 141.24 2426
272.1 272.1 3944 4109 4435 4435

FCB*  8.299 8299 S1.11 5111 80.19 1303 140.6 140.6 242.6
270.6 270.6  283.7 385.1 385.0 3944 4109 4421 4421

the results are summarised in Table 4. It is seen from this Table that the frequencies computed
with FI element are too high compared to theoretical values irrespective of the mesh used
indicating the presence of stiffening due to spurious constraints. The frequencies of FIB element
also show some stiffening although it is not so severe as FI elements. On the contrary, it may be
recalled that FIB element does not exhibit stiffening in the cantilever problem. It is also seen from
Table 4 that the other elements, viz. FCB, FCB* and MSC/NASTRAN's CHEXA, perform
equally well and predict values close to theoretical values as ¢ becomes small.

In both the demonstrative problems discussed so far, the performance of the FCB* element is
seen to be comparable to that of FCB element. As already mentioned, the FCB* element is based
on a wrong formulation and has zero energy modes. This leads to spurious modes in some
problems. Consider for example a cantilever beam of 101X 1 dimensions with Young's modulus,
density and Poisson's ratio equal to 2.1x 10", 7860 and 0.3, respectively, The first few natural
frequencies computed with FCB and FCB* element are listed in Table 5. The spurious
frequencies of FCB* element are shown in bold face.

5. Conclusions

The formulation of several versions of eight-node hexahedron element has been reviewed in the
light of field consistency concept. The performance of these elements in free vibration has been
investigated. Free vibration frequencies for a cantilever beam and clamped square plate have been
computed using these elements. The performance of the classical element (FI) is poor for both the
problems. The element with bubble functions (FIB) performs well for the cantilever problem for u
=0.3, and exhibits some stiffening for u=0.4999. However, its frequency predictions for the plate
problem are too high. The field consistent element (FCB) performs uniformly well for both the
problems demonstrating that shear locking, Poisson's stiffening and volumetric locking have been
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eliminated. The FCB* element has zero energy modes which induces spurious frequencies for
some problems, and hence is unreliable.
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