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Transverse vibrations of simply supported
orthotropic rectangular plates with rectangular
and circular cut-outs carrying an elastically
mounted concentrated mass
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Abstract. Practicing a hole or an orifice through a plate or a slab constitutes a very frequent
engineering situation due to operational reasons imposed on the structural system. From a designer's
viewpoint it is important to know the effect of this modification of the mechanical system upon its
elastodynamic characteristics. The present study deals with the determination of the lower natural
frequencies of the structural element described in the title of the paper using a variational approach and
expressing the displacement amplitude of the plate in terms of the double Fourier series which
constitutes the classical, exact solution when the structure is simply supported at its four edges.
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Rayleigh-Ritz; double Fourier series.

1. Introduction

Consider the mechanical system shown in Fig. 1: an orthotropic rectangular plate simply
supported at its edges, carrying an elastically supported mass m while k is the spring constant of
the foundation of the mass which is assumed to possess lineal characteristics. Obviously the mass
represents a motor or engine in the case of a mechanical design, or an electronic element in the
case of a printed circuit board (Steinberg 1973). Practicing a hole of dimensions (a, X b;) (like in
Fig. 1) or a circular orifice is common practice in a great variety of situations since the passage of
ducts, conduits or electrical cables requires it. The present paper deals with the determination of
the lower natural frequencies of the system.

Since an exact solution seems to be out of the question in view of the impossibility of
identically satisfying the natural boundary conditions at the free edge, use is made of the classical
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Fig. 1 Vibrating system under consideration

Rayleigh-Ritz method. The displacement amplitude is expressed in terms of a truncated double
Fourier series which satisfies identically the governing boundary conditions at the outer edge and
which leads to the exact solution of the problem when no holes are present.

The eigenvalues have been computed from (401x401) and (901X 901) secular determinants
obtaining excellent agreement between the lower roots. It has been previously shown that in the case
of an isotropic plate the frequency coefficients agree with those determined independently by means of
a very accurate finite element code (Avalos et al. 1997, Laura et al. 1997, b).

2. Approximate analitical solution

The Rayleigh-Ritz method requires minimization of the combined functional
JIW, 2| =0, [W]+Jn2'] (n)

where J,[W'] is the functional for the displacement amplitude of the plate and J,[z'] is the
corresponding functional for the displacement amplitude of the concentrated mass (see Fig. 1).
Each functional, in turn, has the general form:

J=U-T (2)
where U and T are the Maximum Strain Energy and Maximum Kinetic Energy of plate-mass-
spring system, respectively.

As is well known, in the case of rectangular plates of orthotropic anisotropy its functional can
be written as (Lekhnitskii 1968)
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where W' is the true displacement amplitude of the plate; the first integral in (3a), taken over the
actual doubly connected area of the plate surface A,, is the (maximum) Strain Energy of the plate
and the second integral measures the maximum Kinetic Energy of the plate.
The functional for the concentrated mass-spring system has the form (Avalos et al. 1994)
km ., m

Jn=t 2“’2 @+ Wiy (3b)

Where z' is the mass displacement amplitude relative to the plate; (z'+W,') is the total
displacement amplitude of the point mass, and W,, is the displacement amplitude of the plate at
the concentrated mass position.

In Egs. (3a) and (3b) above:
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are the well known flexural rigidities of the (orthotropic) plate. For an isotropic plate, Egs. (4a)
take the well known form:

ER® . (1-v) EW?

- B = (4b)
12(1-v?) 2 12(1-v?

D 1 :D 2
If the length of the sides of the rectangular plate are a and b in the x and y directions, respectively,
Egs. (3a) and (3b) can be cast in a non-dimensional form by introducing:

W=W"/a, x=x"/a; y=y'/b and z=z"/a )

One obtains, for the functional for the whole system depicted in Fig. 1:

2
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D
is the square of the non-dimensional frequency coefficient;
M= (8)
p
M, being the mass of the plate without holes;
kma?
K= Knd? 9)
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is the non-dimensional mass-spring constant

and

b
a

1=

(10)
is the aspect ratio of the plate.

Expressing the displacement amplitude W(x, y) of the plate in an approximate way by means of a
double Fourier series

N M

Wa(x,y)=Y bmsin(mmx)sin(n y) (11)

n=lm=1

one gets as a final expression for the functional the following sum:

k*n2 D, n2?
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18
where
N M
W =Wa Qom, ym)=3" > bum sin(m mxm ) sin(n wym)
n=lm=1

is the amplitude displacement of the plate at the mass position, x, and y, being the non-
dimensional mass position coordinates;

Ay = | sin(kmx)sin(l wy ) sin(m 70x ) sin(n 7y ) dxdy (13)
A[’
and
A = .[ cos(k mx ) cos(l wy ) cos(m mx ) cos(n wy ) dxdy (14)
A[’

In order to minimize the functional one has to take its partial derivatives with respect to the
coefficient b, and z in expression (12) and equal these derivatives to zero.
That is to say
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This yields and (M XN+1) homogeneous linear system of equations in the b,'s and the z. A
secular determinant in the natural frequency coefficients of the system results from the non
triviality condition.

The present study is concerned with the determination of the frequency coefficients €, and €,
in the case of orthotropic plates with rectangular and circular holes and carrying elastically
mounted concentrated masses. It is important to emphasize the fact that basic, important problems
like the case where a slit is practiced in the plate, cannot be analyzed using the present approach.

3. Numerical results

Numerical experiments on vibrating isotropic rectangular plates with simply supported edges
and rectangular, free edge holes have recently been reported (Laura et al. 1997b). It has been
shown that the analytical results obtained using the approach previously explained, using a 901 X
901 secular determinant, are in excellent agreement with the eigenvalues obtained by means of a
very accurate finite element code, the maximum differences being of the order of 0.3%. In some
instances four significant digits agreed.

As previously stated, the natural boundary conditions at the hole edge are not satisfied when
using the analytical approach. But, on the other hand, the coordinate functions employed
constitute a complete set of trial functions and the functional minimization process required by the

Table 1 Values of £, and (2, in the case of orthotropic square plates with different positions and
values of the mass-spring system when the cutout with a;/a=0.1 moves along the
diagonal (Fig. 2)

) A (B) ©
Mass coord. miM, Ka'/D
2 £, (O} 2, 2, 0

x/a=.50 0.1 1 3.148 20.01 3.149 19.96 3.148 19.77
y/b=.75 10 9.526 20.59 9.534 20.52 9.532 20.32
o0 17.92 36.90 17.93 36.86 17.81 36.44
@ 0.3 1 1.818 20.01 1.818 19.96 1.818 19.77
10 5.529 20.49 5533 20.42 5.533 20.22
o 14.68 32.09 14.75 31.96 14.69 31.54
x/a=.75 0.1 1 3.152 19.98 3.152 19.93 3.152 19.74
y/b=75 10 9.674 20.27 9.676 20.22 9.676 20.02
0 18.86 37.46 18.83 37.44 18.68 37.01
() 03 1 1.820 19.98 1.820 19.93 1.820 19.74
10 5.602 20.22 5.602 20.17 5.602 19.97
oo 16.49 30.43 16.50 30.37 16.42 30.02
x/a=.75 0.1 1 3.149 20.01 3.149 19.96 3.149 19.77
y/b=.50 10 9.549 20.60 9.559 20.53 9.556 20.33
o0 17.96 42.53 17.98 42.46 17.85 41.99
(© 0.3 1 1.818 20.01 1.818 19.96 1.818 19.77
10 5.542 20.49 5.547 20.43 5.547 20.23

0 14.83 35.77 1491 35.63 14.84 35.28
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Fig. 2 Orthotropic simply supported rectangular plates with cutouts of the same aspect ratio when the
cutout displaces along the diagonal and different positions of the spring-mass system. Positions of
the cutout center: (A) x,=a/2, y,=b/2; (B) x;=a/4, y,=b/4; (C) x,=a,/2, y,=b,/2

Table 2 Values of €2, and €2, in the case of orthotropic square plates with different positions and
values of the mass-spring system when the cutout with a,/4=0.3 moves along the
diagonal (Fig. 2)

, A) (B) ©
Mass coord. m/M, Ka' /D
0 Q, Q Q, Q, Q,

x/a=.50 0.1 1 3.145 21.05 3.148 19.42 3.148 18.43
y/b=.75 10 9.432 21.79 9.511 20.02 9.503 19.98
00 18.06 35.50 17.44 37.01 16.80 35.10
(a) 0.3 1 1.816 21.05 1.817 19.42 1.817 18.43
10 5.477 21.67 5.523 19.90 5.522 18.87
oo 14.07 31.91 14.37 32.06 14.09 29.97
x/a=.75 0.1 1 3.151 21.01 3.152 19.39 3.152 18.40
v/b=.75 10 9.638 21.37 9.668 19.68 9.664 18.67
00 19.43 36.34 18.34 37.79 17.57 35.63
(b) 0.3 1 1.819 21.01 1.820 19.39 1.820 18.40
10 5.582 21.31 5.600 19.63 5.599 18.62
oo 16.39 30.73 16.15 30.34 15.73 28.57
x/a=.75 0.1 1 3.145 21.05 3.149 19.42 3.149 18.43
y/b=.50 10 9.432 21.79 9.533 20.03 9.523 19.01
o 18.07 38.60 17.47 42.01 16.79 40.11
(©) 0.3 1 1.816 21.05 1.818 19.42 1.818 18.43
10 5.477 21.68 5.536 19.91 5.534 18.89

o 14.08 33.74 14.50 35.86 14.16 33.73
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Table 3 Values of €, and €2, in the case of orthotropic square plates with
different positions and values of the mass-spring system when the

cutout with a,/a=0.5 moves along the diagonal (Fig. 2)

s A B
Mass coord. m/M, Ka’/D
\ Q, £ £,

1 3.131 26.67 3.146 18.71
x/a=.50 0.1 10 9.103 27.69 9.443 19.42
y/b=.75 00 18.42 34.24 16.62 36.26
@ 03 1 1.808 26.67 1.816 18.70
a - 10 5.277 27.60 5.494 19.28
o0 12.14 32.87 13.60 32.27
x/a=.75 01 1 3.145 26.61 3.152 18.67
y/b=75 10 9.477 27.19 9.645 19.01
o0 21.63 35.56 17.62 38.07
®) 03 1 1.816 26.61 1.819 18.67
10 5.486 27.14 5.590 18.94
o0 15.48 33.10 15.52 30.96
x/a=75 0.1 1 3.131 26.67 3.147 18.71
y/b=.50 10 9.976 27.67 9.454 19.46
oo 18.31 34.44 16.60 39.18
© 0.3 1 1807 2666 1817 1871
10 5.216 27.58 5.501 19.31
oo 11.98 32.90 13.63 35.95

Table 4 Values of €2, and £, in the case of orthotropic rectangular plates,
with b/a=2/3, when the cutout, with equal aspect ratio and a,/a=0.3

moves along the diagonal (Fig. 2)

X A) (B)
Mass coord. m/M, Ka'/D
121 Qz Ql QZ

1 3.154 31.68 3.156 27.86
x/a=.50 0.1 10 9.758 32.13 9.809 28.18
y/b=.75 o 27.16 58.00 25.37 59.82
@ 03 1 1.821 31.68 1.822 27.85
a - 10 5.639 32.10 5.669 28.15
o 20.97 50.01 21.25 49.84
x/a=.75 01 1 3.157 31.66 3.158 27.84
y/b=T5 10 9.848 31.87 9.861 27.99
o 19.25 53.59 26.57 52.25
(b) 03 1 1.823 31.66 1.823 27.84
10 5.688 31.85 5.696 27.97
o 24.39 45.02 23.59 41.49
x/a=.75 01 1 3.154 31.68 3.156 27.85
y/b=50 10 9.758 32.13 9.795 28.16
oo 27.14 52.25 25.38 51.10
© 03 1 1.821 31.68 1.822 27.85
10 5.640 32.10 5.662 28.13
0 20.94 46.87 21.09 43.34
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Table 5 Values of £, and €, in the case of orthotropic rectangular plates,
with b/a=2/3, when the circular cutout, with r,/a=0.15 moves
along the diagonal (Fig. 3)

, A) ®
Mass coord. m/M, Ka®/D
Q Q, Q O,

1 3.155 33.11 3.156 29.03
x/a=.50 0.1 10 9.763 33.56 9.808 29.38
y/b=.75 o 28.13 57.55 26.14 62.08
@ 03 1 1.821 33.11 1.822 29.03
a : 10 5.641 33.53 5.669 29.35
oo 21.43 51.02 21.57 52.23
x/a=75 01 1 3.157 33.09 3.157 29.01
y/b=T5 10 9.851 33.30 9.861 2918
o 30.37 51.72 27.45 52.62
(b) 0.3 1 1.822 33.09 1.823 29.01
10 5.690 33.29 5.696 29.16
o 24.98 45.17 2401 43.90
x/a=.75 01 1 3.154 33.12 3.155 29.03
y/6=50 10 9.752 33.57 9.794 29.38
oo 27.91 4931 26.06 54.44
© 03 1 1821 3312 1822 29.03
10 5.636 33.54 5.660 29.35
o 21.07 4538 21.29 46.64
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Fig. 3 Orthotropic simply supported rectangular plates with circular cutout of radius r,/a=0.15 when the
cutout displaces along the diagonal and different positions of the spring-mass system. Positions of
the cutout center: (A) x,=a/2, y,=b/2; (B) x;=a/4, y,=a/4

Rayleigh-Ritz method guarantees that, as the number of coordinate functions used approaches
infinity, the generalized force type boundary conditions and the governing partial differential
equation of motion will be exactly satisfied (Kantorovich and Krylov 1964, Mikhlin 1964).

Tables 1 through 5 show values for orthotropic rectangular plates with both equal aspect ratio
rectangular holes and circular holes. In these tables, v,=0.3, D,=D=D,/2 and M=N=20.

Tables 1, 2 and 3 depict values of the fundamental and first excited frequency coefficients, €2,
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€, in the case of square orthotropic plates as the center of the cut-out displaces along a diagonal
for the following positions: x=a,/2 and y=b,/2; x=a/4 and y=b/4 and finally x=a/2 and y=b/2
and for different values of the mass, spring constant and mass-spring coordinates.

Table 4 shows values of £, and €2, in the case of rectangular plates, with b/a=2/3, when an
equal aspect ratio cutout, with a,/a=0.3, takes the following two positions along the diagonal: x=
a,/2 and y=b,/2 and x=a/2 and y=b/2.

Finally Table 5 shows values of €, and €, in relation to rectangular plates, with b/a=2/3,
when a circular cutout of non-dimensional ratio r,/a=0.15, takes the following two positions
along the diagonal: x=a/4 and y=b/4 and x=a/2 and y=b/2.

The numerical results presented in Tables 1 through 5 have been obtained from a 401X 401
determinantal equation (N=M=20) since from a practical viewpoint the differences between the
lower roots obtained from this determinantal equation and those determined from a (901/901)
determinantal equation was less than 0.5% in the case of isotropic plates. It is reasonable to
expect that as to orthotropic plates the accuracy achieved from a (401x401) determinantal
equation will be sufficient from a designer's viewpoint.

Special care was taken to manipulate such large determinants and 80 bit floating point variables
(IEEE-standard temporary reals) have been used in order to obtain accurate results. When the
spring constant k attains a finite value the frequency coefficient €2, is, obviously, the frequency
coefficient corresponding to the spring-mass system “disturbed” by the presence of the plate while
€2, is the plate frequency coefficient modified by the existance of the mass-spring system (Laura
et al. 1997).

It is interesting to point out that in some instances, for the same values of x/a, y/b, m/M, and
Ka’/D, ©, increases as the hole size increases. This is the case for x/a=0.5; y/b=0.75; m/M,=0.1
and Ka’/D=1 as a,/a increases from 0.1 to 0.3 and 0.5, case (A) of Tables 1, 2 and 3. This
phenomenon is known as “dynamic stiffening effect” since the actual plate is reduced in its actual
weight but its fundamental frequency is higher.

The approach presented in this paper can be extended to the case of plates of non uniform
thickness and also to other combinations of boundary conditions using appropriate coordinate
functions, for instance the popular beam functions following Young's classical approach (Young
1950). The approach is also applicable in the case of anisotropic plates with elastic restrictions
along the edges. Admittedly certain problems are excluded if the present approach is used, e.g.,
the case of a slit practiced in the plate.

Conclusions

It is shown in this paper that a simple approximate method allows for the solution of a rather
complex elastodynamics problem. A subsidiary energy functional corresponding to the cut-out is
subtracted from the energy functional of the solid, simply connected plate. The lower natural
frequencies are determined in a straightforward fashion for several combinations of governing
geometric and mechanical parameters.
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Notations

a, b sides of the rectangular plate

a,, b, * sides of the rectangular hole

h plate thickness

r, radius of the circular hole

5 b/a

w’ plate displacement amplitude

W dimensionless plate displacement amplitude

z' mass displacement amplitude relative to the plate
z dimensionless mass displacement amplitude relative to the plate
p mass density of the plate material

Q frequency coefficient





