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Transient response of a right-angled bent
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Abstract. This paper provides an analysis of the transient behaviour of a right-angled bent cantilever
beam subjected to a suddenly applied force at its tip perpendicular to its plane. Based on a rigid,
perfectly plastic material model, a double-hinge mechanism is required to complete the possible
deformation under a rectangular force pulse (constant force applied for a finite duration) with a four-
phase response mode. The kinematics of the various response phases are described and the partitioning
of the input energy at the plastic hinges during the motion is evaluated.
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1. Introduction

An understanding of the response of engineering structures and components under impact
loading is of practical importance in assessing the safety of nuclear power stations, chemical
plants and other industrial establishments which could be exposed to potentially accidental
explosions or damages to various critical components when struck by energetic objects. For
instance, in a nuclear power station, a sudden rupture of a high pressure piping system is a safety
related matter. If such a sudden break happens, the magnitude of the reaction force (the blow-
down force) from the leaking fluid can be substantial and consequently cause a whipping motion.
The pipe will undergo dynamic plastic deformation and could acquire considerable kinetic energy.
This is termed pipe whip.

Modeling the mechanics of a whipping pipe is a complex problem. It can be solved at various
levels of complexity. The simplest approach is to formulate a small deflection, rigid-plastic
analysis in which the pipe is treated as a cantilever beam subjected to a suddenly applied end load.
The effect of geometrical changes and material elasticity are neglected. This approach remains the
fundamental basis of an initial approach to some particular problems in pipe whip research.

Recently, attention has been given to response of a two-dimensional piping system subjected to
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suddenly applied forces at its tip perpendicular to its plane. Amongst various engineering
configurations, right-angled bent pipes are of particular interest for their wide applications in
practice. The complete range of possible deformation mechanisms for an impulsive loading and a
step force was described by Wang (1994) and Reid, Wang and Yu (1995), respectively. They
showed that various failure modes may occur with the maximum of two plastic hinges appearing
simultaneously in the cantilever pipe.

Under an out-of-plane tip load F, as shown in Fig. 1, segment AC of a right-angled bent
cantilever is under pure bending, and CB is under combined bending and torsion. A simple static
analysis yields that when F<F,, where

F,= M,
0— )
LN1+My/ T (L /L)

there will be no failure in the beam, M, and 7, being the dynamic fully plastic bending moment
and torque of the beam, L, and L, being the lengths of segments AC and CB, respectively. Reid,
Wang and Yu (1995) showed that for a step load, there is a limiting force magnitude F,. When F,
<F <F,, only one combined bending-torsion hinge will be formed in the beam either at B or in
CB, ie., a single hinge mechanism; when F<F,, a double-hinge mechanism will apply with a
pure bending hinge in AC and a combined bending-torsion hinge in CB simultaneously. Since a
step load is time independent, the hinges are stationary in the beam during the deformation. In
this paper, the transient behaviour is examined for a right-angled bent cantilever subjected to an
out-of-plane rectangular pulse. It is shown that when the applied force is removed, the plastic
hinges start to travel along the beam segments. The kinematics of the travelling hinges, the
response time of the cantilever, the deflection of its tip and the energy partitioning at various
times are all features of the motion to be studied. The cantilever ultimately comes to rest after a
final root rotation phase. Attention herein is focused on the cases corresponding to high load
magnitude when a double-hinge mechanism is initiated since this response contains all of the
features which might occur for this type of problem.
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Fig. 1 A right-angled bent cantilever Fig. 2 The rectangular pulse of finite duration
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2. Theoretic modeling

Consider a cantilever comprised of two straight segments of length L, and L,, shown in Fig. 1.
The cantilever is loaded normally to its plane by a rectangular force pulse at its tip. The pulse can
be represented as :

P, 0757

F=10 ¢«

as shown in Fig. 2. It is assumed in this paper that the beam is made from a rigid, perfectly
plastic material, the beam's deflection is small and the analysis is referred to its original
configuration. Under a combined bending-torsional deformation, the yield criterion is given as

B

My | T ;
(s

Also, the ratio of 7/M is assumed to be less than 1 as it is the case for most of the engineering
beam structures. For those with 7/M=1, an analysis was given by Martin (1964) for an impulsive
loading condition. It showed a pure bending then pure torsion single hinge mechanism, a solution
very similar to that of an equivalent straight beam solved by Parkes (1955); for those with T/M > 1
under step loads, Hua et al. (1988) provided a double-hinge solution different from that in this

paper.

with an associated flow rule,

2.1. Double-hinge mechanism (Phase )

Assume that a pure bending hinge H; and a combined bending-torsion hinge H, are formed in
segment AC and CB, respectively, as shown in Fig. 3. ¥, ¥, and ¢, are the relative angular
velocities due to bending and torsion at the plastic hinges. Applying D'Alembert's principle, the
governing equations of each beam segment can be obtained.

1) For segment H,H,, the equation of translational motion is

X L —x
0=, 2 &, +ptt ) L2 oyt —x ey, )
The rotational equation about axis CB is
MO_T2=%(L1_X2)3¢2 —%(L1‘xl)zx2§2 4)

where the polar inertia of segment CH, is neglected. And the rotational equation about axis AC
is
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Fig. 3 Free body diagram for a double-hinge mechanism

M = % X 23 {’2 (5)
2) For segment AH,, the equation of translational motion is
F=.ux1|:x—2l"'91 +(L1_% ¢ —x, 192] ©)
and the rotational equation about H, is
Fxl_M0=£x3 01"'# ﬁ_'x_l xz(bz _£x2x2i92 (7)
37! 2 6|1 271
The yield condition at hinge H, is
2 2
& + & =1
M, T,

and because the hinge does not move during the pulse, M, and 7, are time independent. The flow
rule becomes

2
M,| T, -
— | —9 8
To | My ° ®)
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From Eq. (3), we have
_% 24+2(L,—-x))x, EY

©)
Li—x1)
Substituting it into Egs. (8) and (4) produces, respectively,
. 2
M, M, Ly—x1)
and
Li—x,; |
T2=M0—§(L1—x1)x2[x2+ 12 1]192 11)
Then putting M, and T, into Egs. (1) and (10) gives
2
Li—x,|. 2
Mo‘%(Ll‘xﬂxz[xz"‘ 12 1}92 %x;i?z
+ =1 (12)
TO MO
and
Li-x,|.
2 MO_%(Ll_xl)xz[xZ_%]ﬂZ
—x.)? .
M, (Lqi-xy9) %x; s
By eliminating 9 in Eqgs. (6) and (7), we have
1 e, -y = R4 XD) (14)
3 6(L,—x,)

Egs. (12) to (14) form a set of nonlinear equations for unknowns x,, x, and ¥,. Given the value
of F, the equations can be solved numerically. It is noted that all variables during the pulse
remain constant and this represents a stationary hinge phase. Fig. 4 shows schematically the shear
force, bending moment and torque distribution along the beam segments.

The value of F,, the minimum magnitude of F required for a double-hinge mechanism can be
derived by letting ¥,=0 in Egs. (6) and (7), then we have

T . — .
Mo=p {h—ﬁ] s A Lk (15)

Combining Eq. (15) with Egs. (12) and (13), we can solve the positions of H, and H, in the beam.
They represent the closest positions to bend C the two hinges may possibly appear in segments
AC and CB, respectively. And F, can be calculated by employing Eq. (6).
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Fig. 4 Diagram of shear force, bending moment and torque distribution for a double-hinge mechanism

With subscript “I” denoting values at the end of Phase I, we have,
B,=0,1, and 191,— By12
also
V=T, Oh= 5 5T, ¢u=¢.T;, and (pz,=5 0.1,
Assuming small deflections, the velocity and deflection of the beam tip can be written as
5,41 =x, 0L @y —x,0y, and 8 =x,0,4L, @y —x,0y
respectively. Thus, the total energy provided by the load is
E =F 6AI‘
And the energy dissipated at the plastic hinges in Phase I is
EH=M0191_, + le"z, + T2(P2].

When the load is removed at 7=7,, the sudden change in shear force distribution causes both
hinges H, and H, to move towards bend C, as discussed in the following text. There is a
limiting position of H, in AC, the relative angular velocity across the hinge becomes zero
when it reaches the position and AC becomes completely rigid again. This ends Phase II of
the response. As soon as hinge H, vanishes, hinge H, begins to move towards B and when it
reaches B, Phase III finishes. The final phase, Phase IV, consists of the whole rigid bent
cantilever rotating about B until all of the remaining kinetic energy is absorbed in plastic
deformation. Then the cantilever stops. Phases II to IV are described in the following.
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2.2. Phase I

As soon as the load is removed, H, and H, are no longer stationary and start to travel towards
C. They still remain a pure bending hinge and a combined bending-torsion one, respectively. The
variables involved in this phase are x,, x,, ¥, ¥, @, M, and T,. The derivation of governing
equations for this phase, which is shown schematically in Fig. Al, is presented in an Appendix.
When the governing equations are obtained, they are reorganized into a form suitable for
numerical solutions.

1:92 6M2 9 M2 (Ll—x1+x2)+ﬂ (16)
pf x| W)

Xy=- 3 M, (Ll—x1+x2)+ﬂ a7

Oyl —x1+x,) ,UX22 MWL—x,)

3%,9,-12 —% Ll—ﬁ _3M, 3M,-T,
B = ; 2 px? WL, —x,)? -

1 (Ll_xl)
- -3 X\ 2T,-My)  x, . .
] Lot 1o 2 T2 °Y 19
2} o l:( 1—=X1+ > j u(Ll—x1)2 + > X, 2] ( )
(Ll_xl)[ 12 - 2]
hE R 2‘% (20)
191 'uxl nuxz I-L( 1—x1)

Letting T,/T,=sinc and M,/M,=coso, the yield condition is satisfied automatically. From the

associated flow rule, we have
o=tan™’ [M] (21)

M9,

A standard fourth order Runge-Kutta procedure is employed to calculate x,, x,, 191,_ B, 0, at
each time instant. At the end of each step, o (i.., M, and T. ,) is then updated. When 9, becomes
zero, hinge H, is inactive, Phase II ends and the time is denoted by 7.

2.3. Phase Il

When hinge H, reaches its terminal position and becomes inactive, the combined bending-
torsion hinge H, becomes the only hinge running towards root B. The equations of motion for
segment ACH, are

2 .. .
(Ll+%)x2 1'9'2 +L71 (P2 +(L1+x2))'62 02=0 (22)
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L, - 1 T,

Xy - .o
7192 +—3—(P2 +E , U= /JL12 (23)
and
%28 i, b= 2 (24)
3 ux22

At hinge H,, the flow rule and yield condition remain the same. Eqs. (22) to (24) can be
rewritten for numerical solution,

8, = 6M; 9 | MyL,+2x;) T, (25)
=
el T2 | pxZ(Lqtxy) ML (L1 +x2)

x =i MZ(L1+2x2) _ T2 (26)
Py, (L +x5) UL (L +x5)
uL; 1 1

M, and T, can be replaced by variable o as in Phase II. The initial values of x,, D Oy 0, 0
and o are obtained from the end of Phase II, and Eqgs. (21), and (25) to (27) can be solved
numerically. Note that in this phase, the positive direction of ¥, is defined as being opposite to
that in Phase II. When hinge H, reaches the root B, Phase III ends and the time at the moment is
denoted by 7.

2.4. Phase IV

After hinge H, arrives at B, the motion of the whole cantilever becomes a rigid body rotation
about B until all of the remaining Kinetic energy is dissipated at hinge Hp. With subscript “B”
denoting values of the parameters at the root, the equations of motion for the whole beam can be
expressed as follows,

L - 1 .
{Ll'l'?zJLz 1.93 +EL12(PB=—'QTB (28)
L, . L, . T,
72 193 +T1(PB=_ 312 (29)
and
L P 1 - M,

where Qj is a shear force at the root perpendicular to axis of CB.
The flow rule and yield condition at B are
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2 2 2
; My | Tz | My Ty
=20 A, and | 2B | 4+|Z2E | =1

Hence, the angular accelerations can be written as

Y ol M B G
L, L, 2L N1+(Mo05/To05) LN1+(To5/Mod5 )
ML, | — + —=
4 3
and
1
2T0(L1+§L2J
. 3 M
Op = .0 - - - : (32)
L, 2, LN1+(To®8 /M5 L2N1+(Mo05/T®3 )
Ml s

Egs. (31) and (32) can be solved by applying a fourth order Runge-Kutta method. Phase IV
ends at 7, when 95=¢,=0 and the beam ceases to move.

3. Numerical results

Numerical calculations have been carried out for all four phases of the response for different
combinations of load magnitude, F and pulse duration, 7,. The energy balance has been examined
at the end of each phase by checking that the total energy supplied to the cantilever is equal to
the sum of the energy dissipated in the plastic hinges and the remaining kinetic energy of the
beam. In calculations the structural parameters were set at My=316Nm, To/M=0.9, u=2.662 kg/m,
L;=1m and L,=2m based on a specimen of 2.45cm bore mild steel seamless tube. The rotation
angle at H, due to bending at the end of Phase I was maintained at no more than 0.16rad, i.e.,
less than 10° in order not to invalidate the small deflection assumption under which the study was
carried out.

Fig. 5 shows hinge positions at various times and the ratio 7/M at each hinge plotted against
hinge position for a typical case with F=2000N and 7=0.01sec. The ratio 7/M increases when the
hinge moves towards root B, indicating that torsion becomes more and more dominant in the
response.

For the above case, the history of tip deflection to the final tip deflection and percentage of
energy dissipated in each phase to the total input energy are shown in Fig. 6. More than half of
the input energy is consumed during Phases I and II. It is noticed that the energy dissipated in
Phase I, the stationary hinge phase, is quite close to one third of the total energy supplied to the
structure, similar to solutions of a bent cantilever with its bend angle not equal 7/2 (Reid, Wang
and Hua 1995).

Table 1 reveals the influence of pulse characteristics on the overall response of a right-angled
bent beam, the higher the load, the farther the hinges are from the bend, and the closer the energy
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Fig. 5 Hinge positions at various time and the ratio 7/M at each hinge against hinge position. F=2000 N
and 7,=0.001 sec, beam parameters are listed in Table 1
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Fig. 6 Percentage of the tip deflection and input energy dissipated in each phase, beam parameters are
listed in Table 1

dissipating ratio in Phase I to 1/3. Fig. 7 shows the final tip deflection §, and the total response
time 7; for various values of F while 7; is kept constant. The relationship between 7; and F is
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Table 1 Influence of load magnitude on structural response

FN)  7(sec) x(m) x(m)  E(%)

El%) En(%) En %) tsec)  y(m)

1500 0012 0566  1.043 315
2000 0.007 0454 1313 33.0
3000 0.004 0312 1.654 333

12.4 211 35.0 0.063  0.561
26.2 14.1 26.1 0.049 0.384
39.9 8.7 18.1 0.042 0.329

Note: structural parameters are M=316 Nm, Ty/M,=0.9, f=n/2, u=2.662 kg/m, L,=1 m, L,=2 m. x,
and x, represent hinge position of H, and H, during Phase I, respectively. E, i=I-IV, are the
percentages of energy dissipated in each phase to the total input energy. 7 is the final response

time. §, is the final deflection of beam tip.

o(m) Ti(sec)
0.70 + . 6.07

0.35f 10.035

0 : 0
1500 2000 2500

F(N)
Fig. 7 The final tip deflection and the total
response time against values of F with 7,=

0.007 sec, beam parameters are listed in
Table 1

&(m) Te(sec)
08¢ 10.08

0.4 10.04

0 " 0
0.010 0.012 0.014

Ti(sec)

Fig. 8 The final tip deflection and the total
response time against values of 7, with F=
1500 N, beam parameters are listed in
Table 1

almost linear and &, increases rapidly with increasing magnitude of F. When load F is kept
constant and changes are made to the pulse duration 7,, similar results are obtained, as illustrated

in Fig. 8.

4, Discussions

The transient response of a group of right angled bent cantilevers under an out-of-plane
rectangular pulse has been analysed and it shows a four-phase response. Checks have been made
to verify that the yield conditions are not violated in each segment of the beam and during each



342 B. Wang and G. Lu

phase of the response examined herein.

Numerical results show that the energy dissipated at the stationary hinges (Phase I) is close to
one third of the total input energy and hinge velocities are not constant during the following
traveling phases. Segment AC bears the most severe deformation due to bending. The deformation
in CB is relatively small and when the load magnitude increases it reduces.

An important distinction between the cases of the bend angle f=n/2 and those with S+ /2
discussed by Reid, Wang and Hua (1995) is that whereas bending becomes dominant eventually
in the latter case, torsion dominates phases III and IV for f=n/2. This is shown in Fig. 6. While
hinge H, runs towards B, the ratio 7/M at the hinge increases rapidly. Thus one would expect
different failure mechanisms in these cases.

The work presented in this paper, based on a rigid-perfectly plastic material model, provides for
a complete transient solution for bent cantilevers of right angle subjected to out-of-plane force
pulses. The solution satisfies both static and kinematic conditions, i.e., the yield criterion and
governing equations. But similar to many other works, the solution is restricted to small
deflections. It would be a significant improvement to see an analysis which can not only provide
complete solutions, but also be able to model the complexity of large deflections resulting from
combined bending and torsional deformations.
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Appendix
Derivation of governing equations of Phase I

(1) Segment H,CH,

Supposing that P, and P, are arbitrary points in H,C and CH,, respectively, as shown in Fig. Al.
Their velocities may be expressed as

VP2=_(x2_AQ)l.92

VP1=A1¢2_X2 0,

and
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Fig. Al The variables in phase II

The corresponding accelerations are
aP2=_(x2—A2) 192_')‘:2 192
and
aPl =2.1(P2 _i2'l'92 —x2‘i92.
The equation of translational motion for segment H,CH, is
Li-x X2
0= _[0 ' IWPldM +Io Hap d A,
= % Li~xy)? ¢2‘ WL, _xl)x2192_#(L 1=%) X0~ % x22 192"/»‘-"2"}2 0,
The rotational equation of motion about axis CB is

L-x
Mo"T2=L1 lﬂllapldﬂq

= g‘ Ly-x) Q- % (Ly=x,) 5,0, - ‘lzi (Ly-x%,D,

where the rotational inertia of segment OH, is neglected.
The rotational motion about axis AC is governed by

X2
‘M2=JO %apzdlz

or
(2) Segment AH,

Let P be an arbitrary point in AH,. The velocity of point P is

(A1)

(A2)

(A3)
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Ve=(x1=A) B +(L -2 ¢ —x,0,
and the acceleration is
ap=(;-2) K+L,~) @-x, O, +x; O —x, Vs
The translational equation of motion for segment AH, is

0=‘[:1/,La1,,d)v

=L;-x12 19'1 +u [LI—TIJXI 03 —HUX X4 02+[,Lx1x1191 —HUX X, 1.92

The rotational motion of AH; about point A is described by
*1
My=| pAapdA
0 Jo HAap

. L x . . . L.
=%xl3 Y +u [—2—1—--3—1fo o —%xfx2 B, +—‘l-21—x12xl % +%x12x2 B,

At hinge H,, the yielding condition and flow rule are

M : T : M 2T
2142 =1 and @=|=2| 28,
M, T, Ty | M,

(A4)

(AS)

The above equations can then be re-organized into a form suitable for numerical solution as listed in

Egs. (16) to (20).





