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Abstract. Procedures are investigated by which nonlincar finite clement shell analysis algorithms can
be simplificd to provide more cost effective approximate analyses of orthogonally-reinforced concrete
flat plate structurcs. Two alternative effective stiffness formulations, and an unbalanced force
formulation, are described. These arc then implemented into a nonlinear shell analysis algorithm.
Nonlinear gcometry, threc-dimensional layered stress analyses, and other general formulations are
bypassed to reduce the computational burden. In application to standard patch test problems, these
simplified approximate analysis procedures are shown to provide reasonable accuracy while
significantly reducing the computational cffort. Corroboration studies using various simple and complex
test specimens provide an indication of the relative accuracy of the constitutive models utilized. The
studies also point to the limitations of the approximate formulations, and identify situations where one
should revert back to full nonlinear shell analyses.
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1. Introduction

Much progress has been made in recent years toward accurately modelling the behaviour of
reinforced concrete shells through the development and application of nonlinear finite element
procedures. Scordelis and Chan (1987) described a formulation based on a layered model applied
to degenerate shell elements. Hinton and Owen (1984) produced a formulation of the same type.
Various constitutive models and analysis procedures have also been presented by Hu and
Schnobrich (1990), Polak and Vecchio (1993) and others. These formulations have generally been
shown to provide reasonably accurate simulations of response under a variety of complex
structural conditions and loading schemes.

While the aforementioned formulations vary widely in their approach to analysis methodology
and constitutive modelling, they share the one characteristic inherent to all nonlinear shell
formulations: they are computationally demanding. The complexity of the elements, typically
coupled with a three-dimensional layered analysis, makes for numerically intensive and time-
consuming calculations.

In many practical situations, the structures requiring analysis involve orthogonally reinforced
flat plate elements subjected to transversely applied normal forces. In such cases, nonlinear
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geometric effects and in-plane load effects are largely insignificant. The modelling capabilities of
a full nonlinear shell analysis are not required or effectively utilized. A simplified procedure,
dispensing with some of the generality of a shell analysis while cutting down the computational
effort, would be more cost effective with little loss in accuracy. In this regard, Scanlon (1971)
described a successful implementation of Branson's effective stiffness formulations into a shell
analysis algorithm. Jofriet and McNiece (1971) also reported some success in applying
approximate methods in finite element analyses of reinforced concrete slabs. However, other
attempts at developing simplified procedures specifically suited to the analysis of reinforced
concrete flat plate structures are not well documented in the literature.

In this paper, alternative procedures for approximate deflection analysis of orthogonally
reinforced plates are presented. Through sample analyses, and through comparisons with
experimental data, the accuracy and limits of these procedures are discussed.

2. Finite element formulation

The analysis procedures discussed herein are predicated on modifications to a nonlinear finite
element analysis program for reinforced concrete shells. The program used as a basis for this
work was RASP, developed by Seracino (1995), which itself was a refinement of program
APECS (Polak and Vecchio 1993).

Program RASP employs a nonlinear algorithm based on a full-load, secant-stiffness formulation.
Concrete and reinforcement hysteretic behaviour, and other load-history effects, are enforced in
the analysis algorithm through use of plastic offsets (Vecchio 1997). The material stiffness
formulations are based on the smeared, rotating crack concept. Constitutive modelling is done
according to the provisions of the Modified Compression Field Theory (see below).

Program RASP uses a heterosis-type degenerate isoparametric quadrilateral element (9-noded, 42
degree of freedom), based on Mindlin bending theory. A layered-element formulation is employed,
providing a means to rigorously consider out-of-plane shear effects. Selective integration is used
to avoid shear-locking and zero-energy problems. The resulting algorithm demonstrates good
numerical stability and convergence. Further, it has been shown to provide accurate simulations of
the response of reinforced concrete shell structures under a wide range of conditions. Further
details on the finite element formulations and corroborations with experimental data are provided
by Polak and Vecchio (1994).

Rigorous nonlinear analyses of shells are highly computation intensive and time consuming. If
an effective simplified analysis procedure is to be used, it must be considerably simpler and
quicker in its computational aspects. To this end, program-SNAP was developed (Tata 1996).
Based on RASP, it introduces the restrictions that the structure being analyzed be a flat plate, that
the finite elements be rectangular, and that the reinforcement be orthogonal and aligned with the
global coordinate system. This eliminates the need for several transformation calculations, thereby
speeding up the analyses considerably. As well, the material is modelled as elastic, with effective
stiffness parameters used to represent the variable stiffnesses arising from nonlinear effects. This
eliminates the need for a layered element analysis in the main body of the finite element
algorithm, thereby again considerably reducing the numerical demands of the process. The result
is a much faster solution algorithm, requiring up to two orders of magnitude less computational
time. Details of the modifications to the finite element modelling can be found in Tata (1996).
Details of the models used to enforce the nonlinear behaviour in the simplified analyses are the
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main concern of the discussions to follow.

3. Constitutive modelling

To accurately model the nonlinear behaviour of reinforced concrete, the use of realistic
constitutive relationships is essential. Two of the three approximate analysis procedures to be
presented will require such models. For these, the constitutive models of the Modified
Compression Field Theory (MCFT) (Vecchio and Collins 1986) will be used. The constitutive
models are summarized in Fig. 1; relevant formulations follow.

For normal strength concrete in compression, the Hognestad parabola is used as the base curve.
The curve is modified to reflect compression softening effects, as follows:
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‘Fig. 1 Constitutive models: (a) Concrete in compression; (b) Concrete in tension; (c) Reinforcement in
tension and compression
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where f., is the principal compressive stress, B is a reduction factor that takes into account
compression softening due to the influence of tensile strains, f'. is the concrete compressive
cylinder strength, &' is the concrete cylinder strain at peak compressive strength (negative
quantity), &, is the principal compressive strain (negative quantity), and &, is the coexisting
principal tensile strain (positive quantity). For high strength concrete, the Popovics formulation is
substituted for the base curve. These formulations are discussed in detail by Vecchio and Collins
(1993). If the concrete is in a state of biaxial compression, strength enhancement according to the
Kupfer model is used.

For cracked concrete in tension, to correctly model effective stiffnesses at service load levels, it
is essential to account for tension stiffening effects. This is done through use of the following
relationships:

fo=FE: - &4, & >€.>0 (6)
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£e= 22 ®)
fi=033 V¢ (MPa) 9)
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where f, is the principal tensile stress, f', is the tensile strength of the concrete, and E. is the
initial tangent stiffness. Coupled with this, however, one must check that the average tensile
stresses can be transmitted across the cracks. This local crack check is done in the manner
described elsewhere (Vecchio and Collins 1986).

The in-plane reinforcement, for both prestressed and nonprestressed types, is modeled by a
simple trilinear function. The model is applied to reinforcement both in tension and compression;
thus,

fs =FEs - & 5 & <& (11)
=1, & <& <&y (12)
fS = fy +Esh ’ (85 _Esh)ﬁ & > &y (13)

where &, and f, represent the strain and stress in the reinforcement, respectively; €, and f, are the
yield strain and yield stress, respectively; &, is the strain at which work hardening begins; E, is
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the initial modulus of elasticity; and E, is the strain hardening modulus.

For the purposes of simplified analysis of plates, the material models presented above were
implemented into a cross-sectional moment-curvature analysis algorithm (henceforth referred to
as MOCA). A similar subroutine was previously successfully applied to the analysis of
reinforced concrete frame (Vecchio and Emara 1992); further details can be found therein. Note
that MOCA allows for the nonlinear analysis of a cross section, accounting for out-of-plane
shear effects, by using a layered section approach. Each layer is considered to be under two-
dimensional stress conditions, and each layer is analysed according to the compatibility and
equilibrium conditions of the MCFT. In considering out-of-plane shear, a uniform shear strain
distribution through the cross section is assumed. The merits and disadvantages of this
assumption, as applied to beam sections, was discussed by Vecchio and Collins (1988).

4. Approximate analysis - Mode 1:

For transversely loaded plates at low and intermediate load levels, approximate analyses can be
undertaken by utilizing Branson's formulation (1963) for effective stiffness. Although initially
developed for deflection analysis of beams, Scanlon (1971) and others have shown that this
empirical-based formulation provides reasonably good estimates of deflections of slabs at service
load levels. However, it's application should be limited to cases where there is no yielding of the
reinforcement at any location in the structure, and where there are no significant in-plane or
torsional load effects.

Branson's formula for the effective moment of inertia of a cross section, I is:

Mo = % (15)
fr=06Nf! (MPa) (16)

where I, is the gross moment of inertia, [, is the cracked moment of inertia, M is the bending
moment acting on the section, M., is the cracking moment, f, is the modulus of rupture, and y, is
the distance from the centroid to the tension face.

The above can be utilized in an iterative solution scheme. For each element, at each Gauss
point, an estimate of the matrix of elastic rigidity [D] is required. Given the rigidity, an elastic
analysis will yield the sectional forces M,, M,, and M,, calculated on a per unit width basis at
each Gauss point. The influence of the torsional moments is obstensibly accounted for by adding
or subtracting them from the normal moments, as appropriate, to produce the largest moment of
the correct sense, thus:

My =M +My ; M, =M, +M, (17)

These resultant moments are then inserted into Branson's formula to determine effective stiffness
factors in the global x- and y-directions. Corresponding stiffness reduction factors, «, and «,, are
calculated as follows:

0 = (Ieff)x/[g ; o = (Ieff)y/lg (18)
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The material constants are then multiplied by the stiffness reduction factors. In cracked concrete,
Poisson's ratio is taken to equal zero. Thus,

Ex = 0O E(; ; Ey = ay Ec (19)

vi =0; vy =0 (20)

G]:axayG; G2:axG; G3:ayG (21)

where G =E./2(1+Vv)=E./2 (22)

The revised stiffness matrix can then be recalculated as:
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where t is the thickness of the plate element.

As mentioned, [D] is recalculated at each integration point of each element, and an elastic
analysis of the structure is repeated. Iterations of the analysis are continued until satisfactory
convergence of the stiffness reduction factors is achieved.

5. Approximate analysis - Mode 2:

The second approach to approximate analysis is similar to the first in that effective stiffness
reductions factors are calculated and used. However, while the previous approach relied on an
empirical formulation to supply the effective moment of inertia directly, the second mode utilizes
appropriate constitutive relations contained within a layered cross sectional analysis algorithm. In
doing so, it can more realistically model nonlinear behaviour at all stages of loading; most
significantly, beyond the yielding and peak-capacity thresholds. As well, it can also explicitly take
into account out-of-plane shear effects. However, the procedure is still restricted to considering
transverse loads only, and makes no allowance for in-plane load effects.

The solution algorithm begins in much the same way as the first. From some estimate of the
stiffness matrix [D] at each integration point, an elastic plate analysis is done and the normal
bending moments M, and M,, and the sectional shears V, and V,, are determined. As well, the
analysis will give the strain conditions in the x- and y-directions at each integration point; these
include the normal strains at mid-depth, €, and g,; the curvatures, ¢, and ¢,; the twist ¢,; and the
out-of-plane shear strains, ¥, and ¥, To approximately account for torsional effects, the curvatures
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are modified in analogous manner to the sectional moments in Mode 1; thus

Ox = ¢ + s oy =¢ +on (24)
For each of the two orthogonal directions, the strain measures (g, % ¢°) are fed into MOCA, and
corresponding sectional forces (N', V', M") are returned. The MOCA analysis is iterated, with the
axial strain parameter £ adjusted until the net axial force on the section, N’, converges to zero.

The corresponding moment M’ is then used to determine the stiffness reduction factor for that
direction. Thus:

UMW ), MY/ Eo)
Ig ’ 18

Q. (25)

The stiffness reduction factors «, and ¢, are then utilized in Eq. (23) to define an effective
stiffness matrix [D] for the next iteration of calculations. The structure is reanalyzed until
satisfactory convergence is achieved.

6. Approximate analysis - Mode 3:

In this third method of approximate analysis, nonlinearity is achieved without manipulation of
the stiffness of the structure. Rather, nonlinear sectional analyses are conducted to identify
unbalanced forces, and these are added to the global load matrix to satisfy compatibility
conditions. The bending analysis is coupled with an in-plane finite element analysis to identify
membrane force components. In this way, in-plane force effects are rigorously taken into account.
Prestressing can thus also be considered.

Consider the case of axial force (F,) acting on an element face; see Fig. 2. Beginning with the
actual load on the structure, an initial linear elastic strain, g, is estimated on the first iteration. This
axial strain is fed into MOCA, which then returns an axial force (F,) corresponding to the current
strain level, according to the nonlinear constitutive models in effect. There will be a disparity
between the force obtained from the finite element analysis (which assumed linear elastic
uncracked behaviour), and that obtained from the nonlinear section analysis (MOCA). The
difference between the two is termed the unbalanced force (F,). The unbalanced force is added to
a cumulative Trestoring force’, F,. The restoring force is added to the actual force, and the total
force (F,) is reapplied to the structure for the second iteration. It is evident that with further
iterations, the accumulated restoring force will approach a value that yields a strain (g) in the
linear elastic structure equivalent to the strain produced by the actual force in the nonlinear
element. In this manner, the nonlinear behaviour of the element is strictly enforced according to
the governing constitutive relations.

In an analysis of a plate structure, separate bending and planar finite element analyses are
performed using linear elastic uncracked section properties. These provide the element deform-
ations. Average sectional axial strains, shear strains, and curvatures are determined for each
element, in both the x- and y-directions, according to some preselected rule. For a particular
element, one might use the average values from all nine integration points, or the values from the
central node, or the maximums from any of the nine points. The corresponding restoring forces N,,
V,, and M, are calculated in the manner discussed above. The restoring moments on the section of
the element in question are then calculated and applied as consistent nodal forces. Similarly, the
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Fig. 2 Conceptual approach in Mode 3 approximate analysis (Unbalanced forces are defined and
reapplied to structure)

restoring shears and axial forces are calculated and applied. The plate is reanalyzed, and the
process is repeated until satisfactory convergence is achieved. Again, this results in nonlinear
behaviour is strictly enforced. Full details of the formulation are described by Tata (1996).

Note that torsional moment effects are handled in the same manner as in Mode 1; that is, by
adding the torsional moments to the normal moments produced by the linear elastic finite element
analysis. These then add to the moments that must be balanced by the restoring forces, imposing
additional straining on the structure.

7. Performance of analysis procedures

Through analyses of simple structures, an examination was made of the performance of the
approximate analysis procedures. Program testing was based on an assessment of numerical
accuracy, rate of convergence, and completion time. The numerical veracity of the element
formulations were made using the patch test of Irons, as described by Cook (1989).

The patch tests were completed individually for constant moment and for constant stress in each
of the orthogonal directions, for each of the approximate analysis procedures. The cross section
used for the tests is that illustrated in Fig. 3(a), which had the moment-curvature response shown
in Fig. 3(b) as computed using nonlinear sectional procedures. The structure modelled was a
simple slab strip, 2000X 1000 mm in dimensions, and represented by a grid of 4X2 finite
elements. Shown in Fig. 3(c) are the element curvatures and internal moments evaluated at the
central node of each element for the case where 0.80 M, was applied as an end moment on the
slab strips. Satisfactory numerical convergence and stability was achieved with all three analysis
options. Note that the Mode 3 analysis, fully accounting for axial effects, typically required more
iterations in order for the solutions to stabilize. Similar degrees of numerical accuracy were
achieved in the other patch tests performated (Tata 1996).

Performance modelling was also scrutinized by conducting analyses of more representative
structures, ranging from simple to more complex. One such analysis involved a cantilevered slab
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Element X Direction Y Direction
Number || Mode 1| Mode 2| Mode 3|| Mode 1| Mode 2[ Mode 3
Top reinforcement 10 No. 10M 25 mm
1 9.398 | 10.056 | 10.149 || 9.398 |10.056 | 10.149
f . v e 4« « e« e« « c 2 9.398 | 10.056 | 10.149 || 9.398 |10.056 | 10.149
T urvature, 3 9.398 | 10.256 | 10.148 || 9.398 | 10.256 | 10.148
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l . . F { (x10°8 /mm) 5 9.398 | 10.250 | 10.145 || 9.398 |10.250 | 10.145
6 9.398 | 10.250 | 10.145 || 9.398 | 10.250 | 10.145
fe——————— 1000 mm 7 9.398 | 10.259 | 10.145 || 9.397 |10.259 | 10.145
25 mm 8 9.398 | 10.259 | 10.145 || 9.398 {10.259 | 10.145
@ 1 546 | 547 | 54.5 546 | 54.7 | 545
2 546 | 547 | 545 546 | 547 | 545
3 546 | 547 | 545 546 | 54.7 | 545
MOMENT 4 546 | 546 | 545 || 54.6 | 54.6 | 54.5
Concrete Reinforcement (kN-m/m) 5 546 | 546 | 545 || 546 | 546 | 545
- = = = 6 546 | 546 | 54.5 546 | 546 | 54.5
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Fig. 3 Patch test for moment-curvature response: (a) Element cross section; (b) Theoretical response;
(c) Predicted curvatures and moments; (d) Load-deflection response of a cantilevered slab

subjected to concentrated load along the free end. The slab section details were the same as those
used for the patch tests, as were the slab dimensions. The slab was again modelled using a grid of
elements consisting of 4 along the span and 2 across the width. The applied load was increased
monotonically to failure. Shown in Fig. 3(d) are the resulting load-displacement responses as
predicted by the three alternate approximate analyses and as predicted by a full nonlinear shell
analysis (RASP). As can be seen, the three analyses provide surprisingly consistent results at low
and intermediate load levels. Note too that the analysis results are very similar to those obtained
from the RASP shell analysis. It should be remembered that in this case problem, shear, torsion,
and axial load effects were insignificant.

With regards to numerical stability, each of the procedures was equally stable and compliant.
However, typically the Mode 3 analyses required significantly more iterations to achieve
convergence, whereas the Mode 1 analysis required the fewest. This had some impact on the
relative job completion times. For example, consider the analyses associated with the patch test
discussed above in which 0.80 M, was applied to the slab strip. Using Mode 1 analysis, 5
iterations were required consuming a total of 9 seconds on a PC 486 processor. To achieve
similar convergence, the Mode 2 and Mode 3 analyses required 12 iterations and 34 seconds, and
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48 iterations and 130 seconds, respectively. A full shell analysis, on the other hand, required
substantially more time.

8. Experimental corroboration

In addition to being numerically robust and reliable, the approximate analysis procedures must
be examined for their ability to accurately simulate aspects of the nonlinear response of reinforced
concrete slabs. Three series of concrete tests specimens were chosen for investigation. The first,
owing to the simplicity of the test specimens, provided a more rigorous check of the basic
constitutive modelling. The second series involved specimens significantly affected by two-way
action, thus providing a check of the modelling of torsional moment effects. The last series
examined, involving more complex specimens, provided a check of the influence of second-order
effects such as torsional moments, in-plane forces, and shear, and the ability of the procedures to
capture these.

The first set of specimens examined was a series of plates tested by Polak (1994). The
specimens were 1625 mm square in plan, and 316 mm thick (see Fig. 4(a)). They were reinforced
with orthogonal layers of reinforcement on each face, giving a reinforcement ratio of 1.25% per
face in the x-direction, and a reinforcement ratio of 0.42% per face in the y-direction. In the out-of-
plane direction (z-direction), a nominal amount of stirrup reinforcement was provided giving a
reinforcement ratio of 0.07%. Material strengths and other specimen details are provided by Polak.
As illustrated in Fig. 4(b), the specimens differed primarily in the loading conditions imposed.
Specimen SM1 was subjected to constant uniaxial bending along the strong axis. The second
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Fig. 4 Shell elements tested by Polak (1994)
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specimen, SM2, was loaded similarly to the first, but with an axial tension co-acting in the
direction of bending, and an axial compression applied in the transverse direction. Specimen SM3
was subjected to biaxial bending. Loads were imposed using a specially devised testing rig (the
Shell Element Tester at the University of Toronto).

A one-element mesh was sufficient to model the first specimen because of the uniform moment
throughout. The other two were represented by a 3 X 3 grid of elements. Because of the presence
of axial loads, it was necessary to use the Mode 3 approximate analysis procedure. For
comparison purposes, the specimens were also analysed using the nonlinear shell analysis program
RASP. Shown in Fig. 5 are the predicted and observed moment-curvature responses in the x-
direction. It can be seen that behaviour is well represented at all stages of loading for all three
specimens. Cracking loads, pre- and post-cracking stiffness, yield loads, ultimate loads, and post-
yielding ductility are accurately simulated. There is a slight over-prediction of stiffness at
intermediate load levels, indicating that the tension stiffening formulation is perhaps predicting
insufficient decay in the post-cracking tensile stresses in the concrete. As well, ignoring the
Poisson's effect may have contributed somewhat to the overpredictions of stiffness. Strain-
hardening influences, particularly evident in the observed SM2 response, was not modelled and
therefore not represented. All three specimens failed by ductile yielding of the reinforcement in
the x-direction. In SM3, failure was accompanied by yielding of the reinforcement and crushing of
the concrete on the compression face. These failure modes were correctly predicted by the
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Fig. 5 Comparison of predicted and observed responses for Polak specimens
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approximate analyses. As well, the approximate analyses provided similarly accurate predictions
of the concrete surface strains, cracking characteristics, and reinforcement strains. Also evident in
the response curves is that the approximate solution does not sacrifice much accuracy compared to
the full nonlinear shell analysis in this case.

The second set of specimens examined consisted of square corner-supported slabs subjected to a
point load applied at the center. This set includes one specimen tested by McNiece (1971) and
four tested by Vecchio, Agostino and Angelakos (1993).

The McNiece slab is one often used as a benchmark for calibrating nonlinear analyses. The
corner supported two-way slab was 915X 915 mm square and 44 mm thick, and reinforced with
an orthogonal mesh giving a reinforcement ratio of 0.85%. The purpose of the test was to gauge
service load deflections, and thus was not loaded to ultimate. In representing this specimen, a 6 X 6
mesh of elements was used to model one-quarter of the structure. Shown in Fig. 6 are the results
of the analyses using all three approximate procedures (SNAP Modes 1, 2, and 3) and the full
nonlinear shell analysis (RASP). The indication is that all procedures give comparable and
reasonably accurate predictions of deflection at service load levels.

The slabs tested by Vecchio, Agostino and Angelakos (1993) were 2800 X 2800 X 150 mm, and
were simply supported at the corners (see Fig. 7(a)). The percentages of reinforcement in the
orthogonal directions ranged from light to heavy, as indicated in Fig. 7(b). After first being
subjected to various restrained thermal loading conditions, the slabs were point-loaded at the
centre and loaded to ultimate. (Note that the slabs were extensively cracked prior to this last
loading condition, but had not sustained yielding at any point in the loading regime.) Owing to
the concentrated loading and corner support conditions, this series of tests represents a stringent
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Fig. 6 Comparison of predicted and observed centre deflections of McNiece slab




Approximate analyses of reinforced concrete slabs 13

test of the ability to model two-way action and particularly internal torsional moment effects. The
objective here is to gauge the ability of the analysis procedures to accurately represent ultimate
capacity.

Taking advantage of symmetry, a quarter-model of the slabs was constructed using a finite
element grid of 6 X 6 elements. Shown in Fig. 8 are the predicted load-displacement responses of
the slabs, obtained from the various approximate procedures, together with the experimentally
observed response. Also shown is the behaviour obtained from a nonlinear shell analysis (RASP).
It is immediately apparent that the correlation is not as favourable as that obtained from the
Polak specimens. The disparity in predicted and observed stiffness at low and intermediate load
levels is not an issue, since the slabs were extensively cracked due to prior loading. The slabs

Longitudinal reinforcement Transverse reinforcement

7 ” T
2800
8 T
ff_o
!
I
i
|
L | A
|
| l 1
longitudinal direction
N ¥ (long ) 300 x 300 x 8 mm
steel plate
x {transverse direction)
{= 300+
2 2 ]

X - Reinforcement Y - Reinforcement

Specimen|| p.* Bar Spacing py‘ Bar Spacing
(%) Type (mm) | (%) Type (mm)

TS6 1.50 20M 130 1.50 20M 130

TS7 1.00 20M 200 1.50 20M 130

TS8 0.40 15M 330 1.50 20M 130

TS9 0.40 15M 330 0.75 20M 260
* per layer

(b)

Fig. 7 Details of Agostino/Angelakos plate specimens (Plates were supported at corners, and subjected to
point load at centre)
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were modelled without consideration of previous load history, and so higher initial stiffnesses
were expected. However, what is worrisome is the disparity in the predicted ultimate strengths,
particularly with the Mode 2 analyses. For these slabs subjected to high internal torsional
moments, the practice of adding the torsional moment M,, to the normal moments (as done in
Modes 1 and 3), or the torsional curvature ¢,, to the normal curvatures (Mode 2), tends to
overestimate the resulting decay in strength. Note, however, that the nonlinear shell analysis
(RASP) simulates quite well the capacity response of these slabs.

Vecchio and Tang (1990) tested a pair of large-scale column and slab assemblies (see Fig. 9).
The slab strips were 100 mm thick and 1500 mm wide. The two intermediately located column
stubs were 200 mm in cross section and spaced 3076 mm on centres. A 75 mm drop panel was
provided at each column slab joint, and a transverse edge beam was built integral with the slab at
each end. The support conditions were a critical aspect of the tests. In both cases, the column
bases were fixed against vertical or lateral translation. In the first specimen (TV1), the edge beams
were restrained against vertical translation but free to move horizontally. With the second
specimen (TV2), the edge beams were restrained against both vertical and lateral translation. The
specimens were subjected to a line load applied at the centreline of the middle span. Other
pertinent details are provided by Tang. During testing, Specimen TV1 experienced yielding of the
bottom longitudinal reinforcement at the midspan, followed by yielding of the top longitudinal
reinforcement just beyond the column face. The test then ended somewhat prematurely when a
run-away actuator punched through the slab causing a brittle shear failure. The ultimate load of
TV1 would thus likely have been higher than that measured and reproduced here. Specimen TV2
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Fig. 8 Comparison of predicted and observed load-deflection responses of Agostino/Angelakos
specimens
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Fig. 9 Details of Tang column strip specimens

benefitted from pronounced compressive membrane action, with the induced axial compression
reaching magnitudes of 382 kN (more than four times the applied transverse load!) before
experiencing failure. Ultimately, a three-hinge mechanism developed with yielding across the
midspan and interior column faces.

A quarter-model of the test specimens was constructed using a relatively course grid of 32
elements (16 X 2). Both approximate (Mode 3) and full nonlinear analyses were undertaken of the
two specimens. Shown in Fig. 10 are the observed and predicted centre-point load-deflection
responses. In the case of Specimen TVI1, the approximate analysis provided a reasonable
representation of the observed behaviour. The strength and stiffness were somewhat overestimated
by the approximate analyses. Bear in mind, however, that the observed specimen ultimate capacity
was artificially reduced because of the accident experienced during loading, as described above.
Also, the slab stiffness was somewhat reduced due to the presence of existing cracks arising from
shrinkage and handling. Cracking patterns, concrete surface strains, and reinforcement stresses
were modelled with reasonable accuracy. The improvement in the predicted response obtained
from the full nonlinear shell analysis (RASP) is marginal. With Specimen TV2, however, the
approximate analysis is unsuccessful in accurately modelling behaviour. With the very high levels
of axial compression induced by the fixed support conditions, significant overpredictions of
strength can arise if axial strains are grossly misjudged, as they can be when geometric
nonlinearities are not taken into account. By considering geometric nonlinearities in the RASP
analysis, a more accurate representation of strength and stiffness is observed. Note that specimen
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Fig. 10 Comparison of predicted and observed load-deflection responscs at the centres of the Tang
specimens

TV2 demonstrated a load capacity 32% greater than that of TV1, owing entirely to the influence
of the axial compressions induced by the lateral restraints at the supports. Quantifying this second-
order influence is a difficult analytical problem, and not one expected to be handled well by an
approximate procedure.

9. Conclusions

Reinforced concrete flat plate structures, as a subset of shell structures, typically have structural
properties and loading conditions which require much less rigorous second-order analyses than do
general three-dimensional shells. By bypassing the geometric nonlinearity algorithms and general
three-dimensional stress formulations, which are typically of minor relevance to plates, the
analyses can be executed more expediently. Further, various approximate formulations can be
implemented which will further reduce the arduous nature of the calculations. This will facilitate
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the use of such analysis programs as general design office tools, or as a background engine for
automated analysis/design packages.

One alternative approximate procedure is to implement an effective stiffness formulation. This
can be done either by incorporating semi-empirical formulations such as Branson's formula, or by
adapting a layered sectional analysis algorithm. Alternatively, a plate-bending analysis can be
coupled with an in-plane force analysis, and the behaviours described can be enforced by the use
of the unbalanced force procedure. Once again, the nonlinear behaviour enforced would be that
obtained from an appropriate nonlinear section analysis.

From the calibration tests undertaken, and from corroborations with test data, the following
conclusions can be made:

1) For analyses at service load levels, where yielding is not expected at any location in the
structure, an effective stiffness formulation based on Branson's formula provides surprisingly good
accuracy in terms of load-deflection response. Furthermore, the analyses require little
computational effort relative to the other approximate procedures, and much less than a full
nonlinear shell analysis. This procedure cannot make allowance for in-plane load effects or shear
effects, however.

2) In cases where post-yielding behaviour must be considered, reasonable accuracy can be
obtained by using an effective stiffness procedure based on a layered section analysis. The layered
section analysis provides the means to rigorously consider nonlinear behaviour by implementing
an appropriate set of constitutive laws, and by satisfying sectional equilibrium and compatibility
requirements. Once again, however, shear or in-plane load effects cannot be readily considered.

3) Where in-plane load effects (including prestressing) or out-of-plane shear effects are judged
to be of some significance, a viable approximate analysis can be obtained by coupling a plate
bending analysis and an in-plane force analysis. Nonlinear sectional behaviour is then enforced
with the addition of unbalanced forces to the force matrix.

4) When axial force effects are a major influencing factor, such as in cases where support
restraints induce high levels of axial compression and arch action, then a full nonlinear shell
analysis is required to properly model behaviour. It may also be required when the plate includes
nonstandard details such as skewed reinforcement.

5) When the support and loading conditions are such as to produce high internal torsional
moments, the approximate procedures show significant deterioration in accuracy when
determining ultimate capacity. Again, in these situations, it is advisable to use a full nonlinear
shell analysis.

6) If an approximate analysis can be undertaken within the constraints identified above, the
analysis will generally be much more efficient and with little loss in accuracy relative to that from
a full nonlinear shell analysis. However, given the rather stringent conditions constraining their
applications, the approximate procedures are of limited practical value. Future work will be
directed towards improving the efficiency of the nonlinear shell analysis procedures.
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